
PROJECT REPORT
TO: ENVIRONMENTAL EVALUATION COMMITTEE AGENDA DATE: October 10, 2024
FROM: PLANNING & DEVELOPMENT SERVICES AGENDA TIME: 1:30 PM / No. 2
Apex Energy Solutions, LLC / Alba Peaker BESS Project PROJECT TYPE:CUP #23-0025SUPERVISOR DIST #
LOCATION: 1884 Drew RoadAPN:051-420-042-000
Seeley, CA 92273PARCEL SIZE: 6.30-AC
GENERAL PLAN (existing) Seeley Urban Area Plan GENERAL PLAN (proposed) N/A
ZONE (existing) M-2 (Medium Industrial) ZONE (proposed) N/A
GENERAL PLAN FINDINGS
PLANNING COMMISSION DECISION: HEARING DATE: N/A
PLANNING DIRECTORS DECISION: HEARING DATE:
ENVIROMENTAL EVALUATION COMMITTEE DECISION: HEARING DATE: 10/10/2024
INITIAL STUDY: <u>#23-0030</u>
NEGATIVE DECLARATION I MITIGATED NEG. DECLARATION IEI
DEPARTMENTAL REPORTS / APPROVALS:
PUBLIC WORKS NONE ATTACHED AG NONE ATTACHED APCD NONE ATTACHED E.H.S. NONE ATTACHED FIRE / OES NONE ATTACHED SHERIFF NONE ATTACHED OTHER County Executive Office & Imperial Irrigation District
REQUESTED ACTION:

(See Attached)

Planning & Development Services 801 MAIN ST., EL CENTRO, CA, 92243 760-482-4236 GQ\AT\S:\AllUsers\APN\051\420\042\CUP23-0025_IS23-0030\EEC\CUP23-0025 PROJECT REPORT.docx

Draft

Initial Study

Alba Peaker Battery Energy Storage System Project

Initial Study #23-0030

Conditional Use Permit #23-0025

Imperial County, CA

October 2024

Prepared by:

County of Imperial

801 Main Street

Reviewed by:

Planning & Development Services Department

591 Camino de la Reina, Suite 300

HDR Engineering, Inc.

San Diego, CA 92108

El Centro, CA 92243

This page is intentionally blank.

Contents

Introductio	on		3
А.	Purpos	;e	3
В.	CEQA Implem	Requirements and the Imperial County's Rules and Regulations for nenting CEQA	3
C.		ed Uses of Initial Study	
D.	Conter	nts of Initial Study	4
E.		of Environmental Analysis	
F.	•	Level or Project-Level Environmental Analysis	
G	-	Documents and Incorporation by Reference	
		cklist Form	
		al Factors Potentially Affected	
Env	vironment	al Evaluation Committee Determination	
Project Su	ummary		
		onmental Impacts	
Evaluation		Aesthetics	
	1.	Agriculture and Forestry Resources	
	III.	Air Quality	
	IV.	Biological Resources	35
	V.	Cultural Resources	38
	VI.	Energy	41
	VII.	Geology and Soils	42
	VIII.	Greenhouse Gas Emissions	46
	IX.	Hazards and Hazardous Materials	49
	Χ.	Hydrology and Water Quality	53
	XI.	Land Use and Planning	56
	XII.	Mineral Resources	57
	XIII.	Noise	58
	XIV.	Population and Housing	64
	XV.	Public Services	65
	XVI.	Recreation	
	XVII.	Transportation	00
	XVIII.	Tribal Cultural Resources	70
	XIX.	Utilities and Service Systems	
	XX. XXI.	Wildfire Mandatory Findings of Significance	73
- <i>i</i>			
List of Pre	eparers		77
Findings .			78

Tables

Table 1. Maximum Daily Construction Air Pollutant Emissions	31
Table 2. Maximum Daily Operations Air Pollutant Emissions	
Table 3. Construction Phases and Equipment	
Table 4. Construction-Related GHG Emissions	
Table 5. Total GHG Emissions	48
Table 6. Construction Noise Levels	
Table 7. Imperial County Property Line Noise Limits	61
Table 8. Operational Noise Levels	62

Figures

Figure 1, Regional Location	
Figure 2. Local Vicinity	16
Figure 3. Project Site and Surrounding Zoning	17
Figure 4. Site Plan	
Figure 5. Proposed Site Access	

Appendices

Appendix A A	Air Quality Analysis
--------------	----------------------

- Appendix B Biological Resources Report
- Appendix C Cultural Resources Report
- Appendix D Greenhouse Gas Analysis
- Appendix E Phase I ESA Report
- Appendix F Noise Analysis
- Appendix G Transportation Analysis

Introduction

A. Purpose

This document is a \Box policy-level; \boxtimes project-level Initial Study for evaluation of potential environmental impacts resulting with the proposed Alba Peaker Battery Energy Storage System Project.

B. CEQA Requirements and the Imperial County's Rules and Regulations for Implementing CEQA

As defined by Section 15063 of the State California Environmental Quality Act (CEQA) Guidelines and Section 7 of the County's Rules and Regulations for Implementing CEQA, an **Initial Study** is prepared primarily to provide the Lead Agency with information to use as the basis for determining whether an Environmental Impact Report (EIR), Negative Declaration, or Mitigated Negative Declaration would be appropriate for providing the necessary environmental documentation and clearance for any proposed project.

- □ According to Section 15065, an **EIR** is deemed appropriate for a particular proposal if the following conditions occur:
 - The proposal has the potential to substantially degrade quality of the environment.
 - The proposal has the potential to achieve short-term environmental goals to the disadvantage of long-term environmental goals.
 - The proposal has possible environmental effects that are individually limited but cumulatively considerable.
 - The proposal could cause direct or indirect adverse effects on human beings.
- □ According to Section 15070(a), a **Negative Declaration** is deemed appropriate if the proposal would not result in any significant effect on the environment.
- □ According to Section 15070(b), a **Mitigated Negative Declaration** is deemed appropriate if it is determined that though a proposal could result in a significant effect, mitigation measures are available to reduce these significant effects to insignificant levels.

This Initial Study has determined that the proposed Alba Peaker Battery Energy Storage System Project will result in potentially significant environmental impacts; however, mitigation measures are available to reduce the potentially significant impacts and therefore, a Mitigated Negative Declaration is deemed as the appropriate document to provide necessary environmental evaluations and clearance for the proposed approvals under review in this Initial Study.

This Initial Study is prepared in conformance with the California Environmental Quality Act of 1970, as amended (Public Resources Code, Section 21000 et. seq.); the State CEQA Guidelines & County of Imperial's CEQA Regulations, Guidelines for the Implementation of CEQA; applicable requirements of the County of Imperial; and the regulations, requirements, and procedures of any other responsible public agency or an agency with jurisdiction by law.

Pursuant to the County of Imperial's <u>CEQA Regulations, Guidelines for the Implementation of</u> <u>CEQA</u>, depending on the project scope, the County of Imperial Board of Supervisors, Planning Commission and/or Planning Director is designated the Lead Agency, in accordance with Section 15050 of the CEQA Guidelines. The Lead Agency is the public agency which has the principal responsibility for approving the necessary environmental clearances and analyses for any project in the County.

C. Intended Uses of Initial Study

This Initial Study is an informational document which is intended to inform County of Imperial decision makers, other responsible or interested agencies, and the general public of potential environmental effects of the proposed applications. The environmental review process has been established to enable public agencies to evaluate environmental consequences and to examine and implement methods of eliminating or reducing any potentially adverse impacts. While CEQA requires that consideration be given to avoiding environmental damage, the Lead Agency and other responsible public agencies must balance adverse environmental effects against other public objectives, including economic and social goals.

The Initial Study prepared for the project will be circulated for a period of no less than 35 days for public and agency review and comments.

D. Contents of Initial Study

This Initial Study is organized to facilitate a basic understanding of the existing setting and environmental implications of the proposed applications.

SECTION 1

I. INTRODUCTION presents an introduction to the entire report. This section discusses the environmental process, scope of environmental review, and incorporation by reference documents.

SECTION 2

II. ENVIRONMENTAL CHECKLIST FORM contains the County's Environmental Checklist Form. The checklist form presents results of the environmental evaluation for the proposed Alba Peaker Battery Energy Storage System (BESS) Project and those issue areas that would have either a significant impact, potentially significant impact, or no impact.

PROJECT SUMMARY, LOCATION AND ENVIRONMENTAL SETTINGS describes the proposed project, necessary entitlements and required applications. A description of discretionary approvals and permits required for project implementation is also included. It also identifies the location of the project and a general description of the surrounding environmental settings.

ENVIRONMENTAL ANALYSIS evaluates each response provided in the environmental checklist form. Each response checked in the checklist form is discussed and supported with sufficient data and analysis as necessary. As appropriate, each response discussion describes and identifies specific impacts anticipated with project implementation.

SECTION 3

III. MANDATORY FINDINGS presents Mandatory Findings of Significance in accordance with Section 15065 of the CEQA Guidelines.

E. Scope of Environmental Analysis

For evaluation of environmental impacts, each question from the Environmental Checklist Form is summarized and responses are provided according to the analysis undertaken as part of the Initial Study. Impacts and effects will be evaluated and quantified, when appropriate. To each question, there are four possible responses, including:

- 1. No Impact: A "No Impact" response is adequately supported if the impact simply does not apply to the proposed project.
- 2. Less Than Significant Impact: The proposed project will have the potential to impact the environment. These impacts, however, will be less than significant; no additional analysis is required.
- Less Than Significant With Mitigation Incorporated: This applies where incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact."
- **4.** Potentially Significant Impact: The proposed project could have impacts that are considered significant. Additional analyses and possibly an EIR could be required to identify mitigation measures that could reduce these impacts to less than significant levels.

F. Policy-Level or Project-Level Environmental Analysis

This Initial Study will be conducted under a \Box policy-level, \boxtimes project-level analysis.

Regarding mitigation measures, it is not the intent of this document to "overlap" or restate conditions of approval that are commonly established for future known projects or the proposed project and associated entitlement applications. Additionally, those other standard requirements and regulations that any development must comply with, that are outside the County's jurisdiction, are also not considered mitigation measures, and therefore, will not be identified in this document.

G. Tiered Documents and Incorporation by Reference

Information, findings, and conclusions contained in this document are based on incorporation by reference of tiered documentation, which are discussed in the following section.

1. Tiered Documents

As permitted in Section 15152(a) of the CEQA Guidelines, information and discussions from other documents can be included into this document. Tiering is defined as follows:

"Tiering refers to using the analysis of general matters contained in a broader EIR (such as the one prepared for a general plan or policy statement) with later EIRs and negative declarations on narrower projects; incorporating by reference the general discussions from the broader EIR; and concentrating the later EIR or negative declaration solely on the issues specific to the later project."

Tiering also allows this document to comply with Section 15152(b) of the CEQA Guidelines, which discourages redundant analyses, as follows:

"Agencies are encouraged to tier the environmental analyses which they prepare for separate but related projects including the general plans, zoning changes, and development

projects. This approach can eliminate repetitive discussion of the same issues and focus the later EIR or negative declaration on the actual issues ripe for decision at each level of environmental review. Tiering is appropriate when the sequence of analysis is from an EIR prepared for a general plan, policy or program to an EIR or negative declaration for another plan, policy, or program of lesser scope, or to a site-specific EIR or negative declaration."

Further, Section 15152(d) of the CEQA Guidelines states:

"Where an EIR has been prepared and certified for a program, plan, policy, or ordinance consistent with the requirements of this section, any lead agency for a later project pursuant to or consistent with the program, plan, policy, or ordinance should limit the EIR or negative declaration on the later project to effects which:

(1) Were not examined as significant effects on the environment in the prior EIR; or

(2) Are susceptible to substantial reduction or avoidance by the choice of specific revisions in the project, by the imposition of conditions, or other means."

2. Incorporation by Reference

Incorporation by reference is a procedure for reducing the size of EIRs/MND and is most appropriate for including long, descriptive, or technical materials that provide general background information, but do not contribute directly to the specific analysis of the project itself. This procedure is particularly useful when an EIR or Negative Declaration relies on a broadly-drafted EIR for its evaluation of cumulative impacts of related projects (*Las Virgenes Homeowners Federation v. County of Los Angeles* [1986, 177 Ca.3d 300]). If an EIR or Negative Declaration relies on information from a supporting study that is available to the public, the EIR or Negative Declaration cannot be deemed unsupported by evidence or analysis (*San Francisco Ecology Center v. City and County of San Francisco* [1975, 48 Ca.3d 584, 595]).

When an EIR or Negative Declaration incorporates a document by reference, the incorporation must comply with Section 15150 of the CEQA Guidelines as follows:

- The incorporated document must be available to the public or be a matter of public record (CEQA Guidelines Section 15150[a]). The General Plan EIR is available, along with this document, at the County of Imperial Planning & Development Services Department, 801 Main Street, El Centro, CA 92243 Ph. (442) 265-1736.
- This document must be available for inspection by the public at an office of the lead agency (CEQA Guidelines Section 15150[b]). These documents are available at the County of Imperial Planning & Development Services Department, 801 Main Street, EI Centro, CA 92243, Ph. (442) 265-1736.
- These documents must summarize the portion of the document being incorporated by reference or briefly describe information that cannot be summarized. Furthermore, these documents must describe the relationship between the incorporated information and the analysis in the tiered documents (CEQA Guidelines Section 15150[c]). As discussed above, the tiered EIRs address the entire project site and provide background and inventory information and data which apply to the project site. Incorporated information and/or data will be cited in the appropriate sections.

• These documents must include the State identification number of the incorporated documents (CEQA Guidelines Section 15150[d]). The State Clearinghouse Number for the County of Imperial General Plan EIR is SCH #93011023.

The material to be incorporated in this document will include general background information (CEQA Guidelines Section 15150[f]).

Environmental Checklist Form

- 3. Project Title: Alba Peaker Battery Energy Storage System (BESS) Project
- **4. Lead Agency Name and Address:** Imperial County Planning & Development Services Department, 801 Main Street, El Centro, CA 92243
- 5. Contact Person and Phone Number: Gerardo Quero, Planner II, (442) 265-1747
- 6. Project Location: The project site is located on one privately-owned parcel (Assessor Parcel No. (APN) 051-420-042-000). APN No. 051-420-042-000 encompasses approximately 6.3 acres in the unincorporated community of Seeley in Imperial County, California (Figure 1). The project site is vacant and previously disturbed by historical agricultural uses; however, it has not been actively farmed for over two decades. The project site is approximately 7.5 miles west of the city of El Centro and approximately one mile north of Interstate 8. The project is located to the east of Drew Road, south of West Evan Hewes Highway, and north of the Seeley Drain (Figure 2). Local vehicular access to the site will be provided via one private dirt road/driveway onto/from Drew Road, adjacent to the eastern boundary of the parcel.
- 7. Project Sponsor's Name and Address: Apex Energy Solutions, LLC, 750 W. Main Street, El Centro, CA 92243
- 8. General Plan Designation: Seeley Urban Area Plan
- 9. Zoning: Medium Industrial (M-2)
- 10. Description of Project: The proposed project consists of issuance of a Conditional Use Permit (CUP) to allow for the construction and operation of a 100-megawatt (MW) BESS (i.e., peaker plant) within a Medium Industrial zone (M-2). The project would include development of a BESS facility that would connect to the existing Imperial Irrigation District's (IID) 92-kilovolt (kV) "LW" Line. The BESS facility would include battery containers and storage sites, perimeter fire access road, an on-site water storage tank/pond for fire suppression purposes, three (3) utility poles, and associated facilities surrounded by perimeter fencing. The conceptual site plan proposes to locate the facility at the eastern boundary of the project site, with the BESS facility, including the fenced in area set back from the north, south, and west property lines (varies depending on direction). Figure 3 depicts the zoning of the project site and immediately surrounding area. Figure 4 depicts the site plan.

The project will require an on-site switching station to loop in-and-out of the IID "LW" line. The point of interconnection to the existing IID "LW" line is located immediately adjacent to the northwest boundary of the site along Drew Road. Access to the facility is proposed via an existing private dirt road extending onto/from Drew Road.

11. Surrounding Land Uses and Setting: Briefly describe the project's surroundings:

The project site is currently vacant and is surrounded by active agricultural uses to the west and south, disturbed land and railroad tracks to the north, and an agricultural facility and fields to the east (Figure 2). The project site is zoned M-2. The parcels immediately surrounding the project site are zoned Light Industrial (M-1) to the east and Medium Industrial (M-2) to the north, west, and south (Figure 3).

- 12. (Other public agencies whose approval is required (e.g., permits, financing approval, or participation agreement.):
 - California Regional Water Quality Control Board, Colorado River Basin Region
 - Imperial County Air Pollution Control District
 - Imperial County Public Works Department
- 13. Have California Native American tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code section 21080.3.1? If so, is there a plan for consultation that includes, for example, the determination of significance of impacts to tribal cultural resources, procedures regarding confidentiality, etc.?

In accordance with Assembly Bill (AB) 52, the County sent a Notifications of Consultation Opportunity pursuant to Public Resources Code Section 21080.3.1(d) to the Campo Band of Mission Indians and the Quechan Indian Tribe on August 27, 2024. The AB 52 30-day review ended on September 26, 2024. No comments have been received from the Quechan Indian Tribe and Campo Band of Mission Indians for this project to this date.

Environmental Factors Potentially Affected

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact" as indicated by the checklist on the following pages.

	Aesthetics		Agriculture and Forestry Resources		Air Quality
\boxtimes	Biological Resources	\boxtimes	Cultural Resources		Energy
\boxtimes	Geology/Soils		Greenhouse Gas Emissions		Hazards & Hazardous Materials
	Hydrology / Water Quality		Land Use/Planning		Mineral Resources
	Noise		Population/Housing		Public Services
	Recreation		Transportation		Tribal Cultural Resources
	Utilities/Service Systems		Wildfire	\boxtimes	Mandatory Findings of Significance

Environmental Evaluation Committee Determination

After Review of the Initial Study, the Environmental Evaluation Committee (EEC) has:

- □ Found that the proposed project COULD NOT have a significant effect on the environment, and a <u>NEGATIVE DECLARATION</u> will be prepared.
- ☑ Found that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. <u>A MITIGATED NEGATIVE DECLARATION</u> will be prepared.
- □ Found that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.
- □ Found that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.
- □ Found that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

YES NO ABSENT **EEC VOTES** PUBLIC WORKS \mathbf{X} ENVIRONMENTAL HEALTH \boxtimes OFFICE EMERGENCY SERVICES \times \times APCD \times AG SHERIFF DEPARTMENT \ge **ICPDS** \ge

Date:

Jim Minnick, Director of Planning/EEC Chairman

This page is intentionally blank.

Project Summary

Project Location

The project site is located on one privately-owned parcel (Assessor Parcel No. (APN) 051-420-042-000). APN No. 051-420-042-000 encompasses approximately 6.3 acres in the unincorporated community of Seeley in Imperial County, California (Figure 1). The project site is vacant and disturbed and was previously used for agricultural cultivation but has not been actively tilled for at least two decades. The project site is approximately 7.5 miles west of the city of El Centro and approximately one mile north of Interstate 8. The project is located to the east of Drew Road, south of West Evan Hewes Highway, and north of the Seeley Drain (Figure 2). Local construction and operational vehicular access to the site will be provided via one private driveway/dirt road into the site that is accessed from Drew Road. Access would enter the site from the northern boundary of the parcel (Figure 5).

Project Components

Apex Energy Solutions, LLC (project applicant) proposes to construct and operate a 100 MW BESS (i.e., peaker plant) on a 6.3-acre site within the unincorporated community of Seeley in Imperial County. The proposed project consists of two primary components: 1) BESS; and 2) an interconnection line to IID's existing "LW" Line located immediately northwest of the project site. These two components together are collectively referred to as the "proposed project" or "project." These project components are described in detail below and depicted on Figure 4 - site plan.

Battery Energy Storage System

As shown in Figure 4, the proposed project's BESS facility would include battery containers and inverters, a water tank/pond for fire suppression (onsite water storage capacity to be determined by the Imperial County Fire Department), and associated facilities surrounded by perimeter fencing. The specific BESS system is still to be determined, and would not be ordered by the Applicant until after site plan review and would be based, in part, by Fire Department review and input.

Gen-tie Line

The project will require an on-site switching station to loop in-and-out of the IID "LW" line. The point of interconnection to the existing IID "LW" line is located immediately adjacent to the northwest boundary of the site.

Three power poles are proposed within the project site, that would carry the power lines that collect the power from the BESS and then carry over the project fencing to the off-site point of interconnection. Power from the BESS would ultimately be carried to the Dixieland Substation. No upgrades to the LW line or Dixieland Substation are required.

Site Access

Access to the BESS facility is proposed from Drew Road, which would then be via a private dirt road extending east from Drew Road to the project site. Figure 5 depicts the proposed site access. An encroachment permit will be obtained from the Imperial County Public Works Department for access from Drew Road. No new road crossings of any IID lateral canals or drains are proposed.

Construction

Construction is anticipated to be completed in approximately five months. The following provides the proposed project's construction phases and approximate duration of each phase:


- Grading 14 days
- Pile Installation 15 days
- Fence Installation 5 days
- Electrical Installation 30 days
- Container Installation 14 days

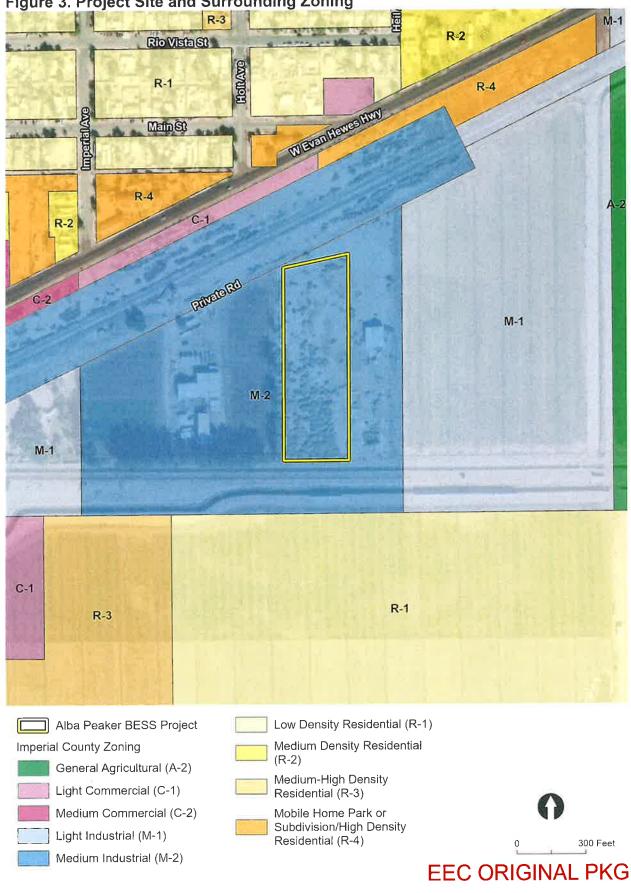
Operations

Once fully constructed, the project would be operated on an unstaffed basis and be monitored remotely, with periodic on-site personnel visitations for security, maintenance and system monitoring. The project applicant would install video and intrusion surveillance on the project site. Therefore, no full-time site personnel would be required on-site during operations. Any required planned maintenance activities would generally consist of equipment inspection and replacement and would be scheduled to avoid peak load periods. Any unplanned maintenance would be responded to as needed, depending on the event.

Environmental Setting

The project site is located in the unincorporated community of Seeley in Imperial County, California. The project parcel is vacant and disturbed. IID's 92-kV "LW" Line is located immediately adjacent to the northwest boundary of the site. The project site is surrounded by active agricultural uses to the west and south, disturbed land and railroad tracks to the north, and an agricultural facility and fields to the east. The parcels immediately surrounding the project site are zoned Light Industrial (M-1) to the east and Medium Industrial (M-2) to the north, west, and south.

Figure 1. Regional Location


Alba Peaker BESS Project

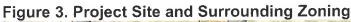


Figure 2. Local Vicinity

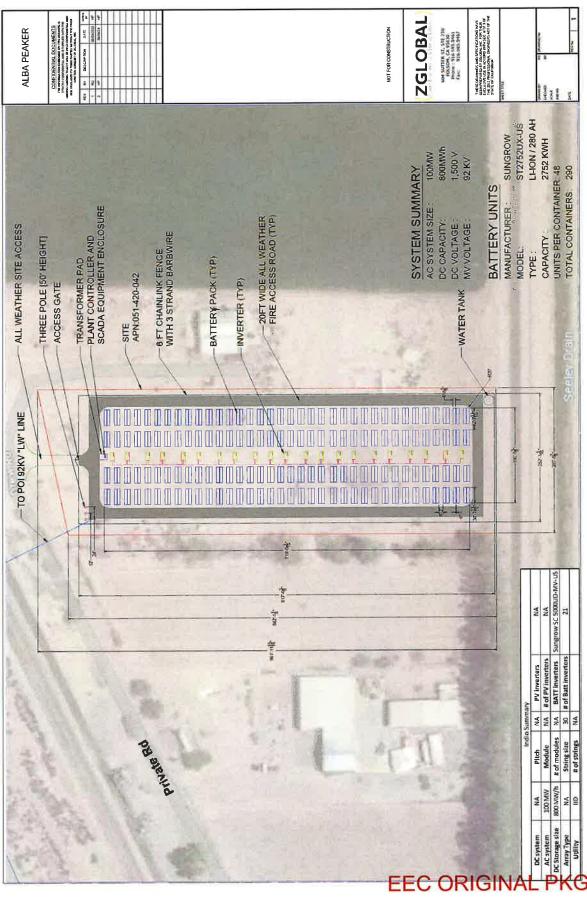


Figure 4. Site Plan

This page is intentionally blank.

EEC ORIGINAL PKG

October 2024 | 19

Draft Initial Study Alba Peaker Battery Energy Storage System Project

20 | October 2024

This page is intentionally blank.

Evaluation of Environmental Impacts

- 1. A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources a lead agency cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors, as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).
- 2. All answers must take account of the whole action involved, including off-site as well as onsite, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.
- 3. Once the lead agency has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.
- 4. "Negative Declaration: Less Than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less than significant level (mitigation measures from "Earlier Analyses," as described in (5) below, may be cross-referenced).
- 5. Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration. Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:
 - a. Earlier Analysis Used. Identify and state where they are available for review.
 - b. Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.
 - c. Mitigation Measures. For effects that are "Less than Significant with Mitigation Measures Incorporated," describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.

- 6. Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances). Reference to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.
- 7. Supporting Information Sources: A source list should be attached, and other sources used, or individuals contacted should be cited in the discussion.
- 8. This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.
- 9. The explanation of each issue should identify:
 - a. The significance criteria or threshold, if any, used to evaluate each question; and
 - b. The mitigation measure identified, if any, to reduce the impact to less than significance.

I. Aesthetics

Enviror	nmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact			
Except as provided in Public Resources Code Section 21099, would the project:								
a)	Have a substantial adverse effect on a scenic vista?							
b)	Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic building within a state scenic highway?							
c)	In non-urbanized areas, substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage points). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?							
d)	Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?							

Impact Analysis

- a) **No Impact.** The project site is not located within an area containing a scenic vista designated by the County's General Plan (County of Imperial 2016). Therefore, the proposed project would not have a substantial adverse effect on a scenic vista and no impact is identified.
- b) No Impact. According to the Conservation and Open Space Element, no State scenic highways have been designated in Imperial County (County of Imperial 2016). The project site is not located within a state scenic highway corridor, nor are there any state scenic highways located in proximity to the project site. The nearest road segment considered eligible for a State scenic highway designation is the portion of Interstate 8 (I-8) that lies between the San Diego County line and its junction with State Route 98 (SR 98) near Coyote Wells (California Department of Transportation 2018). This segment, known as Mountain Springs Grade, has a long, rapid elevation change, remarkable rock and boulder scenery, and plant life variations. The project site is located over 20 miles northeast of the junction of I-8 and SR 98; therefore, the project site would not be visible from a state scenic highway. No impacts to scenic resources within any state scenic highways would occur.
- c) Less than Significant Impact. The project site is located on a vacant, and previouslydisturbed parcel within an urbanized area. The proposed project involves the construction of a BESS facility including battery containers and storage sites, a control room, and associated facilities which will be enclosed by chain-link fencing. Construction of the project would result in a minor change in the existing visual character of the project site and surrounding area. EEC ORIGINAL PKG

There are no existing scenic resources on the project site; however, the site is surrounded by residential uses to the north. The battery containers and fencing would be the most prominently visible portion of the project from the residences north of the project site. Therefore, the proposed project would result in a less than significant impact to the existing visual character or quality of the site and its surroundings.

d) Less than Significant Impact. The proposed project does not include the addition of substantial lighting or glare producing components. Ambient lighting and glare in the nearby areas would not significantly increase above existing conditions because minimal lighting is proposed, would be low scale (in and around buildings primarily for security purposes) and would be setback from residential areas. Temporary construction lighting would be used for illuminating the project site during construction. Following the completion of construction, any construction lighting would be disassembled and removed from the site. This impact is less than significant.

II. Agriculture and Forestry Resources

Potentially Significant Environmental Issue Area: Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
--	--	------------------------------------	-----------

In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Department of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. Would the project:

a)	Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?		
b)	Conflict with existing zoning for agricultural use, or a Williamson Act contract?		
c)	Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?		
d)	Result in the loss of forest land or conversion of forest land to non-forest use?		
e)	Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?		

Impact Analysis

a) No Impact. According to the California Department of Conservation's (DOC) California Important Farmland Finder, the project site is not located on land designated as Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (DOC 2020). The project site is designated as Other Land by the DOC. Therefore, the proposed project would not convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance to nonagricultural use and no impact is identified. b) No Impact. The project site is currently zoned M-2 (Medium Industrial) and is not zoned for agricultural use. Therefore, the proposed project would not conflict with existing zoning for agricultural use and no impact is identified.

As of December 31, 2019, all Williamson Act contracts in Imperial County have been terminated. The project site is not located on Williamson Act contracted land. Therefore, the proposed project would not conflict with a Williamson Act contract and no impact is identified.

- c) No Impact. The project site is not located on forest land as defined in PRC Section 1220 (g). There are no existing forest lands, timberlands, or timberland zoned Timberland Production either on-site or in the immediate vicinity; therefore, the project would not conflict with existing zoning of forest land or cause rezoning of any forest land. Additionally, the site is not zoned as forest, timberland or for Timberland Production. Therefore, no impact is identified for this issue area.
- d) **No Impact.** There are no existing forest lands either on site or in the immediate vicinity of the project site. The proposed project would not result in the loss of forest land or conversion of forest land to non-forest use. Therefore, no impact is identified for this issue area.
- e) No Impact. As discussed in Response II. a) above, the project site is not located on land designated as Important Farmland and would not convert farmland to non-agriculture use. As discussed in Response II. d) above, there are no existing forest lands either on site or in the immediate vicinity of the project site. Therefore, the proposed project would not result in the conversion of forest land to non-forest use. Thus, no impact is identified for this issue area.

III. Air Quality

Enviror	nmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
Where available, the significance criteria established by the applicable air quality management district or air pollution control district may be relied upon to make the following determinations. Would the project:					
a)	Conflict with or obstruct implementation of the applicable air quality plan?				
b)	Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?				
c)	Expose sensitive receptors to substantial pollutant concentrations?				
d)	Result in other emissions (such as those leading to odors adversely affecting a substantial number of people?				

Impact Analysis

The following information is summarized from the Air Quality Analysis for the Alba Peaker BESS *Project* prepared by RECON Environmental, Inc (RECON). This report is provided as Appendix A of this Initial Study.

a) Less than Significant Impact. The proposed project is located within the jurisdiction of the Imperial County Air Pollution Control District (ICAPCD) in the Salton Sea Air Basin. The project region is designated as a nonattainment area for the federal ozone (O₃), particulate matter less than 2.5 microns in diameter (PM_{2.5}) and particulate matter less than 10 microns in diameter (PM₁₀) standards and is also a nonattainment area for the state standards for O₃ and PM₁₀.

The U.S. Environmental Protection Agency, under the provisions of the Clean Air Act, requires each state with regions that have not attained the federal air quality standards to prepare a State Implementation Plan (SIP), detailing how these standards are to be met in each local area.

The region's SIP is constituted of the ICAPCD air quality plans: 2018 PM₁₀ SIP, the 2018 Annual PM_{2.5} SIP, the 2017 8-Hour Ozone SIP, 2013 24-Hour PM_{2.5} SIP, the 2009 1997 8hour Ozone RACT SIP, the 2009 PM₁₀ SIP and the 2008 Ozone Early Progress Plans. Conformance with the Air Quality Management Plan (AQMP) for development projects is determined by demonstrating compliance with local land use plans and/or population projections, meeting the land use designation set forth in the local General Plan, and comparing assumed emissions in the AQMP to proposed emissions. The project must demonstrate compliance with all ICAPCD applicable rules and regulations, as well as local land use plans and population projections. As the project does not contain a residential component, the project would not result in an increase in the regional population. While the project would contribute to energy supply, which is one **factor of population Arowth Kine** proposed project would not significantly increase employment or growth within the region. The proposed project would be required to comply with all applicable ICAPCD rules and requirements during construction and operation to reduce air emissions. Overall, the proposed project would improve air quality by reducing the amount of emissions that would be generated in association with electricity production from a fossil fuel burning facility. Furthermore, the thresholds of significance, adopted by the air district (ICAPCD), determine compliance with the goals of the attainment plans in the region. As such, emissions below the ICAPCD regional mass daily emissions thresholds presented would not conflict with or obstruct implementation of the applicable air quality plans.

The following provides an analysis of potential impacts during construction of the project followed by an analysis of potential impacts during operation of the project.

Construction

Air quality impacts related to construction were calculated using the latest CalEEMod 2022.1 air quality model. The construction module in CalEEMod is used to calculate the emissions associated with the construction of the project. The project's construction assumptions used in the CalEEMod, including the construction schedule and equipment mix, are described in the project's air quality analysis (Appendix A of this Initial Study).

By default, CalEEMod assumes the percentage of paved and unpaved roads for each district as provided by the district. For Imperial County, the default assumption is 50 percent paved and 50 percent unpaved. However, this is not characteristic of the roads in the vicinity of the project site. Construction vehicles would access the site via I-8, West Evan Hewes Highway, and Drew Road, which are all paved. An approximately ½ mile in length of dirt road (private driveway) would be utilized for direct site access off of Drew Road. However, it should be noted that Imperial County roadways do experience higher levels of entrained roadway dust. To account for these dust emissions, ICAPCD recommends modeling 90 percent paved roads during construction activities. Additionally, the project would water the project site, including the unpaved portion of the private driveway/dirt access road, and would reduce speeds on unpaved roads to 25 miles per hour. These measures would be required per the ICAPCD measures listed below. As discussed, watering during ground disturbing activities would achieve a 50 percent reduction in fugitive dust.

The ICAPCD requires that, regardless of the size of a project, all feasible standard measures for fugitive PM_{10} must be implemented at construction sites. Additionally, all feasible discretionary measures for PM_{10} apply to those construction sites that are 5 acres or more for non-residential developments or 10 acres or more in size for residential developments. The project footprint consists of the 6.3-acre project site, which would exceed the 5 acres. Other portions of the project site may be used for staging areas. Standard and discretionary measures from the ICAPCD handbook include:

Standard Measures for Fugitive PM10 Control:

- a. All disturbed areas, including bulk material storage which is not being actively utilized, shall be effectively stabilized and visible emissions shall be limited to no greater than 20 percent opacity for dust emissions by using water, chemical stabilizers, dust suppressants, tarps or other suitable material such as vegetative ground cover.
- b. All on-site and off-site unpaved roads will be effectively stabilized and visible emissions shall be limited to no greater than 20 percent opacity for dust emissions by paving, chemical stabilizers, dust suppressants and/or watering.
- c. All unpaved traffic areas one acre or more with 75 or more average vehicle trips per day will be effectively stabilized and visible emission shall be limited to no greater than 20 percent opacity for dust emissions by paving, chemical stabilizers, dust suppressants and/or watering. The transport of bulk materials shall be completely covered unless six inches of freeboard space from the top of the container is EEC ORIGINAL PKG

maintained with no spillage and loss of bulk material. In addition, the cargo compartment of all haul trucks is to be cleaned and/or washed at delivery site after removal of bulk material.

- d. The transport of bulk materials shall be completely covered unless six inches of freeboard space from the top of the container is maintained with no spillage and loss of bulk material. In addition, the cargo compartment of all haul trucks is to be cleaned and/or washed at delivery site after removal of bulk material.
- e. All track-out or carry-out will be cleaned at the end of each workday or immediately when mud or dirt extends a cumulative distance of 50 linear feet or more onto a paved road within an urban area.
- f. Movement of bulk material handling or transfer shall be stabilized prior to handling or at points of transfer with application of sufficient water, chemical stabilizers or by sheltering or enclosing the operation and transfer line.
- g. The construction of any new unpaved road is prohibited within any area with a population of 500 or more unless the road meets the definition of a temporary unpaved road. Any temporary unpaved road shall be effectively stabilized and visible emissions shall be limited to no greater than 20 percent opacity for dust emission by paving, chemical stabilizers, dust suppressants and/or watering.

Discretionary Measures for Fugitive PM10 Control

- a. Water exposed soil with adequate frequency for continued moist soil.
- b. Replace ground cover in disturbed areas as quickly as possible.
- c. Automatic sprinkler system installed on all soil piles.
- d. Vehicle speed for all construction vehicles shall not exceed 15 mph on any unpaved surface at the construction site.
- e. Develop a trip reduction plan to achieve a 1.5 average vehicle ridership for construction employees.
- f. Implement a shuttle service to and from retail services and food establishments during lunch hours.

The ICAPCD requires that, regardless of the size of a project, all feasible standard measures for construction equipment must be implemented at construction sites. Standard measures from the ICAPCD handbook include:

Standard Measures for Construction Combustion Equipment

- a. Use of alternative fueled or catalyst equipped diesel construction equipment, including all off-road and portable diesel-powered equipment.
- b. Minimize idling time either by shutting equipment off when not in use or reducing the time of idling to 5 minutes as a maximum.
- c. Limit, to the extent feasible, the hours of operation of heavy-duty equipment and/or the amount of equipment in use.
- d. Replace fossil fueled equipment with electrically driven equivalents (provided they are not run via a portable generator set).

Construction-related Emissions. Construction-related activities are temporary, short-term sources of air pollutant emissions. Sources of construction-related emissions include:

- Fugitive dust from grading activities;
- Exhaust emissions form construction equipment;
- Application of chemical coatings (paints, stains, sealants, etc.): and EEC ORIGINAL PKG

 Exhaust and fugitive dust emissions from on-road vehicles (trips by workers, delivery trucks, and material-hauling trucks).

Predicted maximum daily emissions associated with project construction are summarized in Table 1. The emissions summarized in Table 1 account for a 50 percent reduction in dust due to daily watering, but do not account for any other emission reductions from any other standard or discretionary measure for dust control or construction equipment. As shown in Table 1, the proposed project would not exceed ICAPCD's construction-related criteria pollutant thresholds. Therefore, this is considered a less than significant impact.

		Maximum Daily Emissions (Pounds)				
Emission Source	ROG	NOx	со	SOx	PM 10	PM _{2.5}
Grading	2	14	20	<1	82	9
Pile Installation	2	11	20	<1	94	10
Fence Installation	1	8	14	<1	93	10
Electrical Installation	3	20	29	<1	94	10
Container Installation	2	10	20	<1	93	10
Max Daily Emissions	3	20	29	<1	94	10
Significance Threshold	75	100	550	8	150	8
Exceeds Threshold?	No	No	No	Ħ	No	

Table 1. Maximum Daily Construction Air Pollutant Emissions

Source: Appendix A of this Initial Study

Operation

Operation-related sources of air pollutant emissions include the direct emission of criteria pollutants. Common direct emission sources associated with typical projects include mobile sources such as project-generated traffic, area sources such as the use of landscaping equipment, and energy sources such as the combustion of natural gas.

The maximum daily pollutants calculated for operations are shown in Table 2. As shown in Table 2, the proposed project would not exceed ICAPCD thresholds during operations. As such, operations-related emissions would be less than significant for the proposed project.

Emission Source	Maximum Daily Emissions (Pounds					
	ROG	NOx	со	SOx	PM10	PM2.5
Mobile Sources	<1	<1	<1	<1	1	<1
Area Sources	2	<1	2	<1	<1	<1
Energy Sources	<1	<1	<1	<1	<1	<1
Total Operations	2	<1	3	<1	1	<1
Significance Threshold	137	137	550	150	150	550
Exceeds Threshold?	No	No	No	No	No	No

Source: Appendix A of this Initial Study

Conclusion

As described above, conformance with the AQMP for development projects is determined by demonstrating compliance with local land use plans and/or population projections and comparing assumed emissions in the AQMP to proposed emissions. Because the proposed project complies with local land use plans and population projections and would not exceed ICAPCD's thresholds during construction and operations, the proposed project would not conflict with or obstruct implementation of the applicable air quality plan. This is considered a less than significant impact.

ICAPCD Conditions of Approval

ICAPCD has reviewed the CUP application for the proposed project and the following Conditions of Approval will be required as part of the CUP. Compliance with these conditions will occur during construction and operations.

Construction Conditions of Approval:

- A. Submit a construction equipment list by Make, Model, Horsepower and actual usage to the Air District on a monthly basis to determine the level of NO_x emissions. Should NO_x emissions exceed the construction NO_x emissions then the applicant will need to abide by Policy 5 of the ICAPCD's CEQA Air Quality Handbook.
- B. An Enhanced Dust Control Plan must be submitted for approval by the ICAPCD to assure that fugitive emissions do not cross property lines.

Operational Conditions of Approval:

- A. Should the need for back-up power become necessary, the project will submit an Authority to Construct (ATC) Permit to ICAPCD.
- B. The project will include a Health Risk Assessment as part of the ATC Permit submittal.
- C. A buffer should be established to keep emergency fugitive emissions from impacting the surrounding community.
- b) Less than Significant Impact. By its very nature, air pollution is largely a cumulative impact. No single project is sufficient in size, by itself, to result in nonattainment of ambient air quality standards. Instead, a project's individual emissions contribute to existing cumulatively significant adverse air quality impacts. If a project's individual emissions exceed its identified significance thresholds, the project would be cumulatively considerable. Projects that do not exceed significance thresholds would not be considered cumulative considerable.

The ICAPCD's application of thresholds of significance for criteria air pollutants is relevant to the determination of whether a project's individual emissions would have a cumulatively significant impact on air quality. As discussed above in Response III. a), emissions generated during project construction and operations would not exceed the ICAPCD's thresholds of significance (Table 1 and Table 2).

As shown in Table 1, project construction would not exceed the applicable regional emissions thresholds. The project would implement all standard and discretionary measures for PM₁₀ control and standard measures for construction combustion equipment. As shown in Table 2, operation of the project would result in minimal emissions that would be less than the applicable thresholds for all criteria pollutants. Therefore, project construction and operations would not result in a cumulatively considerable net increase in emissions of ozone, PM₁₀, or PM_{2.5}, and impacts would be considered less than significant.

c) Less than Significant Impact. The nearest sensitive receptors are the residential uses located approximately 500 feet north of the project site, on the north side of the railroad tracks and West Evan Hewes Highway.

Diesel Particulate Matter

Construction of the project and associated infrastructure would result in short-term diesel exhaust emissions from on-site heavy-duty equipment. Construction of the project would result in the generation of diesel-exhaust DPM emissions from the use of off-road diesel equipment required for site preparation and grading, and other construction activities and on-road diesel equipment used to bring materials to and from the project site. Generation of DPM from construction projects typically occurs in a single area for a short period. Construction is anticipated to last for approximately five months.

According to the Office of Environmental Health Hazard Assessment (OEHHA), health risk assessments, which determine the exposure of sensitive receptors to toxic emissions, should be based on a 30-year exposure period; however, such assessments should be limited to the period/duration of activities associated with the project (Appendix A of this Initial Study). Thus, if the duration of proposed construction activities near any specific sensitive receptor were five months, the exposure would be one percent (5 months divided by 30 years) of the total exposure period used for health risk calculation. Further, the project would implement the standard measures for construction combustion equipment summarized above in Response III. a). In addition, all construction equipment would be subject to the CARB In-Use Off-Road Diesel-Fueled Fleets Regulation, which limits unnecessary idling to 5 minutes, requires all construction fleets to be labeled and reported to CARB, bans Tier 0 equipment, and phases out Tier 1 and 2 equipment (thereby replacing fleets with cleaner equipment), and requires that fleets comply with Best Available Control Technology requirements. Therefore, due to the limited duration of construction activities, implementation of standard measures for construction combustion equipment, and compliance to the In-Use Off-Road Diesel-Fueled Fleets Regulation, DPM generated by the project is not expected to create conditions where the probability is greater than 10 in 1 million of contracting cancer for the Minimally Exposed Individual or to generate ground-level concentrations of non-carcinogenic toxic air contaminants (TACs) that exceed a Hazard Index greater than 1 for the Maximally Exposed Individual. Therefore, project construction would not expose sensitive receptors to substantial pollutant concentration, and impacts would be less than significant.

Carbon Monoxide Hot Spots

A CO hot spot is an area of localized CO pollution that is caused by severe vehicle congestion on major roadways, typically near intersections. CO hot spots have the potential to violate state and federal CO standards at intersections, even if the broader basin is in attainment for federal and state levels.

The Sacramento Metropolitan Air Quality Management District developed a screening threshold in 2011, which states that any project involving an intersection experiencing 31,600 vehicles per hour or more will require detailed analysis. In addition, the Bay Area Air Quality Management District developed a screening threshold in 2010, which states that any project involving an intersection experiencing 44,000 vehicles per hour would require detailed analysis. No intersections in the vicinity of the project carry this substantial amount of traffic. Additionally, there are no signalized intersections in the vicinity of the project site. Traffic generated by the project would not result in any heavily congested intersections. Thus, the project is not anticipated to result in a CO hot spot.

As discussed above in Response III. a), the criteria pollutant emissions have been calculated for construction and operational activities, which were found to be within the ICAPCD's allowable thresholds for both construction and operations. Due to the limited amount of criteria pollutants created from construction and operational activities and the distance to the

nearest sensitive receptor, construction emissions would not expose sensitive receptors to substantial concentrations of criteria pollutants.

Therefore, implementation of the proposed project would not expose sensitive receptors to substantial pollutant concentrations, and impacts would be less than significant.

d) Less than Significant Impact. During construction, the proposed project presents the potential for generation of objectionable odors in the form of diesel exhaust in the immediate vicinity of the site. However, these emissions are short-term and temporary in nature and will rapidly dissipate and be diluted by the atmosphere downwind of the emission sources. Additionally, odors would be localized and generally confined to the project area. Therefore, odors generated during construction would not adversely affect a substantial number of people to odor emissions.

The ICAPCD CEQA Air Quality Handbook provides screening level distances for potential odor sources. If a project is proposed within one mile of a wastewater treatment plant, sanitary landfill, composting station, feedlot, asphalt plant, painting, and coating operation, or rendering plant, a potential odor problem may result (Appendix A of this Initial Study). The project does not include the construction of any of these uses. Energy storage facilities are not known to emit odors during operation. Project operation would include occasional inspection and maintenance. These operational activities are not known to emit odors. Therefore, operational impacts related to odor would also be less than significant.

IV. Biological Resources

Enviror	nmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would	the project:				
a)	Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?				
b)	Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, and regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?				
c)	Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?				
d)	Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of wildlife nursery sites?				
e)	Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?				
f)	Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?				

Impact Analysis

The following information is summarized from the *Biological Resources Report for the Alba Peaker BESS Project* prepared by RECON. This report is provided as Appendix B of this Initial Study.

a) Less than Significant with Mitigation Incorporated. RECON biologists conducted a general biological survey of the project site on March 24, 2023. Prior to conducting field surveys, RECON also conducted a search of existing biological data for the project site, including a review of biological databases for sensitive plant and animal species reported within one mile of the project site, and a review of the site's physical characteristics (e.g., location, elevation, soils/substrate, topography). Databases included the California Natural Diversity Database (CNDDB; California Department of Fish and Wildlife [CDFW] 2023a), and the All Species Occurrences Database (U.S. Fish and Wildlife Service [USFWS] 2019). Additional maps, imagery, and databases reviewed included U.S. Geological Survey (USGS) topographic maps (1979), soils survey maps (U.S. Department of Agriculture [USDA] 1981), and online aerial images.

<u>Plants</u>

No sensitive plant species were observed and no sensitive plant species were determined to have a potential to occur within project site. Two sensitive plant species have historic records from the vicinity of the project but have not been documented in the area in decades. The two species include chaparral sand verbena (Abronia villosa var. aurita) and mud nama (Nama stenocarpa). Given the level of past and current disturbance and lack of suitable habitat, these species are not expected to occur on the site. Based on these considerations, the proposed project would result in no impact on sensitive plant species.

<u>Wildlife</u>

Based on an assessment of species location records, the following three sensitive wildlife species were found to have historic records in the vicinity of the project site. These species include mountain plover (Charadrius montanus), Yuma ridgeway's rail (Rallus obsoletus yumanensis), and California black rail (Laterallus jamaicensis coturniculus). The mountain plover is a winter resident species that prefers grasslands and fields which do not occur on the project site. The Yuma ridgeway's rail and California black rail prefer emergent marshland vegetation associated with wetlands and rivers which do not occur on the project site. One other sensitive wildlife species, burrowing owl (Athene cunicularia), was evaluated for presence on the project site given species observations in the Imperial Valley. This species is not expected to use or breed on the site due to the lack of suitable burrows, evidence of small burrowing mammals (prey species), and overall level of disturbance.

The project site does not support, nor would it affect, any species identified as a candidate, sensitive, or special status species in local or regional plans, policies or regulations, or by the CDFW or USFWS. Nesting birds including raptors covered under the California Fish and Game Code Sections 3503 and 3503.5 have potential to be directly impacted by the project if construction activities (i.e., clearing, grubbing, grading) occur during the general nesting season of February 1 to September 15. Direct impacts to nesting birds and raptors would be considered significant and require mitigation measures.

Mitigation Measures:

BIO-1 To avoid direct impacts to avian species, removal of habitat that supports active nests in the proposed area of disturbance should occur outside the general breeding season for these species (February 1 to September 15). If removal of habitat in the proposed area of disturbance must occur during the breeding season, the qualified biological monitor would conduct a preconstruction survey to determine the presence or absence of nesting birds on the proposed area of disturbance. The preconstruction survey would be conducted within 10 calendar days prior to the start of construction activities (including removal of vegetation). The applicant would submit the results of the pre-construction survey for review and approval prior to initiating any construction activities.

If nesting birds are detected, a letter report or mitigation plan in conformance with applicable state and federal law (i.e., appropriate follow up surveys, monitoring schedules, construction and noise barriers/buffers, etc.) would be prepared and include proposed measures to be implemented to ensure that take of birds or eggs or disturbance of breeding activities is avoided. The report or mitigation plan would be submitted for review and approval.

b) No Impact. The project site is vacant and disturbed. The project site supports two vegetation communities/land cover types: desert saltbush scrub and disturbed land. Desert saltbush scrub is the predominant vegetation community on the southern half of the project site and as a narrow strip along the western boundary. It is comprised of a single shrub species, big saltbush (Atriplex lentiformis). These bushes have colonized the site and have grown to a large stature, which occurs on 3.2 acres of the project site (Appendix B, Photographs 1 and 2). Total shrub cover ranges between 20 and 60 percent.

Disturbed land consists of mostly bare ground that is subjected to continued disturbance, preventing establishment of substantial vegetation cover. The disturbed land areas occur primarily on the northern half of the site and along the eastern boundary. Some areas contain abandoned farm equipment, vehicles, wooden crates, and other debris in scattered small piles (Appendix B, Photographs 3 and 4).

The project site does not support any riparian habitat or designated sensitive natural communities. Therefore, the proposed project would have no impact to riparian habitat or sensitive natural communities.

- c) **No Impact.** The project site does not contain wetlands. Therefore, implementation of the proposed project would not have a substantial adverse effect on federally protected wetlands or waters as defined by Section 404 of the Clean Water Act. No impact is identified for this issue area.
- d) No Impact. The project site is vacant and disturbed. The project site lies adjacent to a large expanse of agricultural land, which isolates the project site from undisturbed desert habitats. While the project site functions as part of general habitat that provides for local movement of terrestrial wildlife, it does not serve as a corridor between native desert habitat. No impact would occur.
- e) Less than Significant Impact. The proposed project would not conflict with any local policies or ordinances protecting biological resources. As discussed above, Mitigation Measure BIO-1 would reduce potential impacts to nesting birds to a less than significant level. Therefore, this impact is considered less than significant.
- f) **No Impact.** The project site is not located in a Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan. Implementation of the proposed project would result in no impact associated with the potential to conflict with local conservation plans.

V. Cultural Resources

Enviror	nmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would	the project:				
a)	Cause a substantial adverse change in the significance of a historical resource pursuant to §15064.5?				
b)	Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?				
c)	Disturb any human remains, including those interred outside of dedicated cemeteries?				

Impact Analysis

The following information is summarized from the *Cultural Resources Report for the Alba Peaker BESS Project* prepared by RECON. This study is provided as Appendix C of this Initial Study.

a) No Impact. Prior to the cultural resources survey conducted by RECON, a records search was requested from the California Historical Resources Information System, South Coastal Information Center (SCIC) to identify any previously recorded cultural resources within a onemile radius of the project area. Additionally, on March 22, 2023, a RECON archaeologist and a Native American monitor from Red Tail Environmental conducted a pedestrian survey of the project area.

Sacred Lands File Search

On March 8, 2023, a letter was sent to the Native American Heritage Commission (NAHC) requesting a search of their Sacred Lands File (SLF) to identify spiritually significant and/or sacred sites or traditional use areas in the project vicinity. The NAHC was also asked to provide a list of local Native American tribes, bands, or individuals that may have concerns or interests regarding cultural resources potentially occurring within the project area. The NAHC SLF search results response was received on Marh 22, 2023 with positive results.

Records Search

The SCIC records search indicated that there have been eight cultural investigations conducted within one mile of the project site, one of which includes the project site. The records search also indicated five historic-era cultural resources situated within one mile of the project site. These cultural resources are comprised of a railroad, a highway, a government building, foundations, a monument, and a trash scatter. None of the previously recorded cultural resources were mapped to be within the project area.

Pedestrian Survey

No significant or potentially significant prehistoric or historic cultural resources were observed during the pedestrian survey of the project area.

Impacts

The SCIC records search was negative for the project area and returned only historic-era resources within the requested search area of one mile. Furthermore, no significant or potentially significant prehistoric or historic cultural resources were represented during the

pedestrian survey of the project area. The possibility of intact buried significant cultural resources being present within the project site is considered low due to past agriculture disturbance of the project site.

Based on the distance from known resources, disturbance from past agricultural activities, and the negative results of the SCIC survey, the proposed project would have no impact on historical resources.

b) Less than Significant Impact with Mitigation Incorporated. As described above, no evidence of cultural resources was identified on the project site during the survey. The property has undergone disturbance from agricultural activities in past decades. These agricultural activities have likely disturbed the surface and subsurface of the project area, destroying any intact potential prehistoric or historic-era cultural resources. The potential of finding a buried archaeological site during construction is considered low. However, like all construction projects in the state, the possibility exists. This potential impact is considered significant. Implementation of Mitigation Measure CR-1 would reduce the potential impact associated with the inadvertent discovery of archaeological resources to a level less than significant.

Mitigation Measure:

CR-1 In the event of the discovery of previously unidentified archaeological materials, the contractor shall immediately cease all work activities within approximately 100 feet of the discovery. After cessation of excavation, the contractor shall immediately contact the Imperial County Department of Planning and Development Services Department. Except in the case of cultural items that fall within the scope of the Native American Grave Protection and Repatriation Act, the discovery of any cultural resource within the project area shall not be grounds for a "stop work" notice or otherwise interfere with the project's continuation except as set forth in this paragraph.

In the event of an unanticipated discovery of archaeological materials during construction, the applicant shall retain the services of a qualified professional archaeologist, meeting the Secretary of the Interior's Standards for a Qualified Archaeologist, to evaluate the significance of the materials prior to resuming any construction-related activities in the vicinity of the find. If the qualified archaeologist determines that the discovery constitutes a significant resource under CEQA and it cannot be avoided, the applicant shall implement an archaeological data recovery program.

c) Less than Significant Impact with Mitigation Incorporated. During the construction of the proposed project, grading will be required. Although the potential for encountering subsurface human remains within the project site is low, there remains a possibility that human remains are present beneath the ground surface, and that such remains could be exposed during construction. The potential to encounter human remains is considered a significant impact. Mitigation Measure CR-2 would ensure that the potential impact on previously unknown human remains does not rise to the level of significance pursuant to CEQA.

Mitigation Measure:

CR-2 If subsurface deposits believed to be human in origin are discovered during construction, all work must halt within a 100-foot radius of the discovery. A qualified professional archaeologist who meets the Secretary of the Interior's Standards for prehistoric and historic archaeology and is familiar with the resources of the region, shall be retained to evaluate the significance of the find, and shall have the authority to modify the no work radius as appropriate, using professional judgment. The following notifications shall apply, depending on the nature of the find:

If the find includes human remains, or remains that are potentially human, the professional archaeologist shall ensure reasonable protection measures are taken to protect the discovery from disturbance (AB 2641). The archaeologist shall notify the Imperial County Coroner (per § 7050.5 of the Health and Safety Code). The provisions of § 7050.5 of the California Health and Safety Code, § 5097.98 of the California PRC, and AB 2641 will be implemented.

If the Coroner determines the remains are Native American and not the result of a crime scene, the Coroner will notify the NAHC, which then will designate a Native American Most Likely Descendant (MLD) for the project (§ 5097.98 of the PRC). The designated MLD will have 48 hours from the time access to the property is granted to make recommendations concerning treatment of the remains. If the landowner does not agree with the recommendations of the MLD, the NAHC may mediate (§ 5097.94 of the PRC). If no agreement is reached, the landowner must rebury the remains where they will not be further disturbed (§ 5097.98 of the PRC). This will also include either recording the site with the NAHC or the appropriate Information Center; using an open space or conservation zoning designation or easement; or recording a reinternment document with the county in which the property is located (AB 2641). Work may not resume within the no-work radius until the Imperial County Planning and Development Services Department, through consultation as appropriate, determine that the treatment measures have been completed to their satisfaction.

VI. Energy

	nmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
a)	the project: Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?				
b)	Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?				

Impact Analysis

- a) Less than Significant Impact. The proposed project would provide energy storage. The use of energy associated with the proposed project includes both construction and operational activities. Construction activities consume energy through the use of heavy construction equipment and truck and worker traffic. The proposed project will use energy-conserving construction equipment, including standard mitigation measures for construction combustion equipment recommended in the ICAPCD CEQA Air Quality Handbook. The use of better engine technology, in conjunction with the ICAPCD's standard mitigation measures will reduce the amount of energy used for the project. The proposed project would involve storage of power from the IID grid during non-peak electricity usage, so that it can be released back into the grid during peak periods, allowing for resiliency on the electrical grid. Based on these considerations, the proposed project would not result in potentially significant environmental impacts due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation. This is considered a less than significant impacts.
- b) Less than Significant Impact. As described above, the proposed project would involve purchase of power during off-peak energy use, and release of power back into the electrical grid during peak use periods, allowing for energy resiliency. The project's source of energy could be from traditional energy sources, as well as renewable if such electricity is a component of the electrical load on the IID K line. The proposed project would not conflict with or obstruct a state or local plan for renewable energy of energy efficiency. This is considered a less than significant impact.

VII. Geology and Soils

Environmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:				
 a) Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury or death involving: 				
i. Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42?				
ii. Strong seismic ground shaking?				
iii. Seismic-related ground failure, including liquefaction?				
iv. Landslides?				
b) Result in substantial soil erosion or the loss of topsoil?				
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?				
 d) Be located on expansive soil, as defined in Table 18-1B of the Uniform Building Code (1994), creating substantial direct or indirect risk to life or property? 			X	
 e) Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater? 				
f) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?				

Impact Analysis

- ai) **No Impact.** According to the DOC's California Earthquake Hazards Zone Application (EQ Zapp), the project site is not located within or adjacent to any earthquake fault zone as delineated on the most recent Alquist-Priolo Earthquake Zoning Map (California DOC n.d.). However, an earthquake fault zone associated with the Wienert Fault is located approximately 5 miles northeast of the project site. The proposed project would not result in the construction of any structure intended for human occupancy and all structures and onsite facilities would be designed in accordance with the most recent California Building Code (CBC). Therefore, no impact would occur.
- aii) Less than Significant Impact. Southern California is a seismically active region, therefore it is highly likely that regional earthquakes would occur that could affect the proposed project. As previously mentioned above, no active faults are underlaying the project site, however, the Wienert Fault and its associated earthquake fault zone is located approximately 5 miles northeast of the project site. All structures and onsite facilities would be designed in accordance with the most recent CBC for peak site ground acceleration. Since the design and construction of the project would be required to conform to the specific mandated structural design requirements to protect against strong seismic shaking, the potential impacts due to strong seismic ground shaking are considered to be a less than significant impact.
- aiii) Less than Significant Impact. Four conditions are generally required for liquefaction to occur, including: 1) saturated soil, 2) loosely packed soil, 3) relatively cohesionless soil, and 4) groundshaking of sufficient intensity must occur to trigger the mechanism. All four conditions may exist to some degree at the project site; however, the project site is not located in an area susceptible to liquefaction hazards (California DOC n.d.). Additional geotechnical investigation would be required in order to assess the risk of liquefaction in the project area.

As required by the County and in accordance with local and state building code requirements, any proposed development would be required to complete a geotechnical evaluation of any onsite hazards. As a standard condition of project approval, the proposed project would be constructed in accordance with the most current CBC and Imperial County Building Code to minimize or avoid the potential hazard of liquefaction. A less than significant impact is identified for this issue area.

- aiv) Less than Significant Impact. The project site is located in a relatively flat portion of Imperial County and is not identified as an area at risk of landslide (County of Imperial 1997). Therefore, the impact associated with landslides is considered less than significant.
- b) Less than Significant Impact. Soil erosion and loss of topsoil could result during construction as grading and construction can loosen surface soils and make soils susceptible to wind and water movement across the surface. Construction activities are regulated under the National Pollutant Discharge Elimination System (NPDES) General Permit for Discharges of Storm Water Runoff Associated with Construction Activity (General Construction Permit) which covers stormwater runoff requirements for projects where the total amount of ground disturbance during construction exceeds 1 acre. The proposed project would be required to comply with the General Construction Permit requires the preparation of a SWPPP and submittal of a Notice of Intent (NOI) to comply with the General Construction Permit. The SWPPP would identify best management practices (BMPs) that would reduce any impacts associated with soil erosion or loss of topsoil. Therefore, this impact is considered less than significant.
- c) Less than Significant Impact.

Landslides. As described in Response VII. aiv) above, the project site is located in a relatively flat portion of Imperial County and is not identified as an area at risk of landslide. Therefore, the impact associated with landslides is considered less than significant GINAL PKG

October 2024 | 43

Lateral Spreading. The potential for lateral spreading to occur on the project site has not yet been determined. As required by the County and in accordance with local and state building code requirements, any proposed development would be required to complete a geotechnical evaluation of any onsite hazards. As a standard condition of project approval, the proposed project would be constructed in accordance with the most current CBC and Imperial County Building Code to minimize or avoid the potential hazard of lateral spreading. A less than significant impact is identified for this issue area.

Subsidence. The potential for subsidence to occur on the project site has not yet been determined. As required by the County and in accordance with local and state building code requirements, any proposed development would be required to complete a geotechnical evaluation of any onsite hazards. As a standard condition of project approval, the proposed project would be constructed in accordance with the most current CBC and Imperial County Building Code to minimize or avoid the potential hazard of subsidence. A less than significant impact is identified for this issue area.

Liquefaction. As described in Response VII. aiii) above, the project site is not located in an area susceptible to liquefaction hazards (California DOC n.d.). As required by the County and in accordance with local and state building code requirements, any proposed development would be required to complete a geotechnical evaluation of any onsite hazards. As a standard condition of project approval, the proposed project would be constructed in accordance with the most current CBC and Imperial County Building Code to minimize or avoid the potential hazard of liquefaction. A less than significant impact is identified for this issue area.

Collapse. The potential for collapse to occur on the project site has not yet been determined. As required by the County and in accordance with local and state building code requirements, any proposed development would be required to complete a geotechnical evaluation of any onsite hazards. As a standard condition of project approval, the proposed project would be constructed in accordance with the most current CBC and Imperial County Building Code to minimize or avoid the potential hazard of collapse. A less than significant impact is identified for this issue area.

d) Less than Significant Impact. According to the United States Department of Agriculture's Web Soil Survey, soils mapped on the project site include 110 Holtville silty clay, wet, and 115 Imperial-Glenbar silty clay loams, wet, 0 to 2 percent slopes (USDA n.d.). In general, much of the near surface soils within the project site consist of silty clay and clays having a moderate to high expansion potential. Unless properly mitigated, shrink-swell soils could exert additional pressure on buried structures producing shrinkage cracks that could allow water infiltration and compromise the integrity of backfill material. These conditions could be worsened if structural facilities are constructed directly on expansive soil materials.

As required by the County and in accordance with local and state building code requirements, any proposed development would be required to complete a geotechnical evaluation of any onsite hazards. As a standard condition of project approval, the proposed project would be constructed in accordance with the most recent CBC and Imperial County Building Code to minimize or avoid the potential hazard of expansive soil. A less than significant impact is identified for this issue area.

- e) **No Impact.** The proposed project would not require the use of septic systems or alternative wastewater systems to accommodate wastewater needs. Therefore, no impact is identified for this issue area.
- f) Less than Significant Impact with Mitigation Incorporated. Many paleontological fossil sites are recorded in Imperial County and have been discovered during construction activities. Paleontological resources are typically impacted when earthwork activities, such as mass excavation cut into geological deposits (formations) with buried fossils. One area in which paleontological resources appear to be concentrated in this region is the shoreline of ancient Lake Cahuilla, which would have encompassed the present-day Salton Sea. The EEC ORIGINAL PKG

lake covered much of the Imperial Valley and created an extensive lacustrine environment. Lake Cahuilla experienced several fill recession episodes before it finally dried up about 300 years ago. In 1905, the Colorado River overflowed into the Salton Basin creating the presentday Salton Sea.

According to the Geologic Map of California – San Diego-El Centro Sheet, the project site is underlain by Quaternary lake deposits (QI) (Jennings, C.W. 1962). The project site is located in the Imperial Valley which is directly underlain by geologic units comprised of quaternary lake deposits of the ancient Lake Cahuilla. Lakebed deposits of ancient Lake Cahuilla have yielded fossil remains from numerous localities in Imperial Valley. These include extensive freshwater shell beds, fish, seeds, pollen, diatoms, foraminifera, sponges, and wood. Lake Cahuilla deposits have also yielded vertebrate fossils, including teeth and bones of birds, horses, bighorn sheep, and reptiles. Therefore, the paleontological sensitivity of these lakebed deposits within the project site are considered to be high.

Impacts on any surface or near-surface level paleontological resources may occur because of grading and disturbance of the area. Even relatively shallow excavations in the Lake Cahuilla beds exposed in the project site may encounter significant vertebrate fossil remains. Therefore, this potential impact is considered a significant impact. Mitigation Measure GEO-1 would ensure that the potential impacts on paleontological resources do not rise to the level of significance pursuant to CEQA. Implementation of Mitigation Measure GEO-1 would reduce the impact on paleontological resources to a level less than significant.

Mitigation Measure

In the event that unanticipated paleontological resources or unique geologic GEO-1 resources are encountered during ground-disturbing activities, work must cease within 50 feet of the discovery and a paleontologist shall be hired to assess the scientific significance of the find. The consulting paleontologist shall have knowledge of local paleontology and the minimum levels of experience and expertise as defined by the Society of Vertebrate Paleontology's Standard Procedures (2010) for the Assessment and Mitigation of Adverse Impacts to Paleontological Resources. If any paleontological resources or unique geologic features are encountered within the project site, the consulting paleontologist shall prepare a paleontological Treatment and Monitoring Plan to include the methods that will be used to protect paleontological resources that may exist within the project site, as well as procedures for monitoring, fossil preparation and identification, curation of specimens into an accredited repository, and preparation of a report at the conclusion of the monitoring program.

VIII. Greenhouse Gas Emissions

	nmental Issue Area: the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
a)	Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?				
b)	Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases?				

Impact Analysis

The following information is summarized from the *Greenhouse Gas Analysis* prepared by RECON. This report is provided as Appendix D of this Initial Study.

a) Less than Significant Impact. Prominent greenhouse gases (GHGs) contributing to the greenhouse effect are carbon dioxide (CO₂), methane (CH₄), and nitrogen oxide (N₂O). Human-caused emissions of these GHGs in excess of natural ambient concentrations are believed to be responsible for intensifying the greenhouse effect and leading to a trend of unnatural warming of the earth's climate, known as global climate change or global warming.

The project site is located within the Salton Sea Air Basin, regulated by the ICAPCD. To date the ICAPCD has not adopted GHG emission significance thresholds applicable to potential development. Section 15064.7(c) of the CEQA Guidelines specifies that "[w]hen adopting or using thresholds of significance, a lead agency may consider thresholds of significance previously adopted or recommended by other public agencies, or recommended by experts, provided the decision of the lead agency to adopt such thresholds is supported by substantial evidence" (14 CCR 15064.7(c)).

Due to the climate and land use patterns, the Antelope Valley AQMD and Mojave Desert APCD are air districts that are most similar to the ICAPCD's jurisdiction. As outlined in the Antelope Valley AQMD's 2016 California Environmental Quality Act (CEQA) and Federal Conformity Guidelines and Mojave Desert APCD's 2016 California Environmental Quality Act (CEQA) and Federal Conformity Guidelines, the two air districts both recommend use of a GHG emissions significance threshold of 100,000 short tons of CO₂e per year (90,718 CO₂e). Projects with emissions that exceed this threshold are required to incorporate mitigation sufficient to reduce emissions to less than this significance threshold or must incorporate all feasible mitigation. In absence of adopted GHG significance thresholds, the threshold of 90,718 CO₂e is an appropriate CEQA significance threshold for the assessment of GHG emissions for the purposes of this project.

The following analysis is broken out by a discussion of potential impacts during construction and operation of the project. The CalEEMod 2022.1 air quality model was used to calculate the GHG emissions associated with construction and operation of the proposed project. The CalEEMod worksheets are included in Appendix D of this Initial Study.

Construction

Construction-related activities that would generate GHG emissions include worker commute trips, hauletrucks carrying supplies and materials to and from the project site, and off-road construction equipment (e.g., water trucks, cranes, tractors).

Table 3 summarizes the specific construction-generated GHG emissions that would result from construction of the project. Consistent with South Coast Air Quality Management (SCAQMD) recommendations, project construction GHG emissions have been amortized over the expected life of the project, which is considered to be 30 years.

Equipment	Quantity	Daily Operation Time (hours)
Grading (14 days)		
Tractors/Loaders/Backhoes	2	8
Dump Truck	1	8
Scraper	1	8
Roller	1	8
Water Truck	1	8
Office Generator	1	8
Pile Installation (15 days)		
Drill Rigs	3	8
Welder	1	8
Water Truck	1	8
Office Generator	1	8
Fence Installation (5 days)		
Air Compressor	1	8
Generator	1	8
Water Truck	1	8
Electrical Installation (30 day	/s)	
Tractors/Loaders/Backhoes	3	8
Generators	5	8
Air Compressors	5	8
Forklift	1	8
Water Truck	1	8
Office Generator	1	8
Container Installation (14 da	ys)	
Crane	1	8
Water Truck	1	8
Office Generator	1	8

Table 3. Construction Phases and Equipment

Source: Appendix D of this Initial Study

As shown in Table 4, the project would generate approximately 6 metric tons of CO₂e annualized over the lifetime of the project.

Table 4. Construction-Related GHG Emissions

Year	GHG Emissions (MT CO ₂ e)
2024	191
Amortized Over 30 Years	6

Source: Appendix D of this Initial Study

Operation

Once the BESS facility is operational, very few vehicular trips would be expected. The project would be an unmanned facility that would be operated remotely. Therefore, the project would not generate routine daily trips. Occasional maintenance trips would be required. To account for these trips, a total of one round trip (two one-way trips) was modeled per weekday with a default trip length of 20 miles.

As shown in Table 5, the project buildout operations including amortized construction emissions would generate approximately 401 metric tons of CO₂e per year, which is below the significance threshold of 90,718 metric tons of CO₂e per year. Therefore, the project's GHG impact would be less than significant.

Table 5. Total GHG Emissions

Source	GHG Emissions (MT CO2e)
Mobile	4
Energy	388
Area	<1
Water	0
Solid Waste	0
Refrigerants	2
Construction	6
Project Total GHG Emissions	401
Screening Threshold	90,718
Exceeds Screening Threshold of 90,718 MT of CO ₂ e / Year?	No

Source: Appendix D of this Initial Study

b) Less than Significant Impact. The proposed project would not conflict with any adopted plans, policies, or regulations adopted for the purpose of reducing GHG emissions. As discussed above in Response VIII. a), the project-generated GHG emissions would not exceed GHG significance thresholds. Therefore, the proposed project would not conflict with any applicable plan, policy, or regulation adopted for reducing the emissions of GHGs and a less than significant impact would occur.

Enviror	nmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would	the project:				
a)	Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?				
b)	Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the likely release of hazardous materials into the environment?				
c)	Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?				
d)	Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?				
e)	For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?				
f)	Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?				
g)	Expose people or structures, either directly or indirectly, to a significant risk of loss, injury, or death involving wildland fires?				

IX. Hazards and Hazardous Materials

Impact Analysis

The following information is summarized from the *Phase I ESA Report* prepared by GS Lyon Consultants, Inc. This report is provided as Appendix E of this Initial Study.

a) Less than Significant Impact. Vehicles and equipment used for construction would contain or require the temporary use of potentially hazardous substances, such as fuels, lubricating oils, and hydraulic fluid. Hazardous substances would be stored in transportable containment trailers

at locations within the construction staging area to minimize potential for accidental releases and/or spills.

Transportation of hazardous materials relating to the battery system includes electrolyte and graphite and would occur during construction, operation (if replacement of batteries is needed) and decommissioning (removal of the batteries). All of these various materials would be transported and handled in compliance with DTSC regulations. Therefore, likelihood of an accidental release during transport or residual contamination following accidental release is not anticipated.

Lithium-ion batteries used in the storage system contain cobalt oxide, manganese dioxide, nickel oxide, carbon, electrolyte, and polyvinylidene fluoride. Of these chemicals, only electrolyte should be considered hazardous, inflammable and could react dangerously when mixed with water. The U.S. Department of Transportation (DOT) regulates transport of lithium-ion batteries under the DOT's Hazardous Materials Regulations (HMR) (49 CFR Parts 171-180). The HMR apply to any material DOT determines is capable of posing an unreasonable risk to health, safety, and property when transported in commerce. Lithium-ion batteries must conform to all applicable HMR requirements when offered for transportation or transported by air, highway, rail, or water. Additionally, carbon (as graphite) is flammable and could pose a fire hazard. Fire protection is achieved through project design features, such as monitoring, diagnostics and a fire suppression system. The project would be required to comply with state laws and county ordinance restrictions, which regulate and control hazardous materials handled on site.

Further, the proposed project would be required to comply with all applicable rules and regulations involving hazardous materials, including the State of California CCR Title 23 Health and Safety Regulations, the California Division of Occupational Safety and Health (Cal/OSHA) requirements, the Hazardous Waste Control Act, the California Accidental Release Prevention (CalARP) Program, and the California Health and Safety Code. Compliance with these measures would reduce any potential risk or impact associated with the transport, use, or disposal of hazardous materials. This impact is considered less than significant.

b) Less than Significant Impact. As described in Response IX. a) above, the proposed BESS facility would require the storage of hazardous materials; however, hazardous substances would be stored in transportable containment trailers at locations within the construction staging area to minimize potential for accidental releases and/or spills. No other hazardous or potentially hazardous materials will be brought to the project site. Further, the proposed project would be required to comply with all applicable rules and regulations involving hazardous materials, including the State of California CCR Title 23 Health and Safety Regulations, Cal/OSHA requirements, the Hazardous Waste Control Act, the CalARP Program, and the California Health and Safety Code. Compliance with these measures would reduce any potential risk or impact associated with the release of hazardous materials into the environment.

Protection would be provided as part of the project design by housing the battery units in enclosed structures to provide containment should a fire break out or for potential spills. Any potential fire risk that the traditional lithium-ion cells have will most likely be caused by overcharging or through short circuit due to age. Fire protection systems for battery systems would be designed in accordance with standards and requirements for energy storage system including, but not limited to the following:

National Fire Protection Association

- 1 Fire Code
- 70 National Electrical Code
- 855 Standard for the installation of Energy Storage System
- 111 Stored Electrical Energy Emergency and Standby Power System
- 1710 Standard for Organization and Deployment of Fire Suppression Operations, Emergency Medial Operations, and Special Operations to the Public by Career Fire Departments.

Occupational Safety and Health Administration

• 29 CFR 1910.134(g)(4)

California Fire Code

- Chapter 12 section 1206 Electrical Energy Storage System
- Chapter 9 Fire Protection and Life Safety System

The general approach to fire mitigation at the project site would be prevention of an incident, followed by attempts to isolate and control the incident to the immediately affected equipment. The proposed project is a battery energy storage system. The specific type of technology utilized will be determined at a future date but would be subject to fire department review and approval as part of the site plan review.

The project applicant will coordinate with the Imperial County Fire Department on conditions of approval as part of the CUP to ensure the proposed project would not result in extreme hazards to the public, firefighters, and emergency responders. Conditions of approval would include project plans review and inspections, installation of a water supply capable of supplying the required fire flow, development of an Emergency Operation Plan, and compliance with applicable standards and requirements of the National Fire Protection Association, Occupational Safety and Health Administration, and California Fire Code. With adherence of applicable standards and requirements of approval as part of the CUP, a less than significant impact would occur.

- c) Less than Significant Impact. The project site is not located within 0.25 mile of an existing or proposed school. The nearest school is Seeley Elementary School, located over 0.4 mile northwest of the project site. The proposed project would be required to comply with all applicable rules and regulations involving hazardous materials, including the State of California CCR Title 23 Health and Safety Regulations, Cal/OSHA requirements, the Hazardous Waste Control Act, the CalARP Program, and the California Health and Safety Code. Compliance with these measures would reduce any potential risk or impact to nearby schools. This impact is considered less than significant.
- d) No Impact. GS Lyon has performed a Phase I Environmental Site Assessment of the project site in general conformance with the scope and limitations of ASTM E1527-21. GS Lyon Consultants conducted a review of historic aerial photographs, historic topographic maps, historic Sanborn Fire Insurance maps, governmental regulatory databases, other regulatory and agency databases, and historic telephone and city directories to evaluate potentially adverse environmental conditions resulting from previous ownership and uses of the project site (Appendix E). Following the records review, a site reconnaissance was performed by Mr. Steven Williams, a consulting geologist to GS Lyon Consultants, on March 24, 2023. The site reconnaissance was limited to visual and/or physical observation of the exterior and interior of the project site and its improvements, the current uses of the property and adjoining properties, and the current condition of the property. Additionally, GS Lyon interviewed various individuals familiar with the project site, as identified to us, and/or government officials in order to evaluate historical uses and identify potential recognized environmental conditions (REC(s)) existing on the project site.

The Phase I ESA revealed no evidence of RECs, controlled recognized environmental conditions (CREC(s)), or historical recognized environmental conditions (HREC(s)) in connection with the project site.

A *de minimis* condition is a condition that generally does not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. The Phase I ESA revealed the following *de minimis* conditions or environmental concerns in connection with the project site:

- Pesticide residues (low concentrations) typical to agricultural crop applications may present in the near surface soils.
- Possible hydrocarbon staining of near surface soils may be present due to historical use of the subject property as an equipment storage area.

Based on the preceding analysis, GS Lyon Consultants concluded that no RECs have been identified in connection with the project site that would warrant further environmental study (Phase II) at this time. Therefore, implementation of the proposed project would result in no impact related to the project site being located on a listed hazardous materials site pursuant to Government Code Section 65962.5.

- e) No Impact. The project site is not located within 2 miles of a public airport. The nearest airport is the Imperial County Airport located over 7 miles northeast of the project site. Therefore, implementation of the proposed project would not result in a safety hazard or excessive noise for people residing or working in the project area and no impact would occur.
- f) No Impact. The proposed project does not include any alteration to the existing public road network and would not involve blocking or restricting any access routes. The proposed access road would be designed in accordance with fire department standards. Therefore, the proposed project would not interfere with an adopted emergency response plan or emergency evacuation plan. No impact is identified for this issue area.
- g) No Impact. The project site is located in the unincorporated community of Seeley in Imperial County. According to the Seismic and Public Safety Element of the General Plan, the potential for a major fire in the unincorporated areas of the County is generally low (County of Imperial 2022). Based on a review of the California Department of Forestry and Fire Protection's fire hazard severity zone map, the project site is not located within a fire hazard severity zone. The nearest fire hazard severity zone is classified as moderate and located over 20 miles southwest of the project site (California Department of Forestry and Fire Protection 2022). The proposed project would not introduce features that directly or indirectly increase the risk of wildfire on the project site. No impact is identified for this issue area.

X. Hydrology and Water Quality

Environmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:				
 a) Violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality? 				
 b) Substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project ma impede sustainable groundwater management of the basin? 				
 c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would: 	n			
 result in substantial erosion on siltation on- or off-site; 	or 🗆		\boxtimes	
 substantially increase the rat or amount of surface runoff in a manner which would result in flooding on- or offsite; 	n			
iii. create or contribute runoff water which would exceed th capacity of existing or planned stormwater drainage systems or provide substantial additional source of polluted runoff; or	9			
iv. impede or redirect flood flows?				
 In flood hazard, tsunami, or seich zones, risk release of pollutants due to project inundation? 	ie 🗆			
e) Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?				

Impact Analysis

a) Less than Significant Impact. No known or reasonably expected surface water quality issues are anticipated to result from implementation of the proposed project. Construction activities are regulated under the NPDES General Permit for Discharges of Storm Water Runoff Associated with Construction Activity (General Construction Permit) which covers stormwater runoff requirements for projects where the total amount of ground disturbance

during construction exceeds 1 acre. The proposed project would be required to comply with the General Construction Permit because ground disturbance would exceed 1 acre. Coverage under a General Construction Permit requires the preparation of a SWPPP and submittal of a NOI to comply with the General Construction Permit. The SWPPP will be implemented such that stormwater discharges would not adversely impact human health or the environment, nor contribute to any exceedances of any applicable water quality standards contained in the Colorado River Basin Plan. This impact is considered less than significant.

- b) No Impact. The proposed project will not involve the use of groundwater. Water to be used during project-related construction activities will be limited to the amount necessary to conduct dust control activities. During construction, construction water would be brought to the site for soil conditioning and dust suppression. Dewatering activities are not anticipated to be performed as part of the project. As a result, the proposed project would not impede groundwater recharge and no impact would occur.
- ci) Less than Significant Impact. As discussed in Response X. a) above, the construction of the proposed project would result in ground disturbing activities in an area greater than one acre. Therefore, SWPPP will be developed that implements BMPs that sufficiently avoid any onsite or offsite erosion and runoff from areas proposed for ground disturbance. This is considered a less than significant impact.
- cii) Less than Significant Impact. The proposed project would not involve the construction of substantial impervious surfaces that would increase the rate of run-off. Construction activities would be localized to the project site boundary and access road, and the surrounding pervious surface would remain similar to pre-project conditions. Water will continue to percolate through the ground, as a majority of the surfaces on the project site will remain pervious. In this context, the proposed project would not result in substantial increases in run-off. This is considered a less than significant impact.
- ciii) Less than Significant Impact. Water will continue to percolate through the ground, as a majority of the surfaces on the project site will remain pervious. The proposed project would not create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provided substantial additional sources of polluted runoff. This is considered a less than significant impact.
- civ) Less than Significant Impact. According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (Map Number 06025C1700C), the project site is located within Zone X, which is an area determined to be outside of the 0.2 percent annual chance of a flood (FEMA 2024). The project site is located approximately 0.50 mile north of a Special Flood Hazard Area, Zone A, which is an area subject to inundation by the 1% annual chance flood (100-year flood zone) (FEMA 2024).

The proposed access road would not involve the addition of structures which could impede or redirect flood flows. In addition, the proposed access road would be improved with an allweather surface allowing runoff to continue to percolate into the ground. Therefore, the proposed access road would not substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would impede or redirect flood flows, and impacts would be less than significant.

d) **No Impact.** The project site is located over 80 miles inland from the Pacific Ocean. Therefore, the proposed project is not located in an area at risk of tsunamis.

According to the Seismic and Public Safety Element of the General Plan, the most likely location for a significant seiche to occur is the Salton Sea, which is located over 20 miles north of the project site. While there have been a number of seismic events since the formation of the Salton Sea, no significant seiches have occurred to date. A seiche could occur, however, in the Salton Sea under the appropriate seismic conditions. The Salton Sea is proximal to the San Andreas and San Jacinto faults and would be subject to significant

seismic ground shaking that could generate a seiche (County of Imperial 2002). The likelihood of seismic activity producing waves large enough to affect the project site is low and therefore, the risk of release of pollutants attributable to inundation is considered low based on no documented history of seiche-induced flooding of the project site. No substantial damage is expected from seiches on the project site, and implementation of the project would not increase the inherent risk of seiches on the project site. No impact would occur.

e) Less than Significant Impact. The proposed project will not involve the use of groundwater. Water to be used during project-related construction activities will be limited to the amount necessary to conduct dust control activities. During construction, construction water would be brought to the site for soil conditioning and dust suppression. Dewatering activities are not anticipated to be performed as part of the project. As discussed above, the proposed project would be compliant with all local, state, and federal regulations, including compliance with the NPDES permits with the implementation of BMPs. Compliance with the referenced regulations would reduce any potential impact associated with a water quality control plan to a less than significant impact.

XI. Land Use and Planning

	nmental Issue Area: the project:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
a)	Physically divide an established community?				
b)	Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?				

Impact Analysis

- a) **No Impact.** The project site is located on a vacant and disturbed parcel within the unincorporated community of Seeley in Imperial County. The project site is surrounded by active agricultural uses to the west and south, disturbed land and railroad tracks to the north, and an agricultural facility and fields to the east. The parcels immediately surrounding the project site are zoned Light Industrial (M-1) to the east and Medium Industrial (M-2) to the north, west, and south. The proposed project does not involve project components that could physically divide an established community. Therefore, implementation of the proposed project would not divide an established community and no impact would occur.
- b) **No Impact.** The project's consistency with applicable land use plans, policies, and regulations is evaluated below.

County of Imperial Land Use Ordinance. The project site is zoned Medium Industrial (M-2). The proposed BESS facility will be conducted pursuant to Conditions of Approval of a CUP that has been applied for with Imperial County Planning and Development Services. According to Title 9, Division 5, Chapter 15, the following uses are permitted in the M-2 zone subject to approval of a CUP from Imperial County:

i) Battery Storage

jj) Major facilities relating to the generation and transmission of electrical energy, provided such facilities are not, under state or federal law, to be approved exclusively by an agency, or agencies of the state and/or federal governments, and provided that such facilities shall be approved subsequent to coordination and review with the Imperial Irrigation District for electrical matters. Such uses shall include, but not be limited to, the following:

- Electrical generation plants
- Facilities for the transmission of electrical energy (100-200 kV)
- Electrical substations in an electrical transmission system (500 kV/230kV/161kV)

Therefore, with approval of the CUP, the proposed project would not conflict with the County of Imperial Land Use Ordinance and no impact would occur.

XII. Mineral Resources

	nmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
-	the project: Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				
b)	Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?				⊠

Impact Analysis

- a) No Impact. Construction of the proposed project would not result in any impacts to known mineral resources or mineral resource recovery sites. The nearest active mines for mineral resources to the project site are construction sand and gravel (County of Imperial 2016). The project does not propose any extraction and thus loss of availability of these mineral resources. Additionally, the proposed project would not preclude future mineral resource exploration throughout the project site. No impact would occur.
- b) No Impact. As noted in Response XII. a), implementation of the proposed project would not result in any impacts to known mineral resources or mineral resource recovery sites. Additionally, the proposed project would not preclude future mineral resource exploration throughout the project site. No impact would occur.

XIII. Noise

Environment	tal Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the pr	roject result In:				
temp in an vicin stand gene appli	eration of a substantial borary or permanent increase mbient noise levels in the ity of the project in excess of dards established in the local eral plan or noise ordinance, or icable standards of other ncies?				
grou	eration of excessive Indborne vibration or Indborne noise levels?				
vicin airpo such withi or pu proje work	a project located within the ity of a private airstrip or an ort land use plan or, where n a plan has not been adopted, in two miles of a public airport ublic use airport, would the ect expose people residing or king in the project area to essive noise levels?				

Impact Analysis

The following information is summarized from the *Noise Analysis* prepared by RECON. This report is provided as Appendix F of this Initial Study.

a) Less than Significant Impact. Existing noise levels at the project site were measured on March 23, 2023, using one Larson-Davis LxT Sound Expert Sound Level Meter. The meter was calibrated before and after the measurements. Noise measurements were taken to obtain typical ambient noise levels at the project site and in the vicinity. The weather was mild and partly cloudy with a slight breeze. The measurement was located near the center of the project site. The meter was set five feet above the ground level. Noise levels were typical of a rural agricultural environment. The main source of noise was agricultural equipment to the west. Noise levels were measured for approximately one hour. The average measured noise level was 50.1 dB(A) L_{eq}.

Construction

Construction activities associated with the project would include grading and installation activity for the placement of the BESS storage containers and inverters. Project construction noise would be generated by diesel engine-driven construction equipment. Noise impacts from construction are a function of the noise generated by equipment, the location and sensitivity of nearby land uses, and the timing and duration of the noise-generating activities. The loudest construction activities would be those associated with grading. Construction noise levels were calculated assuming the simultaneous use of the following three pieces of construction equipment: a grader, a loader, and a water truck. Water truck noise levels were assumed to be equivalent to a dump truck. Although more construction equipment would be present on-site, not all would be used at the same time. Simultaneous use of this equipment would generate an average hourly noise level of 84.3 dB(A) L_{eq} at 50 feet, which is equivalent to a sound power level of 115.9 dB(A) L_{pw}.

Noise associated with project construction would potentially result in short-term impacts to surrounding properties. Land uses surrounding the project site consist of active agricultural uses to the west and south, disturbed land and railroad tracks to the north, and an agricultural facility and fields to the east. The nearest sensitive receptors are the residential uses located approximately 500 feet north of the project site, north of the railroad tracks and West Evan Hewes Highway. Construction noise levels were calculated based on the simultaneously use of a grader, loader, and water truck. Noise levels were modeled at a series of 10 receivers located at the adjacent properties and the nearest residential uses. The results are summarized in Table 6.

As shown, construction noise levels are not anticipated to exceed the County's construction noise level limit of 75 dB(A) Leq at the adjacent properties. Construction activities would only occur during the times allowable by the City and County Municipal Codes (7 a.m. to 7 p.m., Monday through Friday, and 9 a.m. to 5 p.m. Saturday). No construction activities that generate impulsive noise levels would be required. Although there are no immediately proximate residences near the project site, the closest existing residences would be exposed to construction noise levels that could be heard above ambient conditions, the exposure would be temporary. Therefore, project construction would not exceed noise level limits established in the County's Land Use Ordinance and would only occur during the daytime hours, and temporary increases in noise levels during construction would be less than significant.

Receiver	Zoning	Construction Noise Level (dBA L _{eq})
1	M-2 (Medium Industrial)	64
2	M-2 (Medium Industrial)	68
3	M-2 (Medium Industrial)	67
4	M-2 (Medium Industrial)	67
5	M-2 (Medium Industrial)	68
6	M-2 (Medium Industrial)	69
7	M-2 (Medium Industrial)	66
8	M-2 (Medium Industrial)	62
9	M-2 (Medium Industrial)	61
10	R-1 (Low Density Residential) R-4 (High Density Residential and Mobile Park/Subdivision)	54

Table 6. Construction Noise Levels

Source: Appendix F of this Initial Study

Operation

The County General Plan Noise Element identifies property line noise level limits that apply to noise generation from one property to an adjacent property (excluding construction noise). As stated in the Noise Element, the property line noise level limits imply the existence of a sensitive receptor on the adjacent, or receiving, property. In the absence of a sensitive receptor, an exception or variance to the standards may be appropriate.

County Land Use Ordinances Title 9, Division 7: Noise Abatement and Control, specifies noise level limits. Noise level limits are summarized in Table 7. Noise level limits do not apply to construction equipment.

Zone	Time	One-Hour Average Sound Level [dB(A) L₀q]
Residential: All R-1	7:00 a.m. to 10:00 p.m.	50
	10:00 p.m. to 7:00 a.m.	45
Residential: All R-2, R-3, R-4 and all	7:00 a.m. to 10:00 p.m.	55
other residential	10:00 p.m. to 7:00 a.m.	50
All Commercial	7:00 a.m. to 10:00 p.m.	60
	10:00 p.m. to 7:00 a.m.	55
Manufacturing, all other industrial, including agricultural and extraction industry	(anytime)	70
General Industrial Zones	(anytime)	75

Table 7. Imperial County Property Line Noise Limits

Source: Appendix F of this Initial Study

The project site and properties to the north, south, east, and west are zoned M-2 (Medium Industrial), and the property south of the Seeley Drain is zoned R-1 (Low Density Residential). It should be noted that the R-1 designated parcel consists mostly of active agricultural land with the single-family residence located approximately 2,500 feet from the project site. Other residentially zoned parcels (R-1 and R-4) are located approximately 500 feet north of the project site, north of the railroad tracks and West Evan Hewes Highway.

The primary noise sources on-site would be the inverters and the BESS containers. Noise levels were modeled at a series of 10 receivers located at the adjacent properties and the nearest residential uses. Future projected noise levels are summarized in Table 8.

As shown in Table 8, operational noise levels would not exceed the County's most restrictive noise level limits. Therefore, project operation would not result in noise levels that exceed City or County standards, and operational noise impacts would be less than significant.

Conclusion

Based on the preceding analysis, the project is not anticipated to generate construction of operational noise levels that exceed the applicable noise limits. Therefore, the project's noise impact is considered less than significant.

Table 8. Operational Noise Levels

Receiver	Zoning	Noise Level Limit Daytime/Nighttime (dBA L _{eq})	Operational Noise Level (dBA L _{eq})
1	M-2 (Medium Industrial)	70/70	50
2	M-2 (Medium Industrial)	70/70	58
3	M-2 (Medium Industrial)	70/70	55
4	M-2 (Medium Industrial)	70/70	52
5	M-2 (Medium Industrial)	70/70	52
6	M-2 (Medium Industrial)	70/70	54
7	M-2 (Medium Industrial)	70/70	49
8	M-2 (Medium Industrial)	70/70	47
9	M-2 (Medium Industrial)	70/70	47
10	R-1 (Low Density Residential) R-4 (High Density Residential and Mobile Park/Subdivision)	50/45 55/50	39

Source: Appendix F of this Initial Study

- b) Less than Significant Impact. Groundborne vibration could originate from earth movement during the construction phase of the proposed project. However, significant vibration is typically associated with activities such as blasting or the use of pile drivers, neither of which would be required during project construction. The proposed project would be expected to comply with all applicable requirements for long-term operation, as well as with measures to reduce excessive groundborne vibration to ensure that the proposed project would not expose persons or structures to excessive groundborne vibration. Therefore, a less than significant impact has been identified for this issue area.
- c) No Impact. The project site is not located within 2 miles of a public airport. The nearest airport is the Imperial County Airport located more than 7 miles northeast of the project site. Therefore, implementation of the proposed project would not expose people residing or working in the project area to excessive noise levels and no impact would occur.

XIV. Population and Housing

Enviror	nmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would	the project:				la serie de la
a)	Induce substantial unplanned population growth in an area, either directly (e.g., by proposing new homes and businesses) or indirectly (e.g., through extension of roads or other infrastructure)?				
b)	Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?				

Impact Analysis

- a) **No Impact.** The proposed project would not induce unplanned population growth. The proposed project involves the construction and operation of a BESS facility on a vacant and disturbed parcel. No development of new roads or infrastructure is proposed that would introduce new populations to the project site. The proposed access road would be used only to access the proposed BESS facility. No impact would occur.
- b) **No Impact.** No residential units are on the project site that would require relocation. Therefore, the proposed project would not displace substantial numbers of existing people or housing necessitating the construction of replacement housing elsewhere. No impact would occur.

XV. Public Services

Environmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:				
i. Fire Protection?			\boxtimes	
ii. Police Protection?				
iii. Schools?				
iv. Parks?				
v. Other public facilities?				

Impact Analysis

- Less Than Significant Impact. Fire protection and emergency medical services in the ai) project area are provided by the Imperial County Fire Department. The project has the potential to increase response times, as energy storage facilities (i.e., the proposed BESS), have the potential to create hazards related to risk of explosion, flammable gases, toxic fumes, water-reactive materials, electrical shock, corrosives, and chemical burns. Utilityscale BESS requires specialized and reliable equipment to perform firefighting operations to NFPA recommendations, OSHA requirements, and ICFD standards. In order maintain adequate level of service, the Imperial County Fire Department has identified specific conditions of approval that will be incorporated into the CUP for the BESS, including, but not limited to access roads, water supply requirements, automatic fire detection and suppression systems, preparation of a Hazard Mitigation Analysis (HMA), emergency operation plan, emergency evacuation plan and cost recovery. With adherence to the conditions of approval as part of the CUP, the proposed project would not result in a need for fire facility expansion, which in turn, would create a significant impact to the environment, and a less than significant impact is identified.
- aii) Less Than Significant Impact. Police protection services in the project area is provided by the Imperial County Sheriff's Department. The project site is approximately 10 miles from the Imperial County Sheriff's Office South County Station. The proposed project would not require police services during construction or operation and maintenance beyond routine patrols and response. Construction and operation of the proposed project would not induce growth in the project area that would result in the permanent, and increased need of police protection services.

The project applicant will coordinate with the Imperial County Sheriff's Department on conditions of approval as part of the CUP to ensure the proposed project would not result in a significant physical impact to the environmental as a result of police protection services for

the project. Conditions of approval identified by the Imperial County Sheriff's Office (ICSO) include the preparation of a detailed safety/security plan and diagram prior to any activity on the site, providing annual training to ICSO employees on safety procedures and protocols in event of an unforeseen emergency, installation of adequate lighting, fencing, and safety measures to prevent or deter criminal activity, and installation of license plate reading cameras at all ingress and egress locations, installation of surveillance cameras at the project site, and appropriate cost reimbursement. With adherence to the conditions of approval as part of the CUP, a less than significant impact would occur.

- aiii) **No Impact.** The proposed project does not include the development of any residential land uses that would result in an increase in population or student generation. Construction is estimated to take approximately 5 months. Construction activities are not expected to require a substantial number of workers. Construction of the proposed project would not result in an increase in student population within the Imperial County's School District since it is anticipated that construction workers would commute during construction operations. Furthermore, no full-time employees are required to operate the project. It is anticipated that maintenance of the project will be minimal to perform periodic visual inspections for security, maintenance, and system monitoring. The proposed project would not result in an increase in student population within the Imperial County's School District. Therefore, the proposed project would have no impact on Imperial County schools.
- aiv) **No Impact.** Construction is estimated to take approximately 5 months. Construction activities are not expected to require a substantial number of workers. Furthermore, no full-time employees are required to operate the project. It is anticipated that maintenance of the project will be minimal to perform periodic visual inspections for security, maintenance, and system monitoring. Substantial permanent increases in population that would adversely affect local parks is not anticipated. Therefore, the proposed project would have no impact on parks.
- av) **No Impact.** Construction is estimated to take approximately 5 months. Construction activities are not expected to require a substantial number of workers. Furthermore, no full-time employees are required to operate the project. It is anticipated that maintenance of the project will be minimal to perform periodic visual inspections for security, maintenance, and system monitoring. Substantial permanent increases in population that would adversely affect libraries and other public facilities (such as post offices) is not anticipated. Therefore, the proposed project would have no impact on other public facilities such as post offices and libraries.

XVI. Recreation

Enviror	nmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would	the project:				
a)	Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?				
b)	Does the project include recreational facilities or require the construction or expansion of recreational facilities, which might have an adverse physical effect on the environment?				

Impact Analysis

- a) **No Impact.** The proposed project would not increase the use of existing neighborhood parks and regional parks or other recreational facilities. The proposed project would not induce new populations that would result in the substantial physical deterioration of recreational facilities. No impact would occur.
- b) **No Impact.** The proposed project would not include recreational facilities or require the construction or expansion of recreational facilities. The proposed project would not induce new populations that would require new recreational facilities. No impact would occur.

XVII. Transportation

	nmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
a)	the project: Conflict with a program plan, ordinance or policy addressing the				
	circulation system, including transit, roadway, bicycle and pedestrian facilities?				
b)	Conflict with or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?				
c)	Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?				
d)	Result in inadequate emergency access?				

Impact Analysis

The following information is summarized from the *Transportation Analysis* prepared by Linscott, Law & Greenspan (LLG), Engineers. This report is provided as Appendix G of this Initial Study.

a) Less than Significant Impact. Interstate 8 provides regional access to the project site and is located approximately one mile north of the project. Adjacent roadways providing local vehicular access to the project site include Drew Road to the west, West Evan Hewes Highway to the north, and Seeley Drain to south. Construction of the project would be temporary, and the traffic volumes generated by construction would be minor. Once the proposed BESS facility is operational, there would be no increase in automobile trips to the area. While it is anticipated that the proposed BESS facility would require periodic maintenance, maintenance would be minimal requiring a negligible amount of traffic trips on an annual basis. Therefore, the potential for the proposed project to cause an increase in traffic to the existing traffic load and capacity of the street system would be negligible and this is considered a less than significant impact.

The project site is located in the unincorporated community of Seeley in Imperial County, approximately 7.5 miles west of the city of El Centro and approximately one mile north of Interstate 8. The nearest bus station is at the junction of Evan Hewes Highway and Drew Road, located approximately 0.3 mile west of the project site. According to the Imperial County Transportation Commission (ICTC) Regional Active Transportation Plan, the County has identified 12 potential regional corridor projects based on existing conditions analysis and community engagement, which were then ranked using criteria consistent with state and regional best practices (ICTC 2022). A 7.2-mile regional corridor project between Seeley and the City of El Centro was ranked fifth during the prioritization process. However, the ATP has no determined schedule and is not funded (ICTC 2023). Furthermore, the proposed project would not require any roadway modifications to Drew Road and would not preclude future transit, roadway, bicycle or pedestrian facilities from being constructed. Therefore, the proposed project would result in a less than significant impact related to a conflict with a program plan, ordinance or policy addressing transit, bicycle, and pedestrian facilities

b) Less than Significant Impact. Imperial County has not yet formally developed guidelines or adopted significance criteria or technical methodologies for VMT analysis. Therefore, LLG utilized the Governor's Office of Planning and Research (OPR) guidelines from the Technical Advisory on Evaluating Transportation Impacts in CEQA, December 2018, to develop technical methodologies for this project. Per OPR guidelines, "vehicle miles traveled" refers to the amount and distance of *automobile* travel attributable to a project. Here the term "automobile" refers to on-road passenger vehicles, specifically cars and light trucks. VMT does not include trips from heavy-duty trucks. Therefore, the trips generated by the project's truck deliveries are excluded from VMT analysis. LLG determined that the project's employee passenger vehicles are calculated to generate 100 average daily traffic (ADT). Therefore, the employee component of the project can be considered a "small project", assumed to cause a less-than significant impact.

Additionally, construction of the project would be temporary, and the traffic volumes generated by construction would be minor. Given the nature of the project, after construction, there would be a nominal amount of vehicle trips generated by the project. Once the proposed BESS facility is operational, there would be no increase in automobile trips to the area. While it is anticipated that the proposed BESS facility would require periodic maintenance, maintenance would be minimal requiring a negligible amount of traffic trips on an annual basis. Therefore, the proposed project would result in a less than significant VMT impact.

- c) Less than Significant Impact. The proposed project does not include any alteration to the existing public road network. The proposed access road immediately off of Drew Road is a private dirt road, and any improvements required to accommodate construction vehicles would be designed to accommodate trucks delivering heavy equipment and ingress and egress for maintenance vehicles for the BESS facility. The proposed access road would not be open to the public and would be maintained as long as the proposed project is being constructed or in use. Once the BESS facility is retired or abandoned, the access road would be returned to pre-project conditions. This impact is considered less than significant.
- d) Less than Significant Impact. The proposed project does not include any alteration to the existing public road network and would not involve blocking or restricting any access routes. The proposed access road would be designed in accordance with fire department standards. Therefore, the proposed project would not result in inadequate emergency access and this impact is considered less than significant.

XVIII. Tribal Cultural Resources

Enviror	nmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact	
defined geogra	Would the project cause a substantial adverse change in the significance of a tribal cultural resource defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:					
a)	Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k)?					
b)	A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe?					

Impact Analysis

a-b) Less than Significant Impact. Assembly Bill 52 was passed in 2014 and took effect July 1, 2015. It established a new category of environmental resources that must be considered under CEQA called tribal cultural resources (Public Resources Code 21074) and established a process for consulting with Native American tribes and groups regarding those resources. Assembly Bill 52 requires a lead agency to begin consultation with a California Native American tribe that is traditionally and culturally affiliated with the geographic area of the proposed project.

In accordance with Assembly Bill (AB) 52, the County sent a Notification of Consultation Opportunity pursuant to Public Resources Code Section 21080.3.1(d) to the Campo Band of Mission Indians and the Quechan Indian Tribe on August 27, 2024. The AB 52 30-day review ended on September 26, 2024. No requests for consultation have been received.

Therefore, less than significant impacts would occur.

Environmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:				
a) Require or result in the relocation or construction of new or expanded water, wastewater treatment or storm water drainan electric power, natural gas, or telecommunications facilities, th construction or relocation of whit could cause significant environmental effects?	ge, e			
 b) Have sufficient water supplies available to serve the project an reasonably foreseeable future development during normal, dry and multiple dry years? 				
c) Result in a determination by the wastewater treatment provider, which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?				
 d) Generate solid waste in excess State or local standards, or in excess of the capacity of local infrastructure, or otherwise impa the attainment of solid waste reduction goals? 				
e) Comply with federal, state, and local management and reductio statutes and regulations related solid waste?	n to			

XIX. Utilities and Service Systems

Impact Analysis

a) Less than Significant Impact. The proposed project does not currently contain any public utilities or services. The proposed project would not require the construction of any water, wastewater, stormwater, or energy facilities to accommodate the demand of the project. The project's water use would be limited to the construction phase, and no infrastructure would be required to provide water to the project site. Water will be obtained from IID canals in conformance with IID construction water acquisition requirements. Water will be picked up from the source and delivered to the project site by a water truck which will be capable of carrying approximately 4,000 gallons. The proposed BESS facility would not generate wastewater that would need to be treated by a wastewater treatment facility. Storm water control would be implemented for the project site and access road. Due to the lack of public utilities and services to accommodate the project site, impacts are considered less than significant.

- b) Less than Significant Impact. The project's water use would be limited to grading and dust control during the construction phase. Water will be obtained from IID canals in conformance with IID construction water acquisition requirements. Water will be picked up from the source and delivered to the project site by a water truck which will be capable of carrying approximately 4,000 gallons. Operation of the BESS facility would not require significant amount of water and would be limited to general maintenance activities. Therefore, this impact is considered less than significant.
- c) **No Impact.** The proposed project would not generate wastewater that would need to be treated by a wastewater treatment facility. Onsite wastewater needs will be accommodated by the use of portable toilets that would be removed from the project site once construction is complete. No impact would occur.
- d) Less than Significant Impact. Solid waste generation would be minor for the construction and operation of the proposed project. There are several solid waste facilities within Imperial County and solid waste will be disposed of using a locally-licensed waste hauling service, most likely Allied Waste. Trash would likely be hauled to the Calexico Solid Waste Site (13-AA-0004) located in Calexico. The Calexico Solid Waste Site has approximately 1,561,235 cubic yards of remaining capacity and is estimated to remain in operation through 2179. (CalRecycle 2024). Therefore, there is ample landfill capacity in the County to receive the minor amount of solid waste generated by construction and operation of the proposed project. A less than significant impact is identified for this issue area.
- e) Less than Significant Impact. The proposed project would comply with all applicable statutes and regulations related to solid waste. As discussed in Response XIX. d) above, solid waste generated by the proposed well is expected to be minimal. This impact is considered less than significant.

XX. Wildfire

Enviror	nmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
	ed in or near state responsibility are the project:	eas or lands clas	sified as very hig	h fire hazard seve	erity zones,
a)	Substantially impair an adopted emergency response plan or emergency evacuation plan?				⊠
b)	Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to, pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?				
c)	Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?				
d)	Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?				

Impact Analysis

a) – d) **No Impact.** Based on a review of the California Department of Forestry and Fire Protection's fire hazard severity zone map, the project site is not located within a fire hazard severity zone. The nearest fire hazard severity zone is classified as moderate and located over 20 miles southwest of the project site (California Department of Forestry and Fire Protection 2022). The proposed project would not involve blocking or restricting any emergency access routes and would not interfere with emergency response plans or operations near the project area. The proposed project would not involve the development of structures that would introduce new populations to the project area that could result in impacts involving wildfires. The proposed project would not exacerbate wildfire risks and no impact is identified.

XXI. Mandatory Findings of Significance

Enviror	nmental Issue Area:	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would	the project:				
a)	Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?				
b)	Does the project have impacts that are individually limited, but cumulatively considerable ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?				
c)	Does the project have environmental effects, which will cause substantial adverse effects on human beings, either directly or indirectly?				

Impact Analysis

a) Less than Significant Impact with Mitigation Incorporated.

Biological Resources

As described in Response IV. a) above, nesting birds including raptors covered under the California Fish and Game Code Sections 3503 and 3503.5 have potential to be directly impacted by the project if construction activities (i.e., clearing, grubbing, grading) occur during the general nesting season of February 1 to September 15. Indirect impacts to migratory and nesting birds could also result if they are present in the lands surrounding the project site and project construction produces dust, noise, or other disturbances to this species. Mitigation Measure BIO-1 would avoid take and reduce potential impacts to this species to below a level of significance by requiring pre-construction surveys and preparation of a letter report or mitigation plan in conformance with applicable state and federal law, if nesting birds are detected.

Cultural Resources

As described in Response V. b) above, the potential of finding a buried archaeological site during construction is considered low. However, like all construction projects in the state, the possibility exists. This potential impact is considered significant. Implementation of Mitigation Measure CR-1 would reduce the potential impact associated with the inadvertent discovery of archaeological resources to a level less than significant.

As described in Response V. c) above, the potential for encountering subsurface human remains within the project site is low, there remains a possibility that human remains are present beneath the ground surface, and that such remains could be exposed during construction. This potential impact is considered significant. Implementation of Mitigation Measure CR-2 would ensure that the potential impact on previously unknown human remains does not rise to a level of significance pursuant to CEQA.

Geology and Soils

As described in Response I. f) above, the project site is located within an area where paleontological sensitivity is considered to be high. Impacts on any surface or near-surface level paleontological resources may occur because of grading and disturbance of the area. Even relatively shallow excavations in the Lake Cahuilla beds exposed in the project site may encounter significant vertebrate fossil remains. Implementation of Mitigation Measure GEO-1 would ensure that the potential impacts on paleontological resources do not rise to the level of significance pursuant to CEQA.

b) Less than Significant Impact with Mitigation Incorporated. Based on the analysis contained in this Initial Study, the proposed project would not result in significant impacts to aesthetics, agricultural and forestry resources, air quality, energy, greenhouse gas emissions, hazards and hazardous materials, hydrology and water quality, land use and planning, mineral resources, noise, population and housing, public services, recreation, transportation and traffic, and utilities and service systems.

The proposed project would have potential impacts that are significant on the following resources areas: biological resources, cultural resources and geology and soils. However, implementation of mitigation measures would ensure potential impacts are reduced to less than significant levels. The proposed project would incrementally contribute to cumulative impacts for projects occurring within the vicinity of the project. However, compliance with the mitigation measures would ensure that no residually significant impacts would result with implementation of the project either directly or indirectly. In the absence of residually significant impacts, the incremental accumulation of effects would not be cumulatively considerable. Therefore, a finding of less than significant is identified for this issue area.

c) Less than Significant Impact. Based on the analysis contained in this Initial Study, the proposed project would not cause substantial adverse effects on human beings, either directly or indirectly. Any effects related to construction of the project would be temporary and short-term and would not result in any long-term or permanent effects on human beings. This is considered a less than significant impact.

References

- California Department of Conservation (DOC). 2022. California Important Farmland Finder. Available on-line at: <u>https://maps.conservation.ca.gov/DLRP/CIFF/</u>. Accessed on July 15, 2024.
 - n.d. California Earthquake Hazards Zone Application. Accessed on August 15, 2024. https://maps.conservation.ca.gov/cgs/EQZApp/app/.
- California Department of Forestry and Fire Protection. 2022. SRA FHSZ Rollout Application. Available on-line at: <u>https://calfire-</u> <u>forestry.maps.arcgis.com/apps/webappviewer/index.html?id=fd937aba2b044c3484a642</u> <u>ae03c35677</u>. Accessed on July 15, 2024.
- California Department of Resources and Recycling and Recovery (CalRecycle). 2024. SWIS Facility/Site Summary: Calexico Solid Waste Site (13-AA-0004). Available on-line at: <u>https://www2.calrecycle.ca.gov/SolidWaste/Site/Summary/591</u>. Accessed don August 15, 2024.
- California Department of Transportation. 2018. California State Scenic Highway System Map. Available on-line at: <u>https://caltrans.maps.arcgis.com/apps/webappviewer/index.html?id=465dfd3d807c46cc8</u> <u>e8057116f1aacaa</u>. Accessed on July 15, 2024.

County of Imperial. 2016. Imperial County General Plan. Conservation and Open Space Element. ——— 1997. Imperial County General Plan. Seismic and Public Safety Element.

- Federal Emergency Management Agency (FEMA). 2024. Flood Insurance Rate Map, Map Number 06025C1700C). Available on-line at: <u>https://hazards-</u> <u>fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5</u> <u>529aa9cd</u>. Accessed on July 15, 2024.
- Imperial County Transportation Commission (ICTC). 2022. Regional Active Transportation Plan Final. Available on-line at: <u>https://www.imperialctc.org/assets/documents/transportation-plans-and-studies/ICTC-ATP_Final-Document_2022.02.28_Reduced-Size.pdf</u>. Accessed on August 15, 2024.
 - ------ 2023. ICTC LRTP Projects. Available on-line at: https://www.arcgis.com/apps/dashboards/d2ab54419c30410287e826360ffdc8ee. Accessed on August 15, 2024.
- Jennings, C.W. 1967. Geologic map of California: Salton Sea sheet, California Division of Mines and Geology, Geologic Atlas California GAM-13.
- United States Department of Agriculture (USDA). n.d. Web Soil Survey. Available on-line at: <u>https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx</u>. Accessed on August 15, 2024.

List of Preparers

This Initial Study was prepared for the Imperial County Planning and Development Services Department by HDR. The following professionals participated in its preparation:

Imperial County Planning and Development Services Department

Jim Minnick, Planning and Development Services Director

Michael Abraham, AICP, Assistant Planning and Development Services Director

Gerardo Quero, Planner II

Rocio Yee, Planner I

HDR

Tim Gnibus, Principal Emily Barone, Environmental Planner Sharon Jacobs, Geographic Information Systems Analyst Trent Lundberg, Geographic Information Systems Analyst Katherine Turner, Document Production Administrator

Technical Report Preparers

RECON Environmental, Inc.

- Air Quality Analysis
- Biological Resources Report
- Cultural Resources Report
- Greenhouse Gas Analysis
- Noise Analysis

GS Lyon Consultants, Inc.

Phase I ESA Report

Linscott, Law & Greenspan, Engineers

Transportation Analysis

Findings

This is to advise that the County of Imperial, acting as the lead agency, has conducted an Initial Study to determine if the project may have a significant effect on the environment and is proposing this Negative Declaration based upon the following findings:

The Initial Study shows that there is no substantial evidence that the project may have a significant effect on the environment and a NEGATIVE DECLARATION will be prepared.

The Initial Study identifies potentially significant effects but:

- (1) Proposals made or agreed to by the applicant before this proposed Mitigated Negative Declaration was released for public review would avoid the effects or mitigate the effects to a point where clearly no significant effects would occur.
- (2) There is no substantial evidence before the agency that the project may have a significant effect on the environment.
- (3) Mitigation measures are required to ensure all potentially significant impacts are reduced to levels of insignificance.

A MITIGATED NEGATIVE DECLARATION will be prepared.

If adopted, the Negative Declaration means that an Environmental Impact Report will not be required. Reasons to support this finding are included in the attached Initial Study. The project file and all related documents are available for review at the County of Imperial, Planning & Development Services Department, 801 Main Street, El Centro, CA 92243 (442) 265-1736.

NOTICE

The public is invited to comment on the proposed Negative Declaration during the review period.

Jim Minnick, Director of Planning & Development Services

The Applicant hereby acknowledges and accepts the results of the Environmental Evaluation Committee (EEC) and hereby agrees to implement all Mitigation Measures, if applicable, as outlined in the MMRP.

cant Signature

This page is intentionally blank.

EEC ORIGINAL PKG

ATTACHMENT #1 COMMENT LETTERS

COUNTY EXECUTIVE OFFICE

Miguel Figueroa County Executive Officer miguelfigueroa@co.imperial.ca.us www.co.imperial.ca.us

County Administration Center 940 Main Street, Suite 208 El Centro, CA 92243 Tel: 442-265-1001 Fax: 442-265-1010

RECEIVED

AUG 27 2024

August 27, 2024

INITE THAT SUDNY Y PLANNING & DEVELOPMENT SERVICES

TO:	Gerardo Quero, Planning and Development Services Department
FROM:	Rosa Lopez, Executive Office

SUBJECT: Request for Comments – Alba Peaker ESS Project / APN 051-420-042-000

The County of Imperial Executive Office is responding to a request for comments: Alba Peaker ESS Project / APN 051-420-042-000. The Executive Office would like to inform the developer of the conditions and responsibilities of the applicant seeking a Conditional Use Permit (CUP). The conditions commence prior to the approval of an initial grading permit and subsequently continue throughout the permitting process. This includes, but not limited to:

- Sales Tax Guarantee. The permittee is required to have a Construction Site Permit reflecting the project site address, allowing all eligible sales tax payments are allocated to the County of Imperial, Jurisdictional Code 13998. The permittee will provide the County of Imperial a copy of the CDTFA account number and sub-permit for its contractor and subcontractors (if any) related to the jobsite. Permittee shall provide in written verification to the County Executive Office that the necessary sales and use tax permits have been obtained, prior to the issuance of any grading permits.
- Construction/Material Budget: The permittee will provide the County Executive Office a construction
 materials budget: an official construction materials budget or detailed budget outlining the construction
 and materials cost for the processing facility on permittee letterhead.
- At developers cost, the County Executive Office shall hire a third-party consultant to produce a Fiscal and Economic Impact Analysis & Job and Employment Analysis (FEIA & JEIA) prior to the project being placed on Planning Commission meeting.
- Public Service Agreement. The developer shall enter into a Public Service Agreement with the County of Imperial.

Should there be any concerns and/or questions, do not hesitate to contact me.

"Caultishing Direction. Careating Opportunity" AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION EMPLOYER

IMPERIAL COUNTY SHERIFF'S OFFICE FRED MIRAMONTES SHERIFF-CORONER-MARSHAL

Chief Deputy Ryan Kelley 328 Applestill Road El Centro, Ca. 92243 (442) 265-2003 rkelley@icso.org

RECEIVED

By Imperial County Planning & Development Services at 10:46 am, Sep 09, 2024

September 9, 2024

Imperial County Planning & Development Services 801 Main Street El Centro, Ca. 92243 (442) 265-1736

Planning & Development Services,

The proposed project site is located within the Imperial County Sheriff's Office jurisdiction. The project is located at 1884 Drew Road, Seeley, California, 92273 (APN: 051-420-042-000). The site is approximately 10 miles from the Imperial County Sheriff's Office and within close proximity of the residential neighborhoods of the township of Seeley, California.

The applicant is proposing to construct the Alba Peaker BESS project through CUP# 23-0025, which consists of developing a 100-megawatt (MW) Battery Energy Storage System (BESS) facility that would connect to the existing Imperial Irrigation District 92-Kilovolt (kV) "LW".

The Imperial County Sheriff's Office provides services to similar projects where calls for service can vary from burglaries, vandalisms, thefts and trespassing. Calls can result in arrests of offenders for felony property crimes. Some investigations require extensive follow up from our criminal investigations division and our scientific investigations unit. The Imperial County Sheriff's Office is committed to facilities operating in our area of responsibility and will deploy every resource available to assist in the apprehension and prosecution of those responsible for these crimes.

The Imperial County Sheriff's Office requests that the below conditions be incorporated onto the Conditional Use Permit #23-0025. This request is in consideration of the potential hazards to the Imperial County Sheriff's Office employees associated with responding to calls for service originating at this facility:

- 1. The Imperial County Sheriff's Office request that a detailed security/safety plan and diagram be included and approved by the county prior to any activity on the premises.
- 2. Provide annual training to ICSO employees on safety procedures and emergency response protocols to ensure the safety of our employees in response to an event

or unforeseen emergency at an energy storage facility. Procedures shall be detailed in the safety/security plan for the project site.

- 3. Install adequate lighting, fencing and safety measures to prevent or deter criminal activity.
- 4. Install license plate reading cameras at all ingress and regress locations at the project site and grant access to the Imperial County Sheriff's Office to review the data collected. It is requested that these cameras be included in the security plan.
- 5. Install surveillance cameras at the project site to allow for 24/7, three hundred and sixty degree remote viewing capabilities and recording of activity on the lot. It is requested that the surveillance cameras be included in the security plan.
- 6. Provide cost reimbursement for direct police services for response to critical incidents that require prolonged use of resources.

The Sheriff's Office feels that this project would create a significant impact and there are safety concerns for Sheriff's Office personnel and members of our community if a natural or manmade disaster were to occur that resulted in damage or destruction to the facility.

As first responders to emergency situations, the Sheriff's Office would deploy our resources from the El Centro Station in the event of a threat to public safety. If there is an increase for calls for service as a result of this project and the Sheriff's Office maintains its current personnel allocations, funding and equipment, service levels may drop below acceptable levels or industry standards for the residents of the County and the Township of Seeley.

The Imperial County Sheriff's Office is available to discuss our concerns with the advancement of CUP #23-0025. If you have any questions, please contact the Imperial County Sheriff's Office at (442)265-2002.

Public Works works for the Public

COUNTY OF

DEPARTMENT OF PUBLIC WORKS

155 S. 11th Street El Centro, CA 92243

Attention: Gerardo Quero, Planner II

Planning & Development Services Department

Tel: (760) 482-4462 Fax: (760) 352-1272

SUBJECT: CUP 23-0025 Apex Energy Solutions, LLC Located on 1884 Drew Rd, Seeley, CA APN 051-420-042

Dear Mr. Minnick:

September 11, 2024

801 Main Street

El Centro, CA 92243

Mr. Jim Minnick, Director

This letter is in response to your submittal received by this department on August 27, 2024, for the above-mentioned project. The applicant is proposing the Alba Peaker BESS Project which consists of the development for a 100-Megawatt Battery Energy Storage System facility that would connect to the existing Imperial Irrigation District's 92-kilovolt "LW".

RECEIVED

By Imperial County Planning & Development Services at 7:45 am, Sep 12, 2024

EEC ORIGINAL PKG

Department staff has reviewed the package information, and the following comments shall be Conditions of Approval:

- 1. The Applicant will need to provide evidence of easements for legal access.
- 2. At the time of development, if required, by Section 8762(2) of the Professional Land Surveyors' Act, a record of survey shall be filed with the County Recorded of Imperial County.
- 3. The Applicant shall furnish a Drainage and Grading Plan/Study to provide for property grading and drainage control, which shall also include prevention of sedimentation of damage to off-site properties. The Study/Plan shall be submitted to the Department of Public Works for review and approval. The applicant shall implement the approved plan. Employment of the appropriate Best Management Practices (BMP's) should be included (Per Imperial County Code of Ordinances, Chapter 12.10.020 B).
- 4. The Applicant shall repair any damage caused to County Roads during construction and maintain such roads in safe conditions as determined by the Imperial County Road Commissioner. Said road repairs shall be completed under an encroachment permit from this department.
- 5. Prior to the issuance of grading and building permits, a stabilized construction entrance shall be installed under an encroachment permit from this department.
- 6. Access to sites shall be completed from public roads. The Applicant shall obtain written authorization from any private owners or other agencies for the use of any non-public roads to access sites. A copy of such written approval shall be submitted to this Department prior to the approval of grading plans.

An Equal Opportunity / Affirmative Action Employer

C. Users esteemaloy AppData Local Microsoft Windows INetCache Content.Outlook OLZ117K11 CU

- a. Per Figure 6. Proposed Site Access: Proposed access seems to encroach onto San Diego & Arizona Railroad property as well as private land. Access easements shall be obtained prior to the approval of grading plans.
- Any unimproved access roads/routes between public roads and access gates shall be improved for all-weather access. Such all-weather improvements shall be completed as recommended by a Geotechnical Engineer licensed to practice in the State of California.
- 8. Per the information provided, access to project site during and after construction is expected to be completed through private unpaved roads or private property.
 - a. The Applicant shall mitigate generation of dust caused by construction traffic as per Rule 805 Paved and Unpaved Roads of the Imperial County Air Pollution Control District.
- 9. Per Section 12.10.020 Street Improvement Requirements of Imperial County Ordinance: Street improvements shall be required:
 - a. All access points to project site shall be constructed in accordance with Imperial County Dwg. No. 410B Commercial Driveway to Rural Road
- Any activity and/or work within Imperial County right-of-way shall be completed under a permit issued by this Department (encroachment permit) as per Chapter 12.12 - EXCAVATIONS ON OR NEAR A PUBLIC ROAD of the Imperial County Ordinance.
 - a. Any activity and/or work may include, but not be limited to, the installation of stabilized construction entrances, primary access driveways, secondary access driveways, site fence installation, underground/overhead electrical crossings, road repairs, road dust mitigation practices and/or improvements, temporary traffic control, or any other road improvements.
- 11. The Applicant shall coordinate with IID for any work within their Right-of-Way or affecting their facilities. (Gen-tie)
- 12. The Applicant shall coordinate with San Diego & Arizona Railroad for any work within their Right-of-Way or affecting their facilities.
- 13. Any permanent structures shall be located outside of the County's ultimate right of way.
- 14. The Applicant shall prepare and submit a haul route study identifying a construction route through public roads. The haul route study shall evaluate any impacts due to construction traffic to County roads. Said study shall be submitted to the Department of Public Works for review and approval. The haul route study shall include pictures and/or other documents to verify the existing conditions of the impacted County roads before construction begins. The haul route study shall also include recommended mitigation improvements to impacted County roads along with any fair share costs for such improvements. Construction engineering cost estimates shall be included with the study.
- 15. The Applicant shall enter into a Roadway Maintenance Agreement with the County of Imperial prior to issuance of a Certificate of Occupancy. The developer shall provide financial security to maintain the roads on the approved haul route study during construction.

C: Users'esteemaloy:AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/OLZH7K11-CUE 2140025 (draft) doc EEC ORIGINAL PKG INFORMATIVE

- All solid and hazardous waste shall be disposed of in approved solid waste disposal sites in accordance with existing County, State and Federal regulations (Per Imperial County Code of Ordinances, Chapter 8.72).
- The project may require a National Pollutant Discharge Elimination System (NPDES) permit and Notice of Intent (NOI) from the Regional Water Quality Control Board (RWQCB) prior county approval of onsite grading plan (40 CFR 122.28).
- A Transportation Permit may be required from road agency(s) having jurisdiction over the haul route(s) for any hauls of heavy equipment and large vehicles which impose greater than legal loads and/or dimensions on riding surfaces, including bridges. (Per Imperial County Code of Ordinances, Chapter 12.10.020 B).
- As this project proceeds through the planning and approval process, additional comments and/or requirements may apply as more information is received.

Should you have any questions, please do not hesitate to contact this office. Thank you for the opportunity to review and comment on this project.

Respectfully,

John A. Gay, PE Director of Public Works

By:

Veronica Atondo, PE, PLS Deputy Director of Public Works - Engineering

C: Users esteemaloy AppData Local Microsoft Windows: INetCache Content. Outlook OL 2117K11 CUP 23:0025 (dm/t).doc EEC ORIGINAL PKG

Phone: (442) 265-6000 Fax: (760) 482-2427

Training Phone: (442) 265-6011

September 17, 2024

OPERATIONS/PREVENTION

2514 La Brucherie Road Imperial, CA 92251

Operations Phone: (442) 265-3000 Fax: (760) 355-1482

Prevention Phone: (442) 265-3020

RECEIVED

By Imperial County Planning & Development Services at 2:18 pm, Sep 17, 2024

RE: Apex Energy Solutions, LLC, Alba Peaker BESS 1884 Drew Road, Seeley CA 92273, APN: 051-420-042 CUP23-0025, IS23-0030

Imperial County Fire Department Fire Prevention Bureau would like to thank you for the opportunity to review and comment on Apex Energy Solutions, LLC, Alba Peaker (BESS). CUP#23-0025, IS#23-0030.

The project description is developing and operating a one hundred (100) megawatt (MW) battery storage project. This project is located within the Seeley Urban Area Plan at 1884 Drew Road, Seeley CA 92273, APN: 051-420-042.

Energy storage facilities create extreme hazards for firefighters and emergency responders with the possibility of explosions, flammable gases, toxic fumes, water-reactive materials, electrical shock, corrosives, and chemical burns. Due to limited resources, the hazards listed can create potential significant impacts for fire department personnel to safely perform firefighting operations and hazardous material response to a utility-scale energy storage facility. The remote location of the project will result in longer response times. These long response times may result in incidents that are more difficult to stabilize and require additional resources to manage safely. Utility-scale energy storage requires specialized and reliable equipment to perform firefighting operations safely and effectively to NFPA recommendations, OSHA requirements, and ICFD standards.

Standards and requirements for energy storage system includes but not limited to: NFPA:

 Fire Code
 National Electrical Code
 855 Standard for the installation of Energy Storage System
 111 Stored Electrical Energy Emergency and Standby Power System
 1710 Standard for Organization and Deployment of Fire Suppression Operations, Emergency Medial Operations, and Special Operations to the Public by Career Fire Departments.

OSHA:

29 CFR 1910.134(g)(4)

AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION EMPLOYER

ADMINISTRATION / TRAINING

1078 Dogwood Road Heber, CA 92249

Administration Phone: (442) 265-6000 Fax: (760) 482-2427

Training Phone: (442) 265-6011

OPERATIONS/PREVENTION

2514 La Brucherie Road Imperial, CA 92251

Operations Phone: (442) 265-3000 Fax: (760) 355-1482

Prevention Phone: (442) 265-3020

CFC:

Chapter 12 section 1206 Electrical Energy Storage System Chapter 9 Fire Protection and Life Safety System

Fire Department requirements are the following:

Battery Energy Storage Systems

- Approved all-weather access roads for fire protection vehicles shall be provided throughout the project, conforming with the California Fire Code Chapter 5, section 503. Access roadways shall be all-weather surface (suitable for use by fire apparatus) right-of-way not less than 20 feet in width.
- Additional access shall be provided to the project site in accordance with the California Fire Code Chapter 5, section 503. Minium two points of entry shall be provided into the project site.
- KNOX Box and/or Locks will be required for all access gates as determined by Imperial County Fire Department.
- BESS site shall be clear of all vegetation.
- An approved water supply capable of supplying the required fire flow determined by appendix B in the California Fire Code Shall be installed and maintained. (Minimum fire flow of 1500 GPM for 2 hours) Private fire service mains and appurtenance shall be installed in accordance with NFPA 20, 22, 24
- An approved automatic fire suppression system shall be installed on all required structures as per the California Fire Code Chapter 12 and NFPA 855. All fire suppression systems will be installed and maintained to the current adapted fire code and regulations.
- An approved automatic fire detection system shall be installed on all required structures as per the California Fire Code Chapter 12 and NFPA 855. All fire detection systems will be installed and maintained to the current adapted fire code and regulations.
- Signage shall be provided in accordance California Fire Code Chapter 12
- Compliance with all required sections of the fire code.
- Applicant shall provide product containment areas(s) for both product and water run-off in case of fire applications and retained for removal.
- Hazard Mitigation Analysis (HMA), Fire Risk Analysis, fire suppression and deflagration protection analysis submittals shall be from a CA licensed fire protection engineer approved by Imperial County Fire Department per CFC [A]104.7.2. Submittals shall have signature and seal.

AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION EMPLOYER

ADMINISTRATION / TRAINING

1078 Dogwood Road Heber, CA 92249

Administration Phone: (442) 265-6000 Fax: (760) 482-2427

Training Phone: (442) 265-6011

OPERATIONS/PREVENTION

2514 La Brucherie Road Imperial, CA 92251

Operations Phone: (442) 265-3000 Fax: (760) 355-1482

Prevention Phone: (442) 265-3020

- Owners and operators of ESS must develop and Emergency Operation Plan in conjunction with local fire service personnel, the AHJ, and hold a comprehensive understanding of the hazards associated with lithium-ion battery technology. Lithium-ion battery ESS's must incorporate adequate explosion prevention protection in accordance with NFPA 855 and/or California Fire Code Chapter 12.
- An emergency response/action plan shall be prepared and approved by the Imperial County Fire/OES Department.
- A pre-incident plan shall be developed and approved by the Imperial County Fire/OES Department in a format and using a platform determined by ICFD.
- A Hazardous Waste Material Plan shall be submitted to Certified Unified Program Agency (CUPA) for their review and approval.
- All hazardous material and wastes shall be handled, store, and disposed as per the approved Hazardous Waste Materials Plan. All spills shall be documented and reported to Imperial County Fire Department and CUPA as required by the Hazardous Waste Material Plan

Emergency Evacuation Plan

• Imperial County Fire Department is requiring mitigation analysis of toxic smoke and hazards from BESS fires be conducted regarding impacts on the surrounding community. Mitigation analysis shall be prepared to address toxic smoke, explosion blast and other hazards related to BESS that will affect the surrounding residential and commercial zoning. This mitigation analysis should include public evacuation plans and/or shelter in place for the surrounding community. The applicant shall provide cost reimbursement for evacuations of the public due to hazards related to the project.

Cost Recovery

• The applicant shall provide cost reimbursement for direct fire protection services. Service rate will be consistent with Imperial County Fire Department adopted fee schedule. Cost reimbursement will be from time of call to the conclusion of the incident as defined by the fire department.

Again, thank you for the opportunity to comment. Imperial County Fire Department reserves the right to comment and request additional requirements pertaining to this project regarding fire and life safety measures, California building and fire code, and National Fire Protection Association standards at a later time as we see necessary.

If you have any questions, please contact the Imperial County Fire Prevention Bureau at

AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION EMPLOYER

ADMINISTRATION / TRAINING

1078 Dogwood Road Heber, CA 92249

Administration Phone: (442) 265-6000 Fax: (760) 482-2427

Training Phone: (442) 265-6011

442-265-3020 or 442-265-3021.

Sincerely

Andrew Loper Lieutenant/Fire Prevention Specialist Imperial County Fire Department Fire Prevention Bureau

CC: David Lantzer Fire Chief Imperial County Fire Department

OPERATIONS/PREVENTION

2514 La Brucherie Road Imperial, CA 92251

Operations Phone: (442) 265-3000 Fax: (760) 355-1482

Prevention Phone: (442) 265-3020

AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION EMPLOYER

150 SOUTH NINTH STREET EL CENTRO, CA 92243-2850

September 18, 2024

Jim Minnick Planning & Development Services Director 801 Main Street El Centro, CA 92243

SUBJECT: Conditional Use Permit 23-0025 Alba Peaker BESS Project – Apex Energy Solutions

Dear Mr. Minnick:

The Imperial County Air Pollution Control District (Air District) appreciates the opportunity to review and comment on the application for Conditional Use Permit (CUP) 23-0025 (Project). The project proposes the construction and operation of a 100-megawatt (MW) a Battery Energy Storage System (BESS) that would connect to the existing Imperial Irrigation District's 95-Kilovolt "LW". The BESS facility would include battery containers and storage sites, a control room, an onsite water storage pond/tank for fire suppressions purposes, and associated facilities surrounded by fencing. The Project is located at 1884 Drew Rd., Seeley also identified as Assessor's Parcel Number 051-420-042

Air District staff reviews all Air Quality Analyses (AQA) to ensure consistency with the California Environmental Quality Act (CEQA), the Air District's CEQA Handbook (Handbook), Air District rules & regulations, and enforceability. During the review of the AQA the Air District was able to satisfactorily recreate the CalEEMod Analysis and found the modelling to be consistent with Air District guidance.

The Air Quality section of the Initial Study, also, identifies in the conclusion "ICAPCD Conditions of Approval" and lists:

Construction Conditions of Approval:

A. Submit a construction equipment list by Make, Model, Horsepower and actual usage to the Air District on a monthly basis to determine the level of NOx emissions. Should NOx emissions exceed the construction NOx emissions then the applicant will need to abide by Policy 5 of the ICAPCD's CEQA Air Quality Handbook.

B. An Enhanced Dust Control Plan must be submitted for approval by the ICAPCD to

CUP 23-0025 Alba Peaker BESS Facility AN EQUAL OPPORTUNITY / AFFIRMATIVE ACTION EMPLOYER Page 1 of 2

assure that fugitive emissions do not cross property lines.

Operational Conditions of Approval:

A. Should the need for back-up power become necessary, the project will submit an Authority to Construct (ATC) Permit to ICAPCD.

B. The project will include a Health Risk Assessment as part of the ATC Permit submittal.

C. A buffer should be established to keep emergency fugitive emissions from impacting the surrounding community.

The Air District finds the above conditions are consistent with measures for impacts from this type of project to remain less than significant and agrees with the addition of the conditions to the CUP.

Given the AQA and supporting modeling was found consistent with the Air District guidance and the Handbook, in conjunction with the inclusion of the above conditions to the CUP, the Air District can concur with the less than significant impact determination of the AQA.

The Air District also requests a copy of the draft CUP prior to recording for review.

For your convenience, the Air District's rules and regulations can be accessed online at https://apcd.imperialcounty.org/rules-and-regulations. Should you have any questions or concerns please feel free to contact the Air District for assistance at (442) 265-1800.

Respectfully,

Ismael Carcia Environmental Coordinator II

Soucier ivision Manager

Page 2 of 2 **EEC ORIGINAL PKG**

www.iid.com Since 1911

September 25, 2024

Mr. Gerardo Quero Planner II Planning & Development Services Department County of Imperial 801 Main Street El Centro, CA 92243

SUBJECT: Alba Peaker BESS Project; CUP #23-0025

Dear Mr. Quero:

On September 20, 2024, the Imperial Irrigation District received from the City of Coachella Development Services Department, a request for agency comments on the Alba Peaker BESS Project; Conditional Use Permit No. 23-0025. The applicant, Apex Energy Solutions, LLC; proposes to develop a 100MW battery energy storage system facility and plans on connecting to the IID 92kV LW-Line. The project site is located at 1884 Drew Road, Seeley, CA (APN 051-420-042-000).

IID has reviewed the project information has the following comments:

- 1. For distribution-rated electrical service, the applicant should be advised to contact lgnacio Romo, IID project development planner, at 760-482-3426 or e-mail Mr. Romo at <u>IGRomo@IID.com</u> to initiate the customer service application process. In addition to submitting a formal application (available at the IID website <u>http://www.iid.com/home/showdocument?id=12923</u>), the applicant will be required to submit an AutoCAD file of site plan, approved electrical plans, electrical panel size and panel location, operating voltage, electrical loads, project schedule, and the applicable fees, permits, easements and environmental compliance documentation pertaining to the provision of electrical service to the project. The applicant shall be responsible for all costs and mitigation measures related to providing electrical service to the project
- Distribution-rated electrical capacity is limited in the project area. A circuit study may be required. Any system improvements or mitigation identified in the circuit study to enable the provision of electrical service to the project shall be the financial responsibility of the applicant.
- 3. Applicant shall provide a surveyed legal description and an associated exhibit certified by a licensed surveyor for all rights of way deemed by IID as necessary

to accommodate the project electrical infrastructure. Rights-of-Way and easements shall be in a form acceptable to and at no cost to IID for installation, operation, and maintenance of all electrical facilities.

- 4. The studies to assess the project's interconnection impacts to the IID electrical transmission system have yet to be completed. Consequently, the project description does not currently capture the potential impacts to IID transmission facilities. The interconnect to the 92kV LW line will most likely require a 92kV switching station looping in and out the line to reliably interconnect the project but that is the minimum requirement.
- 5. IID water facilities that will be impacted include Elder Lateral 13 and Seeley Drain. IID's canal or drain banks may not be used to access the project site. Any abandonment of easements or facilities shall be approved by IID based on systems (Irrigation, Drainage, Power, etc.) needs.
- 6. Considering that the project may impact IID drains with site runoff flows and discharge from proposed storm water detention facilities, a comprehensive IID hydraulic drain system analysis will be required to determine impacts and mitigation if the project discharges into IID's drain system. IID's hydraulic drainage system analysis includes an associated drain impact fee.
- 7. To ensure there are no impacts to IID water facilities, the project's design plans (including grading, drainage and fencing plans) should be submitted to the IID Water Engineering Section prior to final project design. IID Water Engineering can be contacted at (760) 339-9265 for further information.
- 8. An IID encroachment permit is required to utilize existing surface-water drainpipe connections to drains, and receive drainage service form IID. Surface-water drainpipe connections are to be modified in accordance with IID Water Department Standards. A construction storm-water permit from the California Regional Water Quality Control Board is required before commencing construction as well as an CRWQCB-issued industrial storm water permit for the operation of the proposed facility. The project's Storm Water Pollution Prevention Plan and storm-water permits from CRWQCB are to be submitted to IID.
- 9. Pursuant to IID Rules And Regulations Governing the Distribution and Use Of Water, Regulation 21, new water service installations will not be allowed within any areas that have a reasonable access to potable water supplies from a private or municipal water system. Based on records available, the Seeley County Water District owns and operates a water distribution pipeline immediately adjacent to the subject property. Refer to small parcel service restrictions beginning on page 31 of the IID Rules and Regulations (available for download at the district website: Water Rules and Regulations (iid.com)).

- 10. Regulation 21 was implemented to support IID's Safe Drinking Water Act commitments outlined in its 1998 Compliance Agreement with the California Department of Health Services (now the State Water Resources Control Board's Department of Drinking Water). In this Agreement, IID committed to long-term efforts to reduce, where feasible, service connections where untreated canal water is piped into rural residences in Imperial County. DHS's May 16, 2000 determination that IID is "not a public water system," and a more recent November 5, 2018 audit confirming IID remains in compliance with its SDWA commitments, is of critical importance to the district. The state DDW maintains oversight of IID's SDWA compliance monitoring and overall efforts to improve rural residential access to safe drinking water supplies, and IID values its collaborative working relationship with both the state and the County to work towards identifying potential solutions to improve rural domestic water use access within its water service area.
- 11. On a case by case basis, construction water may be provided to a project site with the written authorization of the Seeley County Water District.
- 12. The applicant must submit the estimated quantity of canal water per year they will consume. If it is under 1 AFY, a water supply agreement is not required. A new service delivery will be required for canal water, if needed. If there is surface drainage to IID drain, encroachment permits needed.
- 13. Public utility easements over all private public roads and additional ten (10) feet in width on both side of the private and public roads shall be dedicated to IID for the construction, operation, and maintenance of its electrical infrastructure.
- 14. The applicant will be required to provide and bear all costs associated any relocation and/or realignment of IID infrastructure deemed necessary to accommodate the project. Any street or road improvements imposed by the local governing authority shall also be at the project proponent cost.
- 15. The applicant will be required to provide rights of ways and easements for any proposed power line extensions and/or any other infrastructure needed to serve the project as well as the necessary access to allow for continued operation and maintenance of any IID facilities located on adjoining properties where no public access exists.
- 16. Any construction or operation on IID property or within its existing and proposed right of way or easements including but not limited to: surface improvements such as proposed new streets, driveways, parking lots, landscape; and all water, sewer, storm water, or any other above ground or underground utilities; will require an encroachment permit, or encroachment agreement (depending on the circumstances). A copy of the IID encroachment permit application and instructions

for its completion are available at <u>https://www.iid.com/about-iid/department-directory/real-estate</u>. The IID Real Estate Section should be contacted at (760) 339-9239 for additional information regarding encroachment permits or agreements.

- 17. In addition to IID's recorded easements, IID claims, at a minimum, a prescriptive right of way to the toe of slope of all existing canals and drains. Where space is limited and depending upon the specifics of adjacent modifications, the IID may claim additional secondary easements/prescriptive rights of ways to ensure operation and maintenance of IID's facilities can be maintained and are not impacted and if impacted mitigated. Thus, IID should be consulted prior to the installation of any facilities adjacent to IID's facilities. Certain conditions may be placed on adjacent facilities to mitigate or avoid impacts to IID's facilities.
- 18. Any new, relocated, modified or reconstructed IID facilities required for and by the project (which can include but is not limited to electrical utility substations, electrical transmission and/or distribution lines, ancillary facilities associated with the conveyance of energy service; the acquisition and dedication of real property, rights of way and/or easements for the siting and construction of electrical utility substations, electrical transmission and/or distribution lines and ancillary facilities associated with the conveyance of energy service, etc.) need to be included as part of the project's California Environmental Quality Act (CEQA) and/or National Environmental Policy Act (NEPA documentation, environmental impact analysis and mitigation. Failure to do so will result in postponement of any construction and/or modification of IID facilities until such time as the environmental documentation is amended and environmental impacts are fully mitigated. Any mitigation necessary as a result of the project proponent.
- 19. Dividing a project into two or more pieces and evaluating each piece in a separate environmental document (Piecemealing or Segmenting), rather than evaluating the whole of the project in one environmental document, is explicitly forbidden by CEQA, because dividing a project into a number of pieces would allow a Lead Agency to minimize the apparent environmental impacts of a project by evaluating individual pieces separately, each of which may have a less-than-significant impact on the environment, but which together may result in a significant impact. Segmenting a project may also hinder developing comprehensive mitigation strategies. In general, if an activity or facility is necessary for the operation of a project component that should be analyzed within the environmental analysis. The project description should include all project components, including those that will have to be approved by responsible agencies. The State CEQA Guidelines define a project under CEQA as "the whole of the action" that may result either directly or

> indirectly in physical changes to the environment. This broad definition is intended to provide the maximum protection of the environment. CEQA case law has established general principles on project segmentation for different project types. For a project requiring construction of offsite infrastructure, the offsite infrastructure must be included in the project description. San Joaquin Raptor/Wildlife Rescue Center v. County of Stanislaus (1994) 27 Cal.App. 4th 713.

20. When a project goes through the CEQA compliance process, it is important to bear in mind that to address the project impacts to the electrical utility (i.e., the IID electrical grid), considered under the environmental factor "Utilities and Services" of the Environmental Checklist/Initial Study, and determine if the project would require or result in the relocation or construction of new or expanded electric power facilities, the construction or relocation of which could cause significant environmental effects; a circuit study/distribution impact study, facility study, and/or system impact study must be performed.

Should you have any questions, please do not hesitate to contact me at (760) 482-3609 or at <u>dvargas@iid.com</u>. Thank you for the opportunity to comment on this matter.

Respectfully,

Donald Vargas '

Jamie Asbury – General Manager Mike Pacheco – Manager, Water Dept. Matthew H Smelser – Manager, Power Dept. Paul Rodriguez – Deputy Mgr., Power Dept. Geoff Holbrook - General Counsel Michael P. Kemp – Superintendent General, Fleet & Compliance Services Laura Cervantes. – Supervisor, Real Estate Jessica Humes – Environmental Project Mgr. Sr., Water Dept.

EEC ORIGINAL PKG

ATTACHMENT #2 CUP#23-0025 APPLICATION PACKAGE

CONDITIONAL USE PERMIT I.C. PLANNING & DEVELOPMENT SERVICES DEPT. 801 Main Street, El Centro, CA 92243 (760) 482-4236

1.

i

	- APPLICANT MUST COMPLETE ALL NUMBER	ED (black) SPACES -	- Please lype or print -		
1.	PROPERTY OWNER'S NAME Apex Energy Solutions, LLC	EMAIL ADDRESS c/o jurgheuberger@gmail.com			
2.	MAILING ADDRESS (Street / P O Box, City, State) 750 W. Main St., El Centro, Ca.	ZIP CODE 92243	PHONE NUMBER c/o 760-996-0	313	
З.	APPLICANT'S NAME Alba Peaker	EMAIL ADDRESS			
4.	MAILING ADDRESS (Street / P O Box, City, State) same as owner	ZIP CODE	PHONE NUMBER		
4.	ENGINEER'S NAME CA. LICENSE NO. N A	EMAIL ADDRESS			
5.	MAILING ADDRESS (Street / P O Box, City, State)	ZIP CODE	PHONE NUMBER		
6.	ASSESSOR'S PARCEL NO. SI 051-420-042 SI	ZE OF PROPERTY (approx 7.1 ac.	in acres or square foot)	ZONING (existing)	
7.	PROPERTY (site) ADDRESS pending assignment by ICPDS				
8.	GENERAL LOCATION (i.e. city, town, cross street) 7.5 miles west of el centro and about 1 mile north of I-8	1			
9.	LEGAL DESCRIPTION see attached PTR for detailed lega	al			

PLEASE PROVIDE CLEAR & CONCISE INFORMATION (ATTACH SEPARATE SHEET IF NEEDED)

24	DESCRIBE PROPOSED USE OF PROPERT BESS (battery storage system) using	the Tesla sys	stem or simila	ar and conr	he development of a 1 hect to the existing 92	KV line
11.	DESCRIBE CURRENT USE OF PROPERTY	vacant				
12.	DESCRIBE PROPOSED SEWER SYSTEM	None				
13.	DESCRIBE PROPOSED WATER SYSTEM	None				
14.	DESCRIBE PROPOSED FIRE PROTECTION	SYSTEM	on site water	storage m	eeting county standard	ls
15.	IS PROPOSED USE A BUSINESS?		IF YES, HO		IPLOYEES WILL BE AT 1	
CER IS TR Ziad Print Signa	Name Date	1997 1997 1997 1997 1997 1997 1997 1997		A. SITE P B. FEE C. OTHER D. OTHER	2 2 	
	LICATION RECEIVED BY:		DATE		REVIEW / APPROVAL OTHER DEPT'S require P.W.	
APPL	LICATION REJECTED BY:		DATE		A. P. C. D.	02 m
TENT	TATIVE HEARING BY:		DATE		0. E. S.	23-002
		DENIED	DATE		<u> </u>	

PROJECT DESCRIPTION:

Alba Peaker Plant

Location:	south of evan hewes hwy and RR tracks and east of Drew Rd, in Seeley, CA
APN:	051-420-042
Battery Type:	Tesla Power Packs or equal
Capacity:	100 MW BESS connection to IID 92 KV line
Owner:	Apex Energy Solutions, LLC
Project Name:	ALBA Peaker, LLC

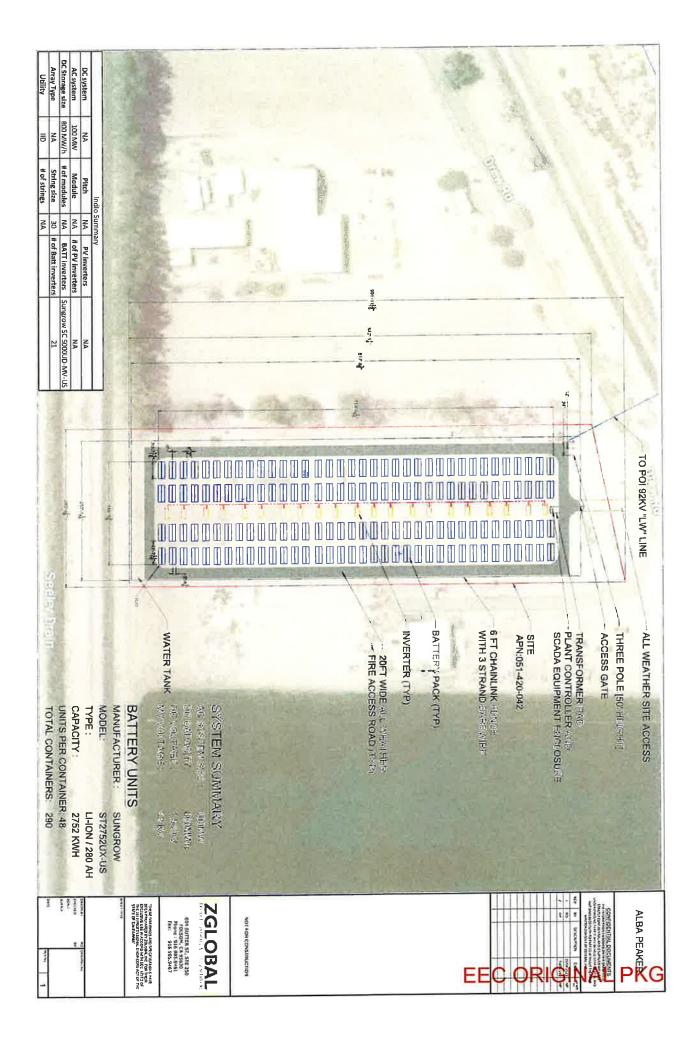
PROJECT DESCRIPITION:

Apex Energy Solutions LLC is proposing to develop a 100 MW Battery (BESS) energy storage facility just south of the townsite of Seeley. The system will connect to the IID 92 KV line which interconnection will allow the BESS to purchase and sell power. See attached regional location map that shows the Gentie to IID.

The BESS system will be located on the entire 7 +/- acre site, and interconnected to the IID line located on the north side of the RR tracks and Evan Hewes HWY. The site will have access from N. Drew Rd.

There will be a water storage pond or tank to provide a minimum of 20,000 gallons of water for fire fighting use. Additional storage may be provided if so, required by the County Fire Dept. However, given these will be Tesla or equal systems and the design as previously provided to County Fire, there is little need for water.

The entire site will be fenced and have video surveillance security. The project once built will not have on-site employees except for routine maintenance or repairs.


There will be approximately 144 battery packs and approximately 20 inverters. The site will be prepared with a class II base or equal material to minimize and control dust as well as unwanted vegetation.

OPERATION:

The system will be operated by purchasing power from the grid when there is a surplus or the costs are low and then sell the power to the grid when the demand requires it.

The system is entirely remotely operated and monitored with extensive video and intrusion surveillance.

Due to the use of the TESLA or equal battery system, fire protection in the event of a fire will be to simply protect the surrounding areas but not to extinguish the battery fires as that would only prolong the fire and smoke. TESLA system are designed to essentially "melt" within their containers and therefore attempting to extinguish a fire would only make the problem worse.

ALBA PEAKER-SEELEY, CA

RECON

An Employee-Owned Company

June 6, 2023

Mr. Ramon Gonzalez Senior Project Coordinator Z Global 750 W. Main Street El Centro, CA 92243

Reference: Air Quality Analysis for the Alba Peaker BESS Project, Seeley, California (RECON Number 10324)

Dear Mr. Gonzalez:

The purpose of this report is to assess potential short-term local and regional air quality impacts resulting from development of the Alba Peaker Battery Energy Storage Site (BESS) Project (project). The analysis of impacts is based on state and federal Ambient Air Quality Standards (AAQS) and assessed in accordance with the regional guidelines, policies, and standards and the Imperial County Air Pollution Control District (ICAPCD).

1.0 Project Description

The project site is located within the unincorporated community of Seeley in Imperial County, approximately 7.5 miles west of the city of El Centro and approximately one mile north of Interstate 8 (Figure 1). The project site is comprised of Assessor Parcel Number 051-420-042, totaling approximately 7.1 acres. The project is located to the east of Drew Road, south of West Evan Hewes Highway, and north of the Seeley Drain (Figure 2). Land uses surrounding the project site consist of active agricultural uses to the west and south, disturbed land and railroad tracks to the north, and an agricultural facility and fields to the east.

The project would construct and operate a 100-megawatt BESS facility that would connect to an existing 92-kilovolt gen-tie line (Figure 3). The BESS facility would include battery containers and storage sites, a control room, and associated facilities surrounded by fencing. The BESS would store energy generation from the electrical grid, and optimally discharge that energy back into the grid as firm, reliable generation and/or grid services.

2.0 Environmental Setting

2.1 Regulatory Setting

2.1.1 Federal Regulations

AAQS represent the maximum levels of background pollution considered safe, with an adequate margin of safety, to protect the public health and welfare. The federal Clean Air Act (CAA) was enacted in 1970 and amended in 1977 and 1990 (42 U.S. Code [U.S.C.] 7401) for the purposes of protecting and enhancing the quality of the nation's air resources to benefit public health, welfare, and productivity. In 1971, in order to achieve the purposes of Section 109 of the CAA [42 U.S.C. 7409], the U.S. Environmental Protection Agency (U.S. EPA) developed primary and secondary National AAQS (NAAQS).

Six pollutants of primary concern were designated: ozone, carbon monoxide (CO), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), lead (Pb), particulate matter with a diameter of 10 microns and less (PM₁₀), and particulate matter with a diameter of 2.5 microns and less (PM₂₅). The primary NAAQS "in the judgment of the Administrator, based on such

3111 Carnino del Rio North, Suite 600, San Diego, CA 92108-5726 | 619.308.9333 | reconenvironmental.com SAN DIEGO | OAKLAND | TUCSON

Mr. Ramon Gonzalez Page 2 June 6, 2023

criteria and allowing an adequate margin of safety, are requisite to protect the public health" and the secondary standards "... protect the public welfare from any known or anticipated adverse effects associated with the presence of such air pollutant in the ambient air" [42 U.S.C. 7409(b)(2)]. The primary NAAQS were established, with a margin of safety, considering long-term exposure for the most sensitive groups in the general population (i.e., children, senior citizens, and people with breathing difficulties). The NAAQS are presented in Table 1 (California Air Resources Board [CARB] 2016).

If an air basin is not in either federal or state attainment for a particular pollutant, the basin is classified as non-attainment area for that pollutant. The project is located within the Salton Sea Air Basin (SSAB). The County is classified as a federal moderate non-attainment area for the 2008 8-hour ozone standards, marginal non-attainment area for the 2015 8-hour ozone standards, and a partial moderate non-attainment area for the PM_{2.5} standards.

2.1.2 State Regulations

Criteria Pollutants

The CARB has developed the California AAQS (CAAQS) and generally has set more stringent limits on the criteria pollutants than the NAAQS (see Table 1). In addition to the federal criteria pollutants, the CAAQS also specify standards for visibility-reducing particles, sulfates, hydrogen sulfide, and vinyl chloride.

Similar to the federal CAA, the state classifies either "attainment" or "non-attainment" areas for each pollutant based on the comparison of measured data with the CAAQS. The County is a non-attainment area for the state ozone standards and the state PM₁₀ standard. The California CAA, which became effective on January 1, 1989, requires all areas of the state to attain the CAAQS at the earliest practicable date. The California CAA has specific air quality management strategies that must be adopted by the agency responsible for the non-attainment area. In the case of the SSAB, the responsible agency is the ICAPCD.

Toxic Air Contaminants

The public's exposure to toxic air contaminants (TACs) is a significant public health issue in California. Diesel particulate matter (DPM) emissions have been identified as TACs. In 1983, the California Legislature enacted a program to identify the health effects of TACs and to reduce exposure to these contaminants to protect the public health (Assembly Bill [AB] 1807: Health and Safety Code Sections 39650–39674). The California Legislature established a two-step process to address the potential health effects from TACs. The first step is the risk assessment (or identification) phase. The second step is the risk management (or control) phase of the process.

The California Air Toxics Program establishes the process for the identification and control of TACs and includes provisions to make the public aware of significant toxic exposures and for reducing risk. Additionally, the Air Toxics "Hot Spots" Information and Assessment Act (AB 2588, 1987, Connelly Bill) was enacted in 1987 and requires stationary sources to report the types and quantities of certain substances routinely released into the air.

The goals of the Air Toxics "Hot Spots" Act are to collect emission data, to identify facilities having localized impacts, to ascertain health risks, to notify nearby residents of significant risks, and to reduce those significant risks to acceptable levels.

Mr. Ramon Gonzalez Page 3 June 6, 2023

			Table 1 Ambient Air Quality St	tandards			
	Averaging		a Standards ¹	N	lational Standard	ds ²	
Pollutant	Time	Concentration ³	Method ⁴	Primary ^{3,5}	Secondary ^{3,6}	Method ⁷	
Ozone ⁸	1 Hour	0.09 ррт (180 µg/m³)	Ultraviolet		Same as Primary	Ultraviolet Photometry	
Ozone	8 Hour	0.07 ppm (137 μg/m³)	Photometry	0.070 ppm (137 µg/m³)	Secondary ^{3,6} Same as Primary Standard Same as Primary Standard Same as Primary Standard 15 µg/m ³ - - Same as Primary Standard - 0.5 ppm (1,300 µg/m ³) - Same as Primary Standard		
Respirable	24 Hour	50 µg/m³		150 µg/m ³	Same as	Inertial Separation	
Particulate Matter (PM10) ⁹	Annual Arithmetic Mean	20 µg/m³	Gravimetric or Beta Attenuation	-	Primary	and Gravimetric Analysis	
Fine Particulate	24 Hour	No Separate State	Standard	35 µg/m³	Primary	Inertial Separation and Gravimetric	
Matter (PM₂s) ⁹	Annual Arithmetic Mean	12 µg/m³	Gravimetric or Beta Attenuation	12 µg/m³		Analysis	
	1 Hour	20 ppm (23 mg/m ³)		35 ppm (40 mg/m³)	-		
Carbon Monoxide (CO)	8 Hour	9.0 ppm (10 mg/m ³)	Non-dispersive Infrared Photometry	9 ppm (10 mg/m³)	-	Non-dispersive Infrared Photomet	
	8 Hour (Lake Tahoe)	6 ppm (7 mg/m ³)			<u> </u>		
	1 Hour	0.18 ppm (339 µg/m ³)	Cae Dhose Chami	100 ppb (188 цg/m³)	=	- Gas Phase Chemi- Iuminescence	
Nitrogen Dioxide (NO2) ¹⁰	Annual Arithmetic Mean	0.030 ppm (57 µg/m ³)	Gas Phase Chemi- luminescence	0.053 ppm (100 µg/m³)	Same as Primary		
	1 Hour	0.25 ppm (655 µg/m ³)	– Ultraviolet	75 ppb (196 µg/m³)		Ultraviolet	
	3 Hour			-		Fluorescence; Spectro-	
Sulfur Dioxide (SO2) ¹¹	24 Hour	0.04 ppm (105 µg/m³)	Fluorescence	0.14 ppm (for certain areas) ¹⁵		photometry (Pararosaniline	
	Annual Arithmetic Mean	-		0.030 ppm (for certain areas) ¹¹	=	Method)	
	30 Day Average	1.5 µg/m³		-	-	_	
Lead ^{12,13}	Calendar Quarter		Atomic Absorption	1.5 µg/m ³ (for certain areas) ¹²		High Volume Sampler and Atomi	
	Rolling 3-Month Average			0.15 µg/m³		Absorption	
Visibility Reducing Particles ¹⁴	8 Hour	See footnote 14	Beta Attenuation and Transmittance through Filter Tape				
Sulfates	24 Hour	25 µg/m³	lon Chroma- tography	No National Standards			
Hydrogen Sulfide	1 Hour	0.03 ppm (42 µg/m ³)	Ultraviolet Fluorescence				
Vinyl Chloride ¹²	24 Hour	0.01 ppm (26 µg/m³)	Gas Chroma- tography				

Mr. Ramon Gonzalez Page 4 June 6, 2023

Table 1 Ambient Ai<u>r Quality Standards</u>

NOTES:

- ppm = parts per million; ppb = parts per billion; µg/m³ = micrograms per cubic meter; = not applicable.
- ¹ California standards for ozone, carbon monoxide (except 8-hour Lake Tahoe), sulfur dioxide (1 and 24 hour), nitrogen dioxide, particulate matter (PM₁₀, PM₂₅, and visibility reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.
- ² National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM₁₀, the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m³ is equal to or less than one. For PM₂₅, the 24-hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current national policies.
- ³ Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25°C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
- Any equivalent measurement method which can be shown to the satisfaction of the Air Resources Board to give equivalent results at or near the level of the air quality standard may be used.
- ⁵ National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.
- ⁶ National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
- ⁷ Reference method as described by the U.S. EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the U.S. EPA.
- ⁸ On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
- ⁹ On December 14, 2012, the national annual PM₂₅ primary standard was lowered from 15 µg/m³ to 12.0 µg/m³. The existing national 24-hour PM₂₅ standards (primary and secondary) were retained at 35 µg/m³, as was the annual secondary standards of 15 µg/m³. The existing 24-hour PM₁₀ standards (primary and secondary) of 150 µg/m³ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
- ¹⁰ To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note that the national standards are in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national standards to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.
- ¹¹ On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO₂ national standards (24-hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved.

Note that the 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.

- ¹² The CARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
- ¹³ The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard (1.5 µg/m³ as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
- ¹⁴ In 1989, the CARB converted both the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are "extinction of 0.23 per kilometer" and "extinction of 0.07 per kilometer" for the statewide and Lake Tahoe Air Basin standards, respectively.

SOURCE: CARB 2016.

Mr. Ramon Gonzalez Page 5 June 6, 2023

The Children's Environmental Health Protection Act, California Senate Bill 25 (Chapter 731, Escutia, Statutes of 1999), focuses on children's exposure to air pollutants. The act requires CARB to review its air quality standards from a children's health perspective, evaluate the statewide air monitoring network, and develop any additional air toxic control measures needed to protect children's health. Locally, toxic air pollutants are regulated through the ICAPCD Regulation X. Of particular concern statewide are DPM emissions. DPM was established as a TAC in 1998 and is estimated to represent a majority of the cancer risk from TACs statewide (based on the statewide average). Diesel exhaust is a complex mixture of gases, vapors, and fine particles. This complexity makes the evaluation of health effects of diesel exhaust a complex scientific issue. Some of the chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by the CARB and are listed as carcinogens either under the state's Proposition 65 or under the federal Hazardous Air Pollutants program.

Following the identification of DPM as a TAC in 1998, CARB has worked on developing strategies and regulations aimed at reducing the risk from DPM. The overall strategy for achieving these reductions is found in the *Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles* (CARB 2000). A stated goal of the plan is to reduce the statewide cancer risk arising from exposure to DPM by 85 percent by 2020.

In April 2005, CARB published the *Air Quality and Land Use Handbook: A Community Health Perspective* (CARB 2005). The handbook makes recommendations directed at protecting sensitive land uses from air pollutant emissions while balancing a myriad of other land use issues (e.g., housing, transportation needs, economics, etc.). Sensitive land uses include but are not limited to, schools, hospitals, residences, resident care facilities, and day-care centers. The handbook is not regulatory or binding on local agencies and recognizes that application takes a qualitative approach. Therefore, the CARB has provided guidelines for the siting of land uses near heavily traveled roadways. Of pertinence to this study, the CARB guidelines indicate that siting new sensitive land uses within 500 feet of a freeway or urban roads with 100,000 or more vehicles/day should be avoided when possible.

As an ongoing process, CARB will continue to establish new programs and regulations for the control of DPM and other air-toxics emissions as appropriate. The continued development and implementation of these programs and policies will ensure that the public's exposure to DPM and other TACs will continue to decline.

State Implementation Plan

The State Implementation Plan (SIP) is a collection of documents that set forth the state's strategies for achieving the NAAQS. In California, the SIP is a compilation of new and previously submitted plans, programs (such as air quality management plans, monitoring, modeling, permitting, etc.), district rules, state regulations, and federal controls. The CARB is the lead agency for all purposes related to the SIP under state law. Local air districts and other agencies, such as the Department of Pesticide Regulation and the Bureau of Automotive Repair, prepare SIP elements and submit them to CARB for review and approval. The CARB then forwards SIP revisions to the U.S. EPA for approval and publication in the Federal Register. All of the items included in the California SIP are listed in the Code of Federal Regulations (CFR) at 40 CFR 52.220.

The ICAPCD is the air district responsible for the project area. Applicable ICAPCD SIPs include:

- Imperial County 2009 State Implementation Plan for Particulate Matter Less than 10 Microns in Aerodynamic Diameter;
- Imperial County 2013 State Implementation Plan for the 2006 24-Hour PM_{2.5} Moderate Non-attainment Area; and
- Imperial County 2017 State Implementation Plan for the 2008 8-Hour Ozone Standard.

Mr. Ramon Gonzalez Page 6 June 6, 2023

California Environmental Quality Act

Section 15125(d) of the California Environmental Quality Act (CEQA) Guidelines requires discussion of any inconsistencies between the project and applicable general plans and regional plans, including the applicable air guality attainment or maintenance plan (or SIP).

2.1.3 Local Regulations

CEQA Air Quality Handbook

The ICAPCD adopted its *CEQA Air Quality Handbook: Guidelines for the Implementation of the California Environmental Quality Act of 1970* in 2007 and amended the handbook in December 2017 (ICAPCD 2017a). The ICAPCD CEQA Air Quality Handbook provides guidance on how to determine the significance of impacts, including air pollutant emissions, related to the development of residential, commercial, and industrial projects. Where impacts are determined to be significant, the ICAPCD CEQA Air Quality Handbook provides guidance to mitigate adverse impacts to air quality from development projects.

Stationary Source Permitting

Pursuant to ICAPCD Rule 207 (New & Modified Stationary Source Review) and associated rules such as Rule 201 (Permits Required) and Rule 208 (Permit to Operate), the construction, installation, modification, replacement, and operation of any equipment which may emit air contaminants requires ICAPCD permits. The ICAPCD requires that all such equipment be assessed for the potential to result in health risk impacts, and permits to operate equipment must be renewed each year equipment is in use or upon the modification of equipment.

Policy Number 5-Off-site Mitigation/In-Lieu Fee

The ICAPCD issued Policy Number 5, Off-site Mitigation/In-lieu Fee in April 2014. The policy references the ICAPCD CEQA Air Quality Handbook and discusses how project proponents may achieve additional mitigation by either proposing an off-site mitigation project or paying an in-lieu mitigation fee. Mitigation fees collected by the ICAPCD are used to fund the emissions offsets projects through the ICAPCD Carl Moyer Memorial Air Quality Standards Attainment Program (Carl Moyer Program). Specific projects funded by the program achieve emissions reductions by replacing old, highly polluting equipment with newer, cleaner equipment earlier than required by regulation or through normal attrition. As outlined in Policy Number 5, total in-lieu fees for mitigation of construction emissions are calculated based on the quantity and duration of the project's construction emissions and the cost-effectiveness of the Carl Moyer Program for offsetting oxides of nitrogen (NO_X) and PM₁₀ emissions.

Operational Development Fee Mitigation Program

Adopted in November 2007, Rule 310, Operational Development Fee Mitigation Program, is designed to assist in the reduction of excess air emissions resulting from new residential and commercial development (warehousing is considered a commercial use under the program) in Imperial County. Funds collected by the program are used to offset NO_X and PM₁₀ emissions through local emission reduction projects, such as paving unpaved roadways to reduce fugitive dust.

Mr. Ramon Gonzalez Page 7 June 6, 2023

Fugitive Dust Control

The ICAPCD Regulation VIII regulates emissions of fugitive dust. Fugitive dust is:

Particulate Matter entrained in the ambient air which is caused from man-made and natural activities such as, but not limited to, movement of soil, vehicles, equipment, blasting, and wind. This excludes Particulate Matter emitted directly in the exhaust of motor vehicles or other fuel combustion devices, from portable brazing, soldering, or welding equipment, pile drivers, and stack emissions from stationary sources (ICAPCD, Rule 800 (c)(18)).

Regulation VIII includes the following specific rules:

- Rule 800–Fugitive Dust Requirements for Control of PM2.5
- Rule 801–Construction and Earthmoving Activities
- Rule 802–Bulk Materials
- Rule 803–Carry Out and Track Out
- Rule 804–Open Areas
- Rule 805–Paved and Unpaved Roads
- Rule 806–Conservation Management Practices

ICAPCD Rule 428

Adopted on September 11, 2018, Rule 428, Wood Burning Appliances, is to limit emissions of particulate matter from wood burning appliances. This rule applies to any person who manufactures, sells, offers for sale, or operates a permanently installed, indoor or outdoor, wood burning appliance within the Imperial County PM_{2.5} nonattainment area. This rule also applies to any person who installs a wood burning appliance in any residential or commercial, single- or multi-building unit within the Imperial County PM_{2.5} nonattainment area.

2.2 Existing Air Quality

2.2.1 Climate and Meteorology

Climate conditions at the project site, like the rest of Imperial County, are governed by the large-scale sinking and warming of air in the semi-permanent tropical high-pressure center of the Pacific Ocean. The high-pressure ridge blocks out most storms except in winter when it is weakest and farthest south. The coastal mountains prevent the intrusion of any cool, damp air found in California coastal environs. Because of the barrier and weakened storms, Imperial County experiences clear skies, extremely hot summers, mild winters, and little rainfall (ICAPCD 2017b).

Winters are mild and dry with daily average temperatures ranging between 65 and 75 degrees Fahrenheit. Summers are extremely hot with daily average temperatures ranging between 104 and 115 degrees Fahrenheit. The flat terrain and the strong temperature differentials created by intense solar heating result in moderate winds and deep thermal convection. The combination of subsiding air, protective mountains, and distance from the ocean all combine to severely limit precipitation (ICAPCD 2017b).

Imperial County experiences surface inversions almost every day of the year. Due to strong surface heating, these inversions are usually broken and allow pollutants to be more easily dispersed. In some circumstances, the presence of the Pacific high-pressure cell can cause the air to warm to a temperature higher than the air below. This highly stable atmospheric condition, termed a subsidence inversion, can act as a nearly impenetrable lid to the vertical mixing of pollutants. The strength of these inversions makes them difficult to disrupt. Consequently, they can persist

Mr. Ramon Gonzalez Page 8 June 6, 2023

for one or more days, causing air stagnation and the buildup of pollutants. Highest and worst-case ozone levels are often associated with the presence of subsidence inversions (ICAPCD 2017b).

The large daily oscillation of temperature produces a corresponding large variation in the relative humidity. Nocturnal humidity rises to 50 to 60 percent but drops to about 10 percent during the day. Prevailing winds are from the west-northwest through southwest; a secondary flow maximum from the southeast is also evident. The prevailing winds from the west and northwest occur seasonally from fall through spring and are known to be from the Los Angeles area. Occasionally, Imperial County experiences periods of extremely high wind speeds. Wind speeds can exceed 31 miles per hour (mph), and this occurs most frequently during the months of April and May. However, speeds of less than 6.8 mph account for more than one-half of the observed wind measurements (ICAPCD 2017b).

2.2.2 Background Air Quality

Air quality at a particular location is a function of the kinds, amounts, and dispersal rates of pollutants being emitted into the air locally and throughout the basin. The major factors affecting pollutant dispersion are wind speed and direction, the vertical dispersion of pollutants (which is affected by inversions), and the local topography.

Air quality is commonly expressed as the number of days in which air pollution levels exceed state standards set by the CARB or federal standards set by the U.S. EPA. The ICAPCD maintains air quality monitoring stations throughout the SSAB. Air pollutant concentrations and meteorological information are continuously recorded at these stations. Measurements are then used by scientists to help forecast daily air pollution levels.

The El Centro – 9th Street monitoring station, located at 150 9th Street, approximately seven miles east of the project site, is the nearest station to the project site. The El Centro monitoring station measures ozone, NO₂, PM₁₀, and PM_{2.5}. Table 2 provides a summary of measurements collected at the El Centro monitoring station for the years 2017 through 2021.

Mr. Ramon Gonzalez Page 9 June 6, 2023

Table 2		tro Moniti	oring Stati	0.0	
Summary of Air Quality Measurements Recorded at Pollutant/Standard	2017	2018	2019	2020	2021
Ozone					
Federal Max 8-hour (ppm)	0.092	0.090	0.071	0.077	0.083
Days 2015 Federal 8-hour Standard Exceeded (0.07 ppm)	17	14	1	2	6
Days 2008 Federal 8-hour Standard Exceeded (0.075 ppm)	8	3	0	1	2
State Max 8-hour (ppm)	0.092	0.090	0.071	0.077	0.084
Days State 8-hour Standard Exceeded (0.07 ppm)	17	15	1	2	7
Max. 1-hour (ppm)	0.110	0,102	0.080	0.097	0.096
Days State 1-hour Standard Exceeded (0.09 ppm)	4	2	0	1	1
Nitrogen Dioxide					
Max 1-hour (ppm)	0.0488	0.0341	0.0367	0.0448	0.0558
Days State 1-hour Standard Exceeded (0.18 ppm)	0	0	0	0	0
Days Federal 1-hour Standard Exceeded (0.100 ppb)	0	0	0	0	0
Annual Average (ppm)					
PM ₁₀ *					
Federal Max. Daily (µg/m³)	268.5	256.3	123.9	197.5	194.5
Measured Days Federal 24-hour Standard Exceeded (150 µg/m³)	5	5	0	2	1
Calculated Days Federal 24-hour Standard Exceeded (150 µg/m ³)	5.0	5,1	0.0	2.0	1.0
Federal Annual Average (µg/m³)	41.6	47.3	34.9	41.5	41.8
State Max. Daily (µg/m³)	186.4	253.0	130.0	197.7	186.9
Measured Days State 24-hour Standard Exceeded (50 µg/m ³)	60	111	53	92	88
Calculated Days State 24-hour Standard Exceeded (50 µg/m ³)		113.0	53.7	92.0	88.6
State Annual Average (µg/m³)		46.8	35.6	41.5	41.6
PM25*					
Federal Max. Daily (µg/m³)	23.2	22.4	21.4	28.5	19.1
Measured Days Federal 24-hour Standard Exceeded (35 µg/m ³)	0	0	0	0	0
Calculated Days Federal 24-hour Standard Exceeded (35 µg/m³)	0.0	0.0	0.0	0.0	0.0
Federal Annual Average (µg/m³)	8.4	8.6	7.8	9.7	8.2
State Max. Daily (µg/m³)	23.2	22.4	21.4	28.5	19.1
State Annual Average (µg/m³)	8.4	8.7	7.9	9.8	8.3

ppm = parts per million; μg/m³ = micrograms per cubic meter; -- = Not available.

*Calculated days value. Calculated days are the estimated number of days that a measurement would have been greater than the level of the standard had measurements been collected every day. The number of days above the standard is not necessarily the number of violations of the standard for the year.

3.0 Thresholds of Significance

Thresholds used to evaluate potential impacts to air quality are based on applicable criteria in the CEQA Guidelines Appendix G. The project would have a significant air quality impact if it would:

- 1. Conflict with or obstruct implementation of the applicable air quality plan.
- 2. Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard.
- 3. Expose sensitive receptors to substantial pollutant concentrations.
- 4. Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people,

Mr. Ramon Gonzalez Page 10 June 6, 2023

As stated in the State CEQA Guidelines, these questions are "intended to encourage thoughtful assessment of impacts and do not necessarily represent thresholds of significance" (Title 14, Division 6, Chapter 3 Guidelines for Implementation of the CEQA, Appendix G, Environmental Checklist Form). The State CEQA Guidelines encourage lead agencies to adopt regionally specific thresholds of significance. When adopting these thresholds, the amended Guidelines allow lead agencies to consider thresholds of significance adopted or recommended by other public agencies, or recommended by experts, provided that the thresholds are supported by substantial evidence.

The ICAPCD CEQA Air Quality Handbook establishes the following four separate evaluation categories (ICAPCD 2017a):

- 1. Comparison of calculated project emissions to ICAPCD emission thresholds.
- 2. Consistency with the most recent Clean Air Plan for Imperial County.
- 3. Comparison of predicted ambient pollutant concentrations resulting from the project to state and federal health standards, when applicable.
- 4. The evaluation of special conditions which apply to certain projects.

Any development with a potential to emit criteria pollutants below significance levels defined by the ICAPCD is called a "Tier I project," and is considered by the ICAPCD to have less than significant potential adverse impacts on local air quality. For Tier I projects, the project proponent should implement a set of feasible "standard" mitigation measures (enumerated by the ICAPCD) to reduce the air quality impact to an insignificant level. A "Tier II project" is one whose emissions exceed any of the thresholds. Its impact is significant and the project proponent should select and implement all feasible "discretionary" mitigation measures (also enumerated by the ICAPCD) in addition to the standard measures.

3.1 Operational Impacts

Table 3 provides general guidelines for determining the significance of impacts based on the total emissions that are expected from project operation established by the ICAPCD.

	Table 3 Significance Thresholds for Op	erations
Pollutant	Tier I	Tier II
NO _x and ROG	Less than 137 lbs/day	137 lbs/day and greater
PM ₁₀ and SO _X	Less than 150 lbs/day	150 lbs/day and greater
CO and PM25	Less than 550 lbs/day	550 lbs/day and greater
monoxide; PM ₁₀ = particul	is; NO _X = oxides of nitrogen; SO _X = ate matter with an aerodynamic di aerodynamic diameter 2.5 microns	oxides of sulfur; CO = carbon ameter 10 microns or less; PM25 = or less; lbs/day = pounds per day

As stated above, Tier 1 projects are required to implement all feasible standard measures specified by the ICAPCD. Tier II projects are required to implement all feasible standard measures as well as all feasible discretionary measures specified by the ICAPCD.

Mr. Ramon Gonzalez Page 11 June 6, 2023

3.2 Construction Impacts

The ICAPCD has also established thresholds of significance for project construction. Table 4 provides general guidelines for determining significance of impacts based on the total emissions that are expected from project construction.

	ble 4 nolds for Construction
	Thresholds
Pollutant	(pounds/day)
PM ₁₀	150
ROG	75
NOx	100
СО	550
$ROG = reactive organic gas; NO_X = oxid$	les of nitrogen; CO = carbon monoxide;
PM ₁₀ = particulate matter with an aerod	ynamic diameter 10 microns or less.
SOURCE: ICAPCD 2017a.	

Regardless of project size, all feasible standard measures specified by the ICAPCD for construction equipment and fugitive PM₁₀ control for construction activities should be implemented at construction sites. Control measures for fugitive PM₁₀ construction emissions in Imperial County are found in ICAPCD Regulation VIII and in the ICAPCD CEQA Air Quality Handbook and are discussed below.

3.3 Public Nuisance Law (Odors)

State of California Health and Safety Code Sections 41700 and 41705 and ICAPCD Rule 407 prohibit emissions from any source whatsoever in quantities of air contaminants or other material that cause injury, detriment, nuisance, or annoyance to the public health or damage to property.

The ICAPCD CEQA Air Quality Handbook provides screening level distances for potential odor sources. If a project is proposed within one mile of a wastewater treatment plant, sanitary landfill, composting station, feedlot, asphalt plant, painting and coating operation, or rendering plant, a potential odor problem may result (ICAPCD 2017a).

4.0 Emission Calculations

The project would result in air pollutant emissions associated with the construction and operation. Emissions were calculated using California Emissions Estimator Model (CalEEMod) Version 2022.1 (California Air Pollution Control Officers Association 2022). The CalEEMod program is a tool used to estimate emissions resulting from land development projects in the state of California. CalEEMod was developed with the participation of several state air districts.

CalEEMod estimates parameters such as the type and amount of construction equipment required, trip generation, and utility consumption based on the size and type of each specific land use using data collected from surveys performed by the South Coast Air Quality Management District (AQMD). Where available, parameters were modified to reflect project-specific data.

Mr. Ramon Gonzalez Page 12 June 6, 2023

4.1 Construction-related Emissions

Construction-related activities are temporary, short-term sources of air pollutant emissions. Sources of construction-related emissions include the following:

- Fugitive dust from grading activities;
- Exhaust emissions from construction equipment;
- Application of chemical coatings (paints, stains, sealants, etc.); and
- Exhaust and fugitive dust emission from on-road vehicles (trips by workers, delivery trucks, and material-hauling trucks).

Heavy-duty construction equipment is usually diesel powered. Based on CARB's In-Use Off-Road Diesel-Fueled Fleets Regulation, heavy-duty construction equipment includes off-road diesel vehicles 25 horsepower or greater. In general, emissions from diesel-powered equipment contain more NO_x, SO_x, and particulate matter than gasoline-powered engines. However, diesel-powered engines generally produce less CO and less ROG than do gasoline-powered engines. Standard construction equipment includes tractors/loaders/backhoes, rubber-tired dozers, excavators, graders, cranes, forklifts, rollers, paving equipment, generator sets, welders, cement and mortar mixers, and air compressors.

Primary inputs are the numbers of each piece of equipment and the length of each construction stage. The construction equipment estimates are based on surveys performed by the South Coast AQMD and the Sacramento Metropolitan AQMD of typical construction projects which provide a basis for scaling equipment needs and schedule with a project's size. Air emission estimates in CalEEMod are based on the duration of construction phases; construction equipment type, quantity, and usage; grading area; season; and ambient temperature, among other parameters.

The construction schedule and equipment were obtained from the applicant. Construction activities were modeled beginning in January 2024 and lasting approximately five months. Construction stages would include grading, pile installation, fence installation, electrical installation, and container installation.

4.1.1 Fugitive Dust

Fugitive dust would be associated with construction activities that involve ground disturbance. Fugitive dust emissions vary greatly during construction and are dependent on the amount and type of activity, silt content of the soil, and the weather. Vehicles moving over paved and unpaved surfaces, demolition, excavation, earth movement, grading, and wind erosion from exposed surfaces are all sources of fugitive dust. Calculation of fugitive dust emissions are based on the area of disturbed ground and the fugitive dust measures implemented. Based on discussion with ICAPCD staff, watering during ground disturbing activities would achieve a 50 percent reduction in fugitive dust.

Mr. Ramon Gonzalez Page 13 June 6, 2023

The ICAPCD requires that, regardless of the size of a project, all feasible standard measures for fugitive PM₁₀ must be implemented at construction sites. Additionally, all feasible discretionary measures for PM₁₀ apply to those construction sites that are 5 acres or more for non-residential developments or 10 acres or more in size for residential developments. The project footprint consists of 3.8 acres of the 7.1-acre project site. However, because other portions of the project site may be used for staging areas, it was assumed that the total disturbed area could exceed 5 acres. Standard and discretionary measures from the ICAPCD handbook include the following:

Standard Measures for Fugitive PM10 Control:

- a) All disturbed areas, including bulk material storage which is not being actively utilized, shall be effectively stabilized and visible emissions shall be limited to no greater than 20 percent opacity for dust emissions by using water, chemical stabilizers, dust suppressants, tarps, or other suitable material such as vegetative ground cover.
- b) All on-site and off-site unpaved roads will be effectively stabilized and visible emissions shall be limited to no greater than 20 percent opacity for dust emissions by paving, chemical stabilizers, dust suppressants and/or watering.
- c) All unpaved traffic areas one acre or more with 75 or more average vehicle trips per day will be effectively stabilized and visible emission shall be limited to no greater than 20 percent opacity for dust emissions by paving, chemical stabilizers, dust suppressants and/or watering. The transport of bulk materials shall be completely covered unless six inches of freeboard space from the top of the container is maintained with no spillage and loss of bulk material. In addition, the cargo compartment of all haul trucks is to be cleaned and/or washed at delivery site after removal of bulk material.
- d) The transport of bulk materials shall be completely covered unless six inches of freeboard space from the top of the container is maintained with no spillage and loss of bulk material. In addition, the cargo compartment of all haul trucks is to be cleaned and/or washed at delivery site after removal of bulk material.
- e) All track-out or carry-out will be cleaned at the end of each workday or immediately when mud or dirt extends a cumulative distance of 50 linear feet or more onto a paved road within an urban area.
- f) Movement of bulk material handling or transfer shall be stabilized prior to handling or at points of transfer with application of sufficient water, chemical stabilizers or by sheltering or enclosing the operation and transfer line.
- g) The construction of any new unpaved road is prohibited within any area with a population of 500 or more unless the road meets the definition of a temporary unpaved road. Any temporary unpaved road shall be effectively stabilized and visible emissions shall be limited to no greater than 20 percent opacity for dust emission by paving, chemical stabilizers, dust suppressants and/or watering.

Discretionary Measures for Fugitive PMte Control

- a) Water exposed soil with adequate frequency for continued moist soil.
- b) Replace ground cover in disturbed areas as quickly as possible.
- c) Automatic sprinkler system installed on all soil piles.
- d) Vehicle speed for all construction vehicles shall not exceed 15 mph on any unpaved surface at the construction site.

Mr. Ramon Gonzalez Page 14 June 6, 2023

- e) Develop a trip reduction plan to achieve a 1.5 average vehicle ridership for construction employees.
- f) Implement a shuttle service to and from retail services and food establishments during lunch hours.

4.1.2 Construction Equipment

CalEEMod calculates emissions of all pollutants from construction equipment using emission factors from CARB's off-road diesel equipment emission factors database. All construction equipment required during a phase was modeled over the entire duration of the phase even if it would only be required for a portion of the phase. Additionally, an off-highway truck and a generator were added to each phase to account for a water truck and a generator needed to power the construction office. The modeled construction equipment is summarized in Table 5.

	Table 5	
Equipment	truction Phases and Equip Quantity	Daily Operation Time (hours)
Equipment	Grading (14 days)	
Tractors/Loaders/Backhoes	2	8
Dump Truck	1	8
Scraper	1	8
Roller	11	8
Water Truck	1	8
Office Generator	1	8
	Pile Installation (15 days)	
Drill Rigs	3	8
Welder	1	8
Water Truck	1	8
Office Generator	1	8
	Fence Installation (5 days)	
Air Compressor	1	8
Generator	1	8
Water Truck	1	8
Office Generator	1	8
El	ectrical Installation (30 day	ys)
Tractors/Loaders/Backhoes	3	8
Generators	5	8
Air Compressors	5	8
Forklift	1	8
Water Truck	1	8
Office Generator	1	8
	ontainer Installation (14 da	ys)
Crane	1	8
Water Truck	1	8
Office Generator	1	8

Mr. Ramon Gonzalez Page 15 June 6, 2023

The ICAPCD requires that, regardless of the size of a project, all feasible standard measures for construction equipment must be implemented at construction sites. Standard measures from the ICAPCD handbook include the following:

Standard Measures for Construction Combustion Equipment

- a) Use of alternative fueled or catalyst equipped diesel construction equipment, including all off-road and portable diesel powered equipment.
- b) Minimize idling time either by shutting equipment off when not in use or reducing the time of idling to 5 minutes as a maximum.
- c) Limit, to the extent feasible, the hours of operation of heavy duty equipment and/or the amount of equipment in use.
- d) Replace fossil fueled equipment with electrically driven equivalents (provided they are not run via a portable generator set).

4.1.3 On-Road Vehicles

Construction would generate mobile source emissions from worker trips, hauling trips, and vendor trips. CalEEMod calculates emissions of all pollutants from on-road trucks and passenger vehicles using emission factors derived from CARB's motor vehicle emission inventory program EMFAC2017 (CARB 2017). Vehicle emission factors were multiplied by the model default total estimated number of trips and the average trip length to calculate the total mobile emissions. The project would require up to 50 workers per day and seven deliveries per day. The average worker, hauling, and vendor trip lengths were increased to 20 miles to be conservative.

CalEEMod calculates dust emissions from travel on paved and unpaved roads. By default, CalEEMod assumes the percentage of paved and unpaved roads for each district as provided by the district. For Imperial County, the default assumption is 50 percent paved and 50 percent unpaved. However, this is not characteristic of the roads in the vicinity of the project site. Construction vehicles would access the site via I-8, West Evan Hewes Highway, and Drew Road, which are all paved. However, it should be noted that Imperial County roadways do experience higher levels of entrained roadway dust. To account for these dust emissions, ICAPCD recommends modeling 90 percent paved roads during construction activities.

Additionally, the project would water the project site, including the unpaved portion of Drew Road, and would reduce speeds on unpaved roads to 25 miles per hour. These measures would be required per the ICAPCD measures listed in Section 4.1.1. As discussed, watering during ground disturbing activities would achieve a 50 percent reduction in fugitive dust. Reducing speed would achieve an additional 44 percent reduction in fugitive dust (CAPCOA 2022).

4.1.4 Construction Emission Estimates

Table 6 provides a summary of the criteria pollutant emissions generated by the project construction. CalEEMod output files for project construction and operations are contained in Attachment 1. Fugitive dust emission reduction calculations are contained in Attachment 2.

Mr. Ramon Gonzalez Page 16 June 6, 2023

Maximum	Daily Constr	Table 6 ruction Air	Pollutan	t Emissio	ns	
Dart a service of the	A DOCUMENT			missions		- Section
Emission Source	ROG	NOx	CO	SOx	PM10	PM25
Grading	2	14	20	<1	82	9
Pile Installation	2	11	20	<1	94	10
Fence Installation	1	8	14	<1	93	10
Electrical Installation	3	20	29	<1	94	10
Container Installation	2	10	20	<1	93	10
Max Daily Emissions	3	20	29	<1	94	10
Significance Threshold	75	100	550	-	150	1
Exceeds Threshold?	No	No	No	-	No	-
SOURCE: Attachments 1 an	d 2.					
NOTE: Totals may vary due	to indepen	dent rour	iding.			
ROG = reactive organic gas	s; NO _x = oxi	ides of nit	rogen; C() = carbo	on monox	ide;

 PM_{10} = particulate matter with an aerodynamic diameter 10 microns or less;

PM₂₅ = particulate matter with an aerodynamic diameter 2.5 microns or less.

As shown in Table 6, emissions associated with future construction of the project site would be less than all applicable ICAPCD significance thresholds. The emissions summarized in Table 6 account for the 50 percent reduction in dust due to daily watering, but do not account for any other emission reductions from any other standard or discretionary measure for dust control or construction equipment. Therefore, these emissions are conservative.

With implementation of the standard and discretionary measures for fugitive PM₁₀ control and standard measures for construction combustion equipment, project construction would not result in a cumulatively considerable net increase of criteria pollutants, and impacts would be less than significant.

4.2 Operation-related Emissions

Operation-related sources of air pollutant emissions include the direct emission of criteria pollutants. Common direct emission sources associated with typical projects include mobile sources such as project-generated traffic, area sources such as the use of landscaping equipment, and energy sources such as the combustion of natural gas.

4.2.1 Mobile Sources

CalEEMod calculates mobile source emissions using emission factors derived from CARB's motor vehicle emission inventory program, EMFAC2017 (CARB 2017). The project would be an unmanned facility that would be operated remotely. Therefore, the project would not generate routine daily trips. Occasional maintenance trips would be required. To account for these trips, a total of one round trip (two one-way trips) was modeled per weekday. The default trip length was increased to 20 miles. CalEEMod default emission factors for the soonest operational year of 2024 were modeled.

As discussed under the construction emission methodology for on-road vehicles, CalEEMod calculates dust emissions from travel on paved and unpaved roads. For Imperial County, the default assumption is 50 percent paved and 50 percent unpaved. However, this is not characteristic of the roads in the vicinity of the project site. During project operation, the majority of the access route to and from the project site would be paved, with only the segment of Drew Road being unpaved. Therefore, as with construction activities, to account for these dust emissions and any entrained dust on paved roads, 90 percent paved roads was modeled for operation.

Mr. Ramon Gonzalez Page 17 June 6, 2023

4.2.2 Area and Energy Sources

Area source emissions associated with typical development projects include consumer products, natural gas used in space and water heating, architectural coatings, landscaping equipment, and mechanical equipment such as boilers or backup generators. Hearths (fireplaces) and woodstoves are also a source of area emissions. Emissions are generated from energy use such as the combustion of natural gas used in space and water heating. As discussed in Section 4.2.1 above, the project would be an unmanned facility that would not be a source of area or energy emissions. However, as a conservative analysis, the project was modeled as a light industrial land use and default emission factors for light industrial area and energy sources were modeled.

4.2.3 Operational Emission Estimates

		Maximu	m Daily E	missions (pounds)	
Emission Source	ROG	NOx	СО	SOx	PM ₁₀	PM25
Mobile Sources	<1	<1	<1	<1	1	<1
Area Sources	2	<1	2	<1	<1	<1
Energy Sources	<1	<1	<1	<1	<1	<1
Total Operations	2	<1	3	<1	1	<1
Significance Threshold	137	137	550	150	150	550
Exceeds Threshold?	No	No	No	No	No	No
SOURCE: Attachment 1.						
NOTE: Totals may vary due to	o independer	nt rounding				

Table 7 provides a summary of the criteria pollutant emissions generated by the project operations. CalEEMod output files for project construction and operations are contained in Attachment 1.

As shown in Table 7, operation of the project would result in minimal emissions that would be less than the applicable thresholds for all criteria pollutants. Therefore, operation of the project would not result in a cumulatively considerable net increase of criteria pollutants, and impacts would be less than significant.

5.0 Air Quality Impact Analysis

1. Would the project conflict with or obstruct implementation of the applicable air quality plan?

CARB is the lead agency for preparation of the SIP, which outlines the state measures to achieve NAAQS. CARB delegates responsibility for preparation of SIP elements to local air districts and requires local air districts to prepare Air Quality Attainment Plans outlining measures required to achieve CAAQS.

Mr. Ramon Gonzalez Page 18 June 6, 2023

The ICAPCD is the air district responsible for the project area. Applicable ICAPCD air quality plans include:

- Imperial County 2009 State Implementation Plan for Particulate matter Less than 10 Microns in Aerodynamic Diameter;
- Imperial County 2013 State Implementation Plan for the 2006 24-Hour PM_{2.5} Moderate Non-attainment Area; and
- Imperial County 2017 State Implementation Plan for the 2008 8-Hour Ozone Standard.

The primary concern for assessing consistency with air quality plans is whether the project would induce growth that would result in a net increase in criteria pollutant emissions that exceed the assumptions used to develop the plan. The criteria pollutant emission projections for the ICAPCD air quality plans are based on Southern California Association of Governments' (SCAG) population growth and regional vehicle miles traveled projections, which are based in part on the land uses established by local general plans. As such, projects that propose development that is consistent with the local land use plans would be consistent with growth projections and air quality plans criteria pollutant emissions estimates. In the event that a project would result in development that is less dense than anticipated by the growth projections, the project would be considered consistent with the air quality plans. In the event a project would result in air pollutant emissions that may not have been accounted for in the air quality plans and thus may obstruct or conflict with the air quality plans.

The project site is designated as an Urban Area land use in the Imperial County General Plan. The Urban Area designation includes areas surrounding the following seven incorporated cities: Brawley, El Centro, Westmorland, Holtville, Calipatria, Imperial, and Calexico. It is anticipated that these areas will eventually be annexed or incorporated. The project would construct a BESS that would not be a significant source of emissions. The project would be consistent with the growth projections and air quality plans criteria pollutant emissions estimates. Furthermore, the project would not construct housing or other uses that would result in regional population growth. The project would provide needed energy storage for the region and the state. Therefore, the project would not result in new growth beyond what was originally anticipated in SCAG's growth projections for Imperial County. Additionally, as summarized in Tables 6 and 7 above, construction and operation of the project would result in emissions would be consistent with SCAG's growth projections and the ICAPCD's air quality plans, and impacts would be less than significant.

2. Would the project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

The project site is in non-attainment areas for NAAQS and CAAQS for ozone and particulate matter. The majority of regional PM₁₀ and PM_{2.5} emissions originate from dust stirred up by wind or by vehicle traffic on unpaved roads (ICAPCD 2009). Other PM₁₀ and PM_{2.5} emissions originate from grinding operations, combustion sources such as motor vehicles, power plants, wood burning, forest fires, agricultural burning, and industrial processes. Ozone is not emitted directly, but is a result of atmospheric activity on precursors. NO_x and ROG are known as the chief "precursors" of ozone. These compounds react in the presence of sunlight to produce ozone. Approximately 88 percent of NO_x and 40 percent of ROG regional emissions originate from on- and off-road vehicles (ICAPCD 2010). Other major sources include solvent evaporation and miscellaneous processes such as pesticide application.

Mr. Ramon Gonzalez Page 19 June 6, 2023

As shown in Table 6 above, project construction would not exceed the applicable regional emissions thresholds. These thresholds are designed to provide limits below which project emissions would not significantly change regional air quality. The project would implement all standard and discretionary measures for fugitive PM₁₀ control and standard measures for construction combustion equipment. Therefore, project construction would not result in a cumulatively considerable net increase in emissions of ozone, PM₁₀, or PM₂₅, and impacts would be less than significant.

Long-term emissions of regional air pollutants occur from operational sources. As shown in Table 7 above, operation of the project would result in minimal emissions that would be less than the applicable thresholds for all criteria pollutants. Therefore, project operation would not result in a cumulatively considerable net increase in emissions of ozone, PM₁₀, or PM_{2.5}, and impacts would be less than significant.

3. Would the project expose sensitive receptors (including, but not limited to, schools, hospitals, resident care facilities, day-care centers and project residents) to substantial pollutant concentrations?

Sensitive land uses include schools and schoolyards, parks and playgrounds, daycare centers, nursing homes, hospitals, and residential communities. The nearest sensitive receptors are the residential uses located approximately 500 feet north of the project site, on the north side of the railroad tracks and West Evan Hewes Highway.

Diesel Particulate Matter – Construction

Construction of the project and associated infrastructure would result in short-term diesel exhaust emissions from on-site heavy-duty equipment. Construction of the project would result in the generation of diesel-exhaust DPM emissions from the use of off-road diesel equipment required for site preparation and grading, and other construction activities and on-road diesel equipment used to bring materials to and from the project site.

Generation of DPM from construction projects typically occurs in a single area for a short period. Construction is anticipated to last for approximately five months. The dose of DPM to which the receptors are exposed is the primary factor used to determine health risk. Dose is a function of the concentration of a substance or substances in the environment and the extent of exposure that person has with the substance. Dose is positively correlated with time, meaning that a longer exposure period would result in a higher exposure level for the Maximally Exposed Individual. The risks estimated for a Maximally Exposed Individual are higher if a fixed exposure occurs over a longer period of time. According to the Office of Environmental Health Hazard Assessment (OEHHA), health risk assessments, which determine the exposure of sensitive receptors to toxic emissions, should be based on a 30-year exposure period; however, such assessments should be limited to the period/duration of activities associated with the project (OEHHA 2015). Thus, if the duration of proposed construction activities near any specific sensitive receptor were five months, the exposure would be one percent (5 months divided by 30 years) of the total exposure period used for health risk calculation. Further, the project would implement the standard measures for construction combustion equipment summarized in Section 4.1.2 above. Additionally, with ongoing implementation of U.S. EPA and CARB requirements for cleaner fuels; off-road diesel engine retrofits; and new, low-emission diesel engine types, the DPM emissions of individual equipment would be reduced over time. All construction equipment is subject to the CARB In-Use Off-Road Diesel-Fueled Fleets Regulation, which limits unnecessary idling to 5 minutes, requires all construction fleets to be labeled and reported to CARB, bans Tier 0 equipment and phases out Tier 1 and 2 equipment (thereby replacing fleets with cleaner equipment), and requires that fleets comply with Best Available Control Technology requirements. Therefore, due to the limited duration of construction activities, implementation of standard measures for construction combustion equipment, and implementation of the In-Use Off-Road Diesel-Fueled Fleets Regulation, DPM generated by project construction is not expected to create conditions where the probability is greater than 10 in 1 million of contracting cancer for the Maximally Exposed Individual or to generate ground-level concentrations of non-carcinogenic TACs that exceed a Hazard Index greater than 1 for the Maximally Exposed Individual. Therefore,

Mr. Ramon Gonzalez Page 20 June 6, 2023

project construction would not expose sensitive receptors to substantial pollutant concentration, and impacts would be less than significant.

Carbon Monoxide Hot Spots

A CO hot spot is an area of localized CO pollution that is caused by severe vehicle congestion on major roadways, typically near signalized intersections. CO hot spots have the potential to violate state and federal CO standards at intersections, even if the broader basin is in attainment for federal and state levels. Due to increased requirements for cleaner vehicles, equipment, and fuels, CO levels in the state have dropped substantially. All air basins are attainment or maintenance areas for CO. Therefore, recent screening procedures based on more current methodologies have been developed. The Sacramento Metropolitan Air Quality Management District developed a screening threshold in 2011, which states that any project involving an intersection experiencing 31,600 vehicles per hour or more will require detailed analysis. In addition, the Bay Area Air Quality Management District developed a screening threshold in 2010, which states that any project involving an intersection experiencing 44,000 vehicles per hour would require detailed analysis. No intersections in the vicinity of the project carry this substantial amount of traffic. Additionally, there are no signalized intersections. Therefore, project construction and operation would not result in a CO hot spot, and impacts would be less than significant.

4. Would the project result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?

The potential for an odor impact is dependent on a number of variables including the nature of the odor source, distance between the receptor and odor source, and local meteorological conditions. Project construction would result in the emission of diesel fumes and other odors typically associated with construction activities. Sensitive receptors near the project site include residential uses; however, exposure to odors associated with project construction would be short term (five months) and temporary in nature. Further, per CARB's Airborne Toxic Control Measures 13 (California Code of Regulations Chapter 10 Section 2485), the applicant shall not allow idling time to exceed 5 minutes unless more time is required per engine manufacturers' specifications or for safety reasons. Therefore, project construction would not generate odors adversely affecting a substantial number of people, and impacts would be less than significant.

The ICAPCD CEQA Air Quality Handbook provides screening level distances for potential odor sources. If a project is proposed within one mile of a wastewater treatment plant, sanitary landfill, composting station, feedlot, asphalt plant, painting and coating operation, or rendering plant, a potential odor problem may result (ICAPCD 2017a). The project does not include the construction of any of these uses. Energy storage facilities are not known to emit odors during operation. Project operation would include occasional inspection and maintenance. These operational activities are not known to emit odors. Therefore, project operation would not generate odors adversely affecting a substantial number of people, and impacts would be less than significant.

6.0 Conclusions

The project's potential to result in impacts to air quality was assessed in accordance with the guidelines, policies, and standards established by the ICAPCD. The applicable ICAPCD air quality plans include the 2009, 2013, and 2017 SIPs for reducing PM₁₀, PM_{2.5}, and ozone. The project would construct a BESS that would not be a significant source of emissions. The project would be consistent with the growth projections and air quality plans criteria pollutant emissions estimates. Additionally, the project would not result in an air quality violation. Therefore, the project would

Mr. Ramon Gonzalez Page 21 June 6, 2023

not conflict with or obstruct the implementation of the regional air quality plans, and impacts would be less than significant.

As shown in Table 6 above, project construction would not exceed the applicable regional emissions thresholds. The project would implement all standard and discretionary measures for fugitive PM₁₀ control and standard measures for construction combustion equipment. As shown in Table 7 above, operation of the project would result in minimal emissions that would be less than the applicable thresholds for all criteria pollutants. Therefore, project construction and operation would not result in a cumulatively considerable net increase in emissions of ozone, PM₁₀, or PM₂₅, and impacts would be less than significant.

Project construction would not result in the exposure of sensitive receptors to significant levels of DPM that could result in excess cancer risks. Additionally, the project would not result in the creation of a CO hot spot. Therefore, construction and operation of the project would not expose sensitive receptors to substantial pollutant concentrations, and impacts would be less than significant.

During construction, potential odor sources would be associated with construction equipment; however, exposure to odors associated with project construction would be short term and temporary in nature. Operation of the project would not include any uses that would generate substantial odors. Therefore, the project would not generate odors adversely affecting a substantial number of people, and impacts would be less than significant.

If you have any questions about the results of this analysis, please contact me at jfleming@reconenvironmental.com or (619) 308-9333 extension 177.

Sincerely,

Jessich =

Jessica Fleming Senior Air Quality Specialist

JLF:jg

Attachment

7.0 Certification

The following is a list of preparers, persons, and organizations involved with the air quality analysis.

RECON Environmental, Inc. Jessica Fleming, County-approved Air Quality Consultant Jennifer Gutierrez, Production Specialist Frank McDermott, GIS Manager

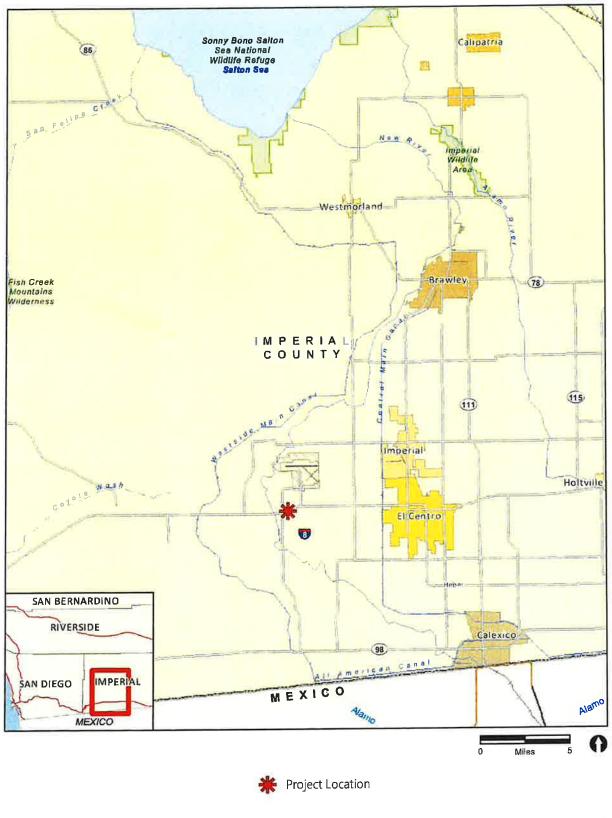
Mr. Ramon Gonzalez Page 22 June 6, 2023

8.0 References Cited

California Air Pollution Control Officers Association (CAPCOA)

2022 California Emissions Estimator Model (CalEEMod), Version 2022.1.

California Air Resources Board (CARB)


- 2000 Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles. California Air Resources Board. Stationary Source Division, Mobile Source Control Division. October.
- 2005 Air Quality and Land Use Handbook: A Community Health Perspective. April.
- 2016 Ambient Air Quality Standards. May 4.
- 2017 EMFAC2017 Emissions Database Inventory Model.
- 2023 California Air Quality Data Statistics. Available at http://www.arb.ca.gov/adam/welcome.html. Top 4 Summary and Hourly Listing. Accessed on February 9, 2023.

Imperial County Air Pollution Control District (ICAPCD)

- 2009 Imperial County State Implementation Plan for Particulate Matter Less Than 10 Microns in Aerodynamic Diameter. August.
- 2010 2009 1997 8-Hour Ozone Modified Air Quality Management Plan. July.
- 2017a CEQA Air Quality Handbook, Guidelines for the Implementation of the California Environmental Quality Act of 1970. December.
- 2017b 2017 Imperial County State Implementation Plan for the 2008 8-Hour Ozone Standard, Draft March.

Office of Environmental Health Hazard Assessment (OEHHA)

2015 Air Toxics Hot Spots Program Guidance Manual for the Preparation of Risk Assessments (Guidance Manual), February.

RECON M:\/0856\10324\common_gis\MXD\fig1 mxd 03/08/2023 bma FIGURE 1 Regional Location

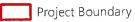
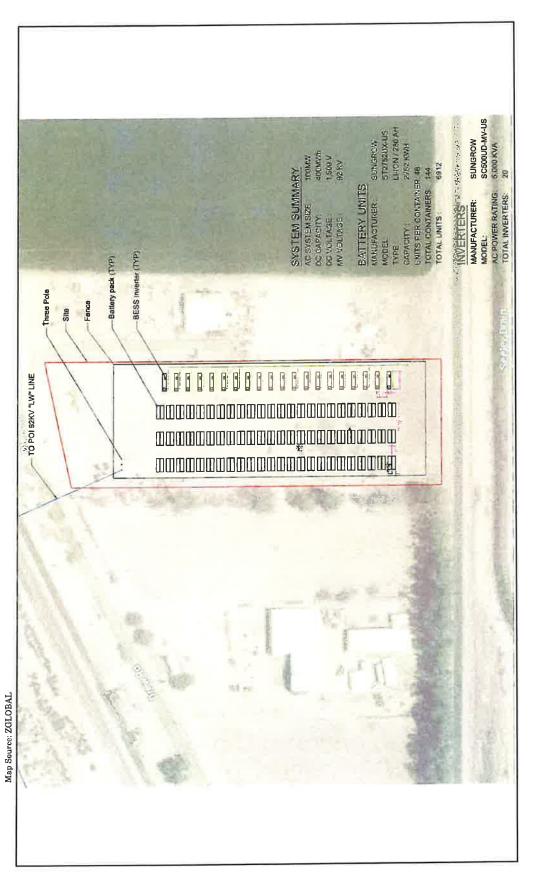



FIGURE 2 Project Location on Aerial Photograph

FIGURE 3 Site Plan

ATTACHMENTS

ATTACHMENT 1

CalEEMod Output Files

Alba Peaker Detailed Report

Table of Contents

- 1. Basic Project Information
- 1.1. Basic Project Information
- 1.2. Land Use Types
- 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
- 2.1. Construction Emissions Compared Against Thresholds
- 2.2. Construction Emissions by Year, Unmitigated
- 2.4. Operations Emissions Compared Against Thresholds
- 2.5. Operations Emissions by Sector, Unmitigated
- 3. Construction Emissions Details

- Grading (2024) Unmitigated Building Construction (2024) Unmitigated Building Construction (2024) Unmitigated Building Construction (2024) Unmitigated

3.9. Building Construction (2024) - Unmitigated

- 4. Operations Emissions Details
- 4.1. Mobile Emissions by Land Use
- 4.1.1. Unmitigated
- 4.2. Energy
- 4.2.1. Electricity Emissions By Land Use Unmitigated
- 4.2.3. Natural Gas Emissions By Land Use Unmitigated
- 4.3. Area Emissions by Source
- 4.3.2. Unmitigated
- 4.4. Water Emissions by Land Use
- 4.4.2. Unmitigated
- 4.5. Waste Emissions by Land Use
 - G.5.2. Unmitigated
- Refrigerant Emissions by Land Use A.6.1. Unmitigated A. Offroad Emissions By Equipment Type A.7.1. Unmitigated

- 4.8. Stationary Emissions By Equipment Type
- 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
- 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
- 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
- 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
- 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
- 5.1. Construction Schedule
- 5.2. Off-Road Equipment
- 5.2.1. Unmitigated
- Sonstruction Vehicles

- 3.1. Unmitigated A. Vehicles S. 4.1. Construction Vehicle Control Strategies
 - Stat. Architectural Coatings

5.6. Dust Mitigation

- 5.6.1. Construction Earthmoving Activities
- 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
- 5.9.1. Unmitigated
- 5.10. Operational Area Sources
- 5.10.1. Hearths
- 5.10.1.1. Unmitigated
- 5.10.2. Architectural Coatings
- 5.10.3. Landscape Equipment
- Solutional Energy Consumption
- 2.11.1. Unmitigated 2. Operational Water and Wastewater Consumption 2.1. Unmitigated
- 543. Operational Waste Generation

- 5.13.1. Unmitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
- 5.14.1. Unmitigated
- 5.15. Operational Off-Road Equipment
- 5.15.1. Unmitigated
- 5.16. Stationary Sources
- 5.16.1. Emergency Generators and Fire Pumps
- 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
- 5.18.1. Land Use Change
- 5.18.1.1. Unmitigated
 - 5.18.1.1. Unmitigated D.18.2. Sequestration 5.18.2.1. Unmitigated
- 6. Other Risk Detailed Report

Alba Peaker Detailed Report, 6/6/2023

- 6.1. Climate Risk Summary
- 6.2. Initial Climate Risk Scores
- 6.3. Adjusted Climate Risk Scores
- 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
- 7.1. CalEnviroScreen 4.0 Scores
- 7.2. Healthy Places Index Scores
- 7.3. Overall Health & Equity Scores
- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard
- 7.6. Health & Equity Custom Measures

1. Basic Project Information

1.1. Basic Project Information

Data Field		Value			
Project Name		Alba Peaker			
Construction Start Date		1/1/2024			
Operational Year		2024			
Lead Agency		Imeprial County			
Land Use Scale		Project/site			
Analysis Level for Defaults		County			
Windspeed (m/s)		3.30			
Precipitation (days)		4.80			
Location		32.791194308087086, -115.68507278016418	5.68507278016418		
County		Imperial			
City		Unincorporated			
Air District		Imperial County APCD			
Air Basin		Salton Sea			
TAZT		5605			
ED T		19			
Electric Utility		Imperial Irrigation District			
Gazettity		Southern California Gas			
Appropriation		2022.1.1.13			
1.2 Land Use Types					
; ,L					
Land Use Subtype Size	Unit Lot Acreage	Building Area (sq ft) Landscape Area (sq	Special Landscape	Population De:	Description

7/43

G

Area (sq ft)

ŧ

Alba Peaker Detailed Report, 6/6/2023

I 1 0.00 0.00 48,260 7.10 1000sqft 48.3 General Light Industry

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected 2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

1 ATA. 1.11 4 SHO P 1 Criteria Bollintants (Ib/day for daily tan/w fo

Criteria Pollutants (Ib/day for daily, ton/yr for annual) and	Un/Mit. TOG ROG N	Daily. – – – – Summer (Max)	Unmit. 2.02 1.73 9	Daily, — – – – – – – – – – – Winter (Max)	Unmit. 3.58 2.98 2	Average – – – – – – – – – – – – – – – – – – –	Unit 0.57 0.49 3	1	0.10 0.09	1	101 — 75.0	PN I	
for daily, t	NOX CO	1	9.54 20.8	I	20.2 28.7	L L	3.14 5.15	1	0.57 0.94	1	100 550	No No	
on/yr for an	0 SO2	I	.8 0.03	1	.7 0.05	t	15 0.01	1	94 < 0.005	1	0	1	
inual) and	PM10E	1	0.32	1	0.74	Ê	0.11	1	5 0.02	1	t	1	
	PM10D	1	333	1	333	Ĺ	69.6	1	12.7	1	1	1	
GHGs (lb/day for daily, MT/yr for annual)	PM10T	1	333	t	333	E	69.7	1	12.7	I	150	Yes	
daily, M	PM2.5E	1	0.29	I	0.68	ĺ	0.10	a	0.02	1	I	I	8/43
T/yr for a	PM2.5D	ſ	33.5	1	33.5		7.00	ĩ	1.28	ì	1	1	
annual)	PM2.5T	ļ	33.8	[34.2	l	7.10	1	1.30	1	1	I	
	BCO2	1	I	Ì	ĩ	Î	1	1	1	1	1	1	6
	NBCO2	1	4,987	1	6,165	ſ	1,143	1	189	1	Ĩ	ł	
	CO2T	í	4,987	1	6,165	I.	1,143	1	189	1	1	I	
	CH4	I	0.17	î	0.24	Ê	0.04	1	0.01	1	1	1	
	N2O	I	0.19	1	0.20	I.	0.04	1	0.01	Ĵ.	i.	I	
	œ	ţ.	8.77	1	0.23	I	0.77	I	0.13	1	1	ļ	
	CO2e	I	5,057	ĩ	6,232	Î	1,156	1	191	I	1	t	

Alba Peaker Detailed Report, 6/6/2023

1	Ű	1
1	I	1
1	I	1
1	ï	1
1	l.	1
Ţ	ţ	1
Ì	Ũ	I
I	ľ	l
1	I	Ì
1	Ũ	1
1	150	No
1	I	t
1	I	ţ
I	I	I
Ĩ	550	No
1	100	Ñ
1	75.0 100	No
Exceeds — (Average Daily)	Threshol — d	Unmit.

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	TOG	ROG	XON	co	rear TOG ROG NOX ICO SO2 PM10E		PM10D	D PM10T	PM2 5E PM2 50		PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	ď	CO2e
				1													1	
Summer (Max)		l	I	l	l	1												
2024	2.02	1.73	9.54	20.8	0.03	0.32	333	333	0.29	33.5	33.8	1	4,987	4,987	0.17	0.19	8.77	.5,057
Daily - Winter (Max)	I	I	1	1	Ĩ.	1	1	Ĩ	1	î.	1	I	1	1	1	ī	1	1
2024	3.58	2.98	20.2	28.7	0.05	0.74	333	333	0.68	33.5	34.2	t	6,165	6,165	0.24	0.20	0.23	6,232
Average Daily	I	ļ	Ĩ	l	ī	1	I	1	I	I	Ĩ	1	I	ĩ	ľ	I	Ĩ	I
2024	0.57	0.49	3.14	5.15	0.01	0.11	69.6	69.7	0.10	7.00	7.10	1	1,143	1,143	0.04	0.04	0.77	1,156
Anaual	1	I	Ĩ	1	I	I	I	ī	I	1	Ê	Ľ	Û	Ē	ţ	I	1	1
2024	0.10	0.09	0.57	0.94	< 0.005	0.02	12.7	12.7	0.02	1.28	1.30	t	189	189	0.01	0.01	0.13	191
	peratio	ns Emi:	ssions	Compe	2.400 perations Emissions Compared Against Thi	ainst Tł	nresholds	ds										
G	Pollutar	ts (lb/da	ay for da	ily, ton/y	Crttoria Pollutants (Ib/day for daily, ton/yr for annual) and GHGs (Ib/day for daily, MT/yr for annual)	ual) and	GHGs (I	b/day for	r daily, M	T/yr for	annual)							
Universit.	TOG	ROG	NOX	CO	S02	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	×	CO2e
L MARE C	1	I	t	Ĩ	. L	Т	T	I	Ī	1	1	Ĩ	1	1	ĩ	ţ	t	ĩ

6/6/2023
Report,
Detailed
Peaker [
Alba I

Unmit. Dailv	0.43	1.60	0.45	2.63	< 0.005	0.04	0.58	0.61	0.04	0.09	0.12	0.00	2,381	2,381	0.18	0.02	12.7	2,403
	1	1	ł	j.	I	1	l	I	L	I	Ľ	I	I	I	ĩ	I	L	Ĺ
Unmit.	0.06	1.25	0.44	0.47	< 0.005	0.03	0.58	0.61	0.03	0.09	0.12	0.00	2,368	2,368	0.18	0.02	12.6	2,390
Average Daily (Max)	1	ſ	1	1	1	{	1	1	1	1	1	Ĩ	1	1	ì	ł	i	l
Unmit.	0.24	1.42	0.44	1.48	< 0.005	0.03	0.41	0,44	0.03	0.06	0.10	0.00	2,364	2,364	0.18	0.02	12.6	2,387
Annual (Max)	L	ĩ	t	Ĩ	I	I	Í	I,	I	I	1	I	I	I	I	Î	1	I
Unmit.	0.04	0.26	0.08	0.27	< 0.005	0.01	0.08	0.08	0.01	0.01	0.02	0.00	391	391	0.03	< 0.005	2.09	395
Exceeds (Daily Max)	I	I	I,	L	l	1	Ē	I,	Ī,	Î	I,	l	Ĺ	I	Ľ	Ĩ	ſ	Ĩ
Threshol d	1	137	137	550	150	1	t	150	I	1	551	1	Ĩ	1	1	ï	I	I
Unmit.	I	No	No	Ño	No	ţ	1	No	ł	ł	No No	1	Ĩ	ţ	l	Ĩ	t	ĩ
Exceeds (Average Daily)	1	I	1	1	Ĩ	1	I	Ì	t	1	1	1	Ĭ	1	1	Ĩ	1	1
Threshol d TT	1	137	137	550	150	I	1	150	1	1	551	1	1	Ţ	Ţ	1	1	ł
	1	°N N	No	No	No	ł	1	o Z	1	ł	No	t	I	ĩ	1	1	ļ	I
ŏ	oeratio	ns Err	issions	by Sec	2.Soperations Emissions by Sector, Unmitigate	mitigate	ed											
<u>a</u>	Polluta	nts (lb/c	lay for d	aily, ton/	Creetia Pollutants (lb/day for daily, ton/yr for annual) and	iual) and		(lb/day fc	GHGs (lb/day for daily, MT/yr for annual)	AT/yr for	annal)	1.00						
Sector	TOG	ROG	NOX	00	S02	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	C02T	CH4	N20	œ	COZe
Summer (Max	I.	I	I	ţ	1	ĩ	t	I	Ĺ	1	1	1	1	I	1	1	I	I
KG	0.01	0.01	0.02	0.18	< 0.005	< 0.005	0.58	0.58	< 0.005	0.09	0.09	Ĩ	36.1	36.1	< 0.005	< 0.005	0.14	36.7
									07/07									

Alba Peaker Detailed Report, 6/6/2023

Area	0.37	1.50	0.02	Z.10	< 0.005	<pre>cnn'n ></pre>	ĩ	c00.0 >	900'0 >	I	<0.00 >	1	8.03	8.03	< 0.005	< 0.005	I	8.66
Energy	0.05	0.02	0.42	0.35	< 0.005	0.03	Ĩ	0.03	0.03	Ĩ	0.03	1	2,336	2,336	0.18	0.02	1	2,345
Water	1	ï	1	ī	1	1	1	1	1	1	1	0.00	0.00	00.0	0.00	0.00	1	0.00
Waste	I	Ĩ	1	1	I	1	ī	1	1	Ĩ	1	0.00	0.00	0.00	0.00	0.00	I	0.00
Refrig.	1	Ì	1	1	I	1	1	1	1	1	1	I	I	1	1	1	12.6	12.6
Total	0.43	1.60	0.45	2.63	< 0.005	0.04	0.58	0.61	0.04	60.0	0.12	0.00	2,381	2,381	0.18	0.02	12.7	2,403
Daily, Winter (Max)		ī	I	Ĩ	I	I.	I.	1	1	Ĩ.	-F	1	Î	1	1	1	ľ	1
Mobile	0.01	0.01	0.02	0.11	< 0.005	< 0.005	0.58	0.58	< 0.005	0.09	0.09	1	31.6	31.6	< 0.005	< 0.005	< 0.005	32.1
Area	1	1.22	1	-	I	1	1	I	1	1	1	1	1	1	1	ì	1	1
Energy	0.05	0.02	0.42	0.35	< 0.005	0.03	1	0.03	0.03	1	0.03	1	2,336	2,336	0.18	0.02	1	2,345
Water	ſ	1	1	1	I	1	1	1	T	1	1	0.00	00.0	0.00	0.00	0.00	I	0.00
Waste	1	I.	1	1	1	1	1	l.	1	I	I	0.00	0.00	0.00	0.00	00.00		0.00
Refrig.	I	Ļ	ĩ	1	I	1	T	1	ſ	ł	Ĩ	ľ	I	Ĩ	ſ	1	12.6	12.6
Total	0.06	1.25	0.44	0.47	< 0.005	0.03	0.58	0.61	0.03	0.09	0.12	0.00	2,368	2,368	0.18	0.02	12.6	2,390
Average Daily	1	1	1	1	1	1	1	1	1	1	1	1	1	Ĩ	1	1	I	1
Mobile	0.01	0.01	0.01	0.10	< 0.005	< 0.005	0.41	0.41	< 0.005	0.06	0.06	1	23.9	23.9	< 0.005	< 0.005	0.04	24.3
	0.18	1.39	0.01	1.03	< 0.005	< 0.005	1	< 0.005	< 0.005	1	< 0.005	1	4.26	4.26	< 0.005	< 0.005	I	4.27
Emergy	0.05	0.02	0.42	0.35	< 0.005	0.03	1	0.03	0.03	1	0.03	1	2,336	2,336	0.18	0.02	1	2,345
Water	Ĩ.	1	t	1	1	1	1	1	Ĩ	1	1	0.00	0.00	0.00	0.00	0.00	Ĩ	0.00
		1	1	1	1	ĩ	1	1	I	ľ	1	00'0	0.00	00'0	0.00	0.00	1	00.0
Res a	1	1	1	I	I	1	1	1	Î.	ľ	1	1	ľ	ľ	ĺ	1	12.6	12.6
	0.24	1.42	0.44	1.48	< 0.005	0.03	0.41	0.44	0.03	0.06	0.10	0.00	2,364	2,364	0.18	0.02	12.6	2,387
Andra	1	1	1	ì	1	1	ï	1	l	1	1	1	1	1	ī	1	1	t
Mobile	< 0.005	< 0.005	< 0.005	0.02	< 0.005	< 0.005	0.08	0.08	< 0.005	0.01	0.01	1	3.96	3.96	< 0.005	< 0.005	0.01	4.02
NA NA	0.03	0.25	< 0.005	0.19	< 0.005	< 0.005	ï	< 0.005	< 0.005	1	< 0.005	1	0.70	0.70	< 0.005	< 0.005	1	0.71
Energy	0.01	< 0.005	0.08	0.06	< 0.005	0.01	Ĩ	0.01	0.01	I	0.01	1	387	387	0.03	< 0.005	1	388

Alba Peaker Detailed Report, 6/6/2023

00.0	00.0	2.08	395
1	I	2.08	2.09
0.00	00.00	ľ,	< 0.005
0.00	0.00	I	0.03
0.00	0,00	I	391
0.00	0.00	I	391
0.00	00.0	Ĭ	0.00
1	I	l	0.02
I	ţ	t	0.01
1	Ê	Î	0.01
1	I	I	0.08
1	l	ţ	0.08
		Ĩ	
I	I	l	< 0.005
Ţ	Ę	I	0.27
I	I	Ĩ	0.08
I	l	I	0.26
1	L	Ĩ	0.04
Water	Waste	Refrig.	Total

3. Construction Emissions Details

3.1. Grading (2024) - Unmitigated

	CO2e	1	Ē	Ĩ	2,958	I	0.00	ł	113
	œ	1	t.	1	1	ì	0.00	I	ī
	N2O	Ĭ	Î	1	0.02	1	0.00	I	< 0.005
	CH4	Ē	ľ	1	0.12	1	00.0	Ì	< 0.005
	CO2T	ľ	I	1	2,948	Ĩ	0.00	I	113
	NBCO2	Ĩ	Ĩ	1	2,948	J	0.00	1	113
	BCO2	1	1	I	I	1	1	Ĩ	Ĩ
annual)	PM2.5T	f	I	1	0.49	0.06	0.00	ī	0.02
GHGs (lb/day for daily, MT/yr for annual)	PM2.5D	Ĩ	Ĩ	1	Ū	0.06	0.00	1	1
daily, M	PM2.5E	I	I	1	0.49	I.	0.00	ì	0.02
b/day for	PM10T	ſ	I	I	0.53	0.53	0.00	1	0.02
GHGs (I	PM10D	I	I	1	t	0.53	00.00	J	ļ
lal) and	PM10E	1	1	1	0.53	1	00.0	I	0.02
for annu	S02	Ì	Î	1	0.03	ſ	00.0	I	< 0.005
ly, ton/yr	60	I	1	1	12.1	ť	0.00	Ĺ	0.47
y for dai	NOX	1	1	1	13.2	Î	0.00	I	0.51
its (Ib/da	ROG	ī	Ĩ	1	1.42	ſ	0.00	I,	0.05
Criteria Pollutants (lb/day for daily, ton/yr for annual) and	TOG	1	1	I	d 1.70 ant	<u>_</u>	0.0	1	City of the second of the seco
Criteria	Location TOG	Onsite	Daily, Summer (Max)	Daily, Winter (Max)	Off-Road 1.70 Equipment	Pust From Material Movemen	Const	Avenage	

Dust From Material Movemen;		. 1	1	1	T	1	0.02	0.02	I	< 0.005	< 0.005	ſ	1	I	I	1	ľ	I
Onsite truck	0.00	0.0	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	I	0.00	0.00	0.00	0.00	0.00	0.00
Annual	I	1	1	ĩ	1	I	1	1	1	I	1	1	1	1	1	1	1	1
Off-Road 0.01 Equipment		0.01	0.09	0.08	< 0,005	< 0,005	Î	< 0.005	< 0.005	1	< 0.005	1	18.7	18.7	< 0.005	< 0.005		18.8
Dust From Material Movemen	1	1	1	1	1	1	< 0.005	< 0.005	1	< 0.005	< 0.005	1	1	1	1	1	1	1
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	1	00.0	0.00	0.00	0.00	0.00	0.00
Offsite	1	1	1	1	1	1	î	I	1	Ĩ	1	1_	I	1	1	J	ĩ	I
Daily, Summer (Max)	1	Ĭ.	1	1	1	1	1		1	1	1	1	Î	1	1	1	1	1
Daily, Winter (Max)	I.	Î.	1	1	1	1	1	I.	ſ	Ĺ	1	1	t	I	1	1	1	1
Worker	0.65	0.55	0.88	7.73	0.00	00.00	292	292	0.00	29.4	29.4	1	1,435	1,435	0.07	0.05	0.17	1,453
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Ha	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Avenue	Ĩ	I	1	1	1	1	I	l		1	Ĕ	1	1	1	1	1	1	1
Worker	0.03	0.02	0.03	0.38	0.00	0.00	11.2	11.2	0.00	1.13	1.13	1	59.2	59.2	< 0.005	< 0.005	0.11	60.0
Keller Keller	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Har	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	I	0.00	0.00	0.00	0.00	0.00	0.00
Annual	I	Ι	ī	1	1	I	1	1	I	ľ	I	1	1	1	Î	1	1	1
Mon	< 0.005	< 0.005	0.01	0.07	0.00	0.00	2.04	2.04	0.00	0.21	0.21	I	9.80	9.80	< 0.005	< 0.005	0.02	9.93
Vertige	0.00	0.00	0.00	0.00	00.0	00.0	0.00	0.00	0.00	0.00	0.00	ī	0.00	0.00	0.00	0.00	0.00	0.00
			-						12/12									

0.00 0.00 0.00 00.0 0.00 0.00 Ĩ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 00'0 00.00 0.00 Hauling 0.00

3.3. Building Construction (2024) - Unmitigated

	CO2e		ų		2,796	0.00	I	115	0.00	1	19.0	0.00	1	1	
	Ō	-E	1	1	N		A	.		4	-		,		
	œ	ľ	I	I	I ý	0.0	Ţ	1	0.00		1	0.00	I	1	
	N2O	ţ	ļ	j.	0.02	0.00	I	< 0.005	0.00	1	< 0.005	0.00	1	1	
	CH4	, î	L	1	0.11	0.00	I	< 0.005	0.00	1	< 0.005	0.00	1	Ĩ	
	C02T	T.	I	I	2,786	0.00	1	115	0.00	ļ	19.0	0.00	I	Ì	
	NBCO2	E	ļ.	I	2,786	0.00	I	115	0.00	Ĩ	19.0	0.00	1	1	
	BC02	Ē	Ĩ.	ì	I	1	1	I.	1	1	1	1	1	1	
	annual) PM2.5T	ť	I	1	0.32	0.00	ł	0.01	0.00]	< 0.005	00.0	I	1	
	GHGs (Ib/day for daily, MT/yr for annual) PM10D PM10T PM2.5E PM2.5D PM2.5T	I	I	I	I	0.00	I	1	0.00	1	I	0.00	1	1	
	PM2.5E	Ē	L	1	0.32	0.00	I	0.01	00.0	1	< 0.005	00.0	1	Į	
	Ib/day fo	I	I.	1	0.35	0.00	I	0.01	0.00	T	< 0.005	0.00	ī	J	
		лÈ,	Ĺ	Ĩ	I	0,00	F	I	0.00	1	I	0.00	1	1	
5	ual) and	A.	L	1	0.35	0.00	I	0.01	0.00		< 0.005	0.00	Į	1	
	r for ann so2	Т	ţ.	1	0,03	0.00	ł	< 0.005	0.00	I	< 0.005	0.00	1	I	
	ily, ton/y co	Û		1	12.4	0.00	1	0.51	0.00	1	60.0	0.00	1	I	
	ay for da	1	l	I	9.58	0.00	I	0.39	0.00	Ţ.	0.07	0.00	I	1	
	nts (Ib/di Rog	ı.	ţ	Ĭ.	1.12	0.00	ĩ	0.05	0.00	I	0.01	0.00	1	1	
	Criteria Pollutants (lb/day for daily, ton/yr for annual) and Lecaten TOG ROG NOX CO SO2 PM10E	Onsite	Daily, Summer (Max)	: Daily, — Winter (Max)	Off-Road 1.34 Equipment	Onsite 0.00 truck	Average Daily	Off-Road 0.06 Equipment	Onsite 0.00 truck	Amual -	Off.Road - 0.01 Equipment		office		;

Alba Peaker Detailed Report, 6/6/2023

Daily, Winter (Max)	1	Ĩ	1	j.	ì.	1	Ĩ.	j.	1	T	1	1	Ĩ	1	I	Ē	L	ť
Worker	0.65	0.55	0.88	7.73	0.00	00.0	292	292	0.00	29.4	29.4	I	1,435	1,435	0.07	0.05	0.17	1,453
Vendor	0.04	0.02	0.96	0.36	0.01	0.01	40.9	40.9	0.01	4.13	4.14	1	863	863	0.01	0.12	0.06	899
Hauling	0.00	• 0.00	0.00	00'0	0.00	0.00	0.00	00.0	0.00	0.00	0,00	Ţ	00.0	0.00	0.00	00.0	0.00	0.00
⊳ Average Daily	J.	T	1	1	Ĩ	1	1	1	1	1	1	1	I		1	I	1	1
Worker	0.03	0.03	0.03	0.40	0.00	0.00	12.0	12.0	0.00	1.21	1.21	1	63.4		< 0.005	< 0.005	0.11	64.3
Vendor	< 0.005	< 0.005	0.04	0.01	< 0.005	< 0.005	1.68	1.68	< 0.005	0.17	0.17	1	35.5		< 0.005	< 0.005	0.04	37.0
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	00.0	0.00	0.00	0.00	0.00
Annual	I	Ē	Ē	ľ	I	ţ	I,	I.	ţ	ľ	Ĩ	t	Ĕ	L	t	ľ	I	t
Worker	0.01	< 0.005	0.01	0.07	0.00	0.00	2.19	2.19	0.00	0.22	0.22	ţ	10.5	10.5	< 0.005	< 0.005	0.02	10.6
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	0.31	0.31	< 0.005	0.03	0.03	ţ	5.87	5.87	< 0.005	< 0.005	0.01	6.12
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	:0.00
3.5. B	uildina (Constru	uction (3.5. Building Construction (2024) - Unmitigated	Unmiti	aated												

o.o. duiuirig consulaction (2024) - Unimigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

1						
	CO2e	Ì	1	Ĩ	1,722	0.00
	۵	ij	1	I	1	0.00
	N2O	1	T	I	0.01	0.00
	CH4	î.	Î	ï	0.07	0.00
	CO2T	1	1	1	1,716	0.00
1100	PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T	T	т	Ĩ	1,716	0.00
	BCO2	Ĵ.	1	I	I	1
aliinai	PM2.5T	I	1	I	0.20	0.00
GITUS (ID/UAY IDI UAIIY, INI I/YI IDI ALIIJUAI)	PM2 5D	<u>(1)</u>	I	l	1	0.00
I daliy, r	PM2.5E	T	Ι	I	0.20	0.00
in/uay in	PM10T	T	I	ł	0.22	00.00
	PM10D	Ę	Ι	l	Ι	00.0
nue (ien	PM10E	Ē	Ī	I	0.22	00.0
INTE TOT	S02	t	I	I	0.02	0.00
ily, tomyi	co	1	I	l	5.59	0.00
iy ior ual	NOX	Ē	I	I	5.92	0.00
en/ai) sil	ROG	Ľ	I	I	0.84	0.00
Uniteria Pollutants (Ibroay lor ually, tonyyr lor annual) anu	TOG	Ê	1	ł	1. 1.01 nt	0.00
Uniteria	Location TOG	Orisite	Summer		Offeed : 1.01 Equipment	₽ E E E G

Ually							ß				1	1	1	l	I.	1	1	Î
Off-Road 0.01 Equipment	0.01	0.01	0.08	0.08	< 0,005	< 0.005	1	< 0.005	< 0.005	Ĩ	< 0.005	1	23.5	23.5	< 0.005	< 0.005	Ĩ	23.6
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Annual	1	1	1	1	1	1	1	1	1	1	L	1	1	1	1	1		1
Off-Road Equipment	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	1	< 0.005	< 0.005	1	< 0.005	1	3.89	3.89	< 0.005	< 0.005	1	3.90
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	1	0.00	0.00	0.00	00.0	0.00	00.0
Offsite	ľ	1	1	1	1	1	ī	I	1	1	1	1	1	1	1	1	1	1
Daily, Summer (Max)	1	I	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1
Daily, Winter (Max)	Т	T	1	1	1	I	1	Ĩ	1	1	I	1	1	I	1	1		1
Warker	0.65	0.55	0.88	7.73	0.00	0.00	292	292	0.00	29.4	29.4	ſ	1,435	1,435	0.07	0.05	0.17	1,453
Vendor	0.04	0.02	0.96	0.36	0.01	0.01	40.9	40.9	0.01	4.13	4.14	1	863	863	0.01	0.12	0.06	668
Hauting	0.00	00.0	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Average		I.	1	1	1	Ĩ	1	1	1	1	ĩ	1	I.	1	1	1	I	1
-	0.01	0.01	0.01	0.13	0.00	0.00	4.00	4.00	0.00	0.40	0.40	1	21.1	21.1	< 0.005	< 0.005	0.04	21.4
Velop	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	0.56	0.56	< 0.005	0.06	0.06	1	11.8	11.8	< 0.005	< 0.005	0.01	12.3
Hadding	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_1	0.00	0.00	0.00	0.00	0.00	0.00
G	I.	ſ	1	I	1	Ĩ	t	1	Î	T	l	I	1	1	T	1	1	1
Werker	< 0.005	< 0.005	< 0.005	0.02	00.0	0.00	0.73	0.73	0.00	0.07	0.07	Í	3.50	3.50	< 0.005	< 0.005	0.01	3.55
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.10	0.10	< 0.005	0.01	0.01	1	1.96	1.96	< 0.005	< 0.005	< 0.005	2.04
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2024) - Unmitigated

: ē 1.00 F. 11-11-Cuitorio Doll.

0.00 0.00

1,453	668	0.00	1	129	74.0	00.0	ļ	21.3	12.2	0.00	
0.17	0.06	0.00	Į	0.23	0.08	0.00	1	0.04	0.01	0.00	
0.05	0.12	0.00	1	< 0.005	0.01	0.00	1	< 0.005	< 0.005	0.00	
0.07	0.01	0.00	1	0.01	< 0.005	0.00	j	< 0.005	< 0.005	00.0	
1,435	863	00'0	1	127	70.9	0.00	Ì	21.0	11.7	0.00	
1,435	863	0.00	I	127	70.9	0.00	I	21.0	11.7	00.00	
T	L	Ţ	1	t	I)	1	l	I	ţ	
29.4	4.14	0.00	Į	2.41	0.34	0.00	ĩ	0.44	0.06	00.00	
			1								
0.00	0.01	0.00	1	0.00	< 0.005	00.0	Ţ	0.00	< 0.005	0.00	
292	40.9	0.00	Î	24.0	3.36	0.00	1	4.38	0.61	00.0	
292	40.9	0.00	1	24.0	3.36	0.00	1	4.38	0.61	0.00	
0.00	0.01	0.00	1								
00.0	0.01	00.00	1	0.00	< 0.005	0.00	t	0.00	< 0.005	00.0	:
7.73	0.36	0.00	1	0.80	0.03	0.00	1	0.15	0.01	0.00	
0.88	0.96	00.0	1	0.07	0.08	0.00	1	0.01	0.01	0.00	:
0.55	0.02	0.00	1	0.05	< 0.005	0.00	1	0.01	< 0.005	00.0	
0.65			1	0.06	< 0.005	0.00	Ţ	0.01	< 0.005	00.00	:
Worker	Vendor	Hauling	Average Daily	Worker	Vendor	Hauling	Annual	Worker	Vendor	Hauling	1

3.9. Building Construction (2024) - Unmitigated

	č
	NBCO3
	CUJa
annual)	DA12 ET
T/yr for	DA7 ED
daily, M	DA10 RC
ts (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)	
GHGs (II	CONAC
al) and (
or annua	000
, ton/yr	
for daily	
(Ib/day	
ollutants	
Criteria P	

I							
	CO2e	Ì	I	2,432	0.00	I	2,432
	œ	1	1	T	0.00	1	
	N2O	1	1	0.02	0.00	ï	0.02
	CH4	1	1	0.10	00.0	1	0.10
	CO2T	1	1	2,424	0.00	1	2,424
	NBCO2	1	1	2,424	0.00	I	2,424
	BCO2	1	Ĵ.	Ĩ.	1	1	1
annual)	PM2.5T	1	1	0.28	0.00	j	0.28
CHUS (ID/Day Tor Dally, MI/YE TOF ANNUAL)	PM2.5D	1	1	Ĩ	0.00	1)
r daily, r	PM2.5E	1	1	0.28	0.0	1	0.28
ib/day to	PM10T	1	I	0.31	0.00	1	0.31
	PM10D	j.	Í.	I	0.00	1	I
ual) and	PM10E	1	I.	0.31	0.00	t	0.31
r tor ann	S02	1	Ľ	0.02	0.00	l.	0.02
IIY, ton/y	8	I	Î	6.69	0.00	t	6.69
ay tor da	XON	ĩ	t	7.91	0.00	I	7.91
Its (Ib/de	ROG	Ţ	ţ	0.96	0.00	Ĩ	0.96
Criteria Pollutants (Ib/day for daily, ton/yr for annual) and	TOG	l	T	1.14 int	0.00	Ĩ	d 1.14 ant
Criteria	Location	Onsite	Daily, Summer (Maxy	Off-Road 1.14 Equipment			Off-Road 1.14 Equiliment

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	1	1	1	1	1	1	1		1	É	1		I	1	Ĭ.	I	1	Ĩ.
Off-Road 0.04 Equipment	0.04 M	0.04	0.30	0.26	< 0.005	0.01	1	0.01	0.01		0.01	1	93.0	93.0	< 0.005	< 0.005	1	93.3
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	00.0
Annual	1	1	1	I	1	1	I	1	1	ĩ	1	1	I	1	I	Ĩ	1	t
Off-Road Equipmen	0.01 It	0.01	0.06	0.05	< 0.005	< 0.005	1	< 0.005	< 0.005	1	< 0.005	1	15.4	15.4	< 0.005	< 0.005	1	15.4
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	I	ſ	1	1	I	I	I	1	ľ	t	I	1	Ĩ	ſ	I		P	1
Daily, Summer (Max)	1	I	1	Í	Ì		ľ	Î	1	I	1	L	Ĩ	1	1	1	1	1
Worker	0.84	0.75	0.75	13.7	0.00	0.00	292	292	0.00	29.4	29.4	1	1,700	1,700	0.06	0.05	6.37	1,724
Vendor	0.04	0.03	0.88	0.37	0.01	0.01	40.9	40.9	0.01	4.13	4.14	1	863	863	0.01	0.12	2.40	901
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Winner (Man	1	1	1	ſ	I	1	1	ľ.	I	1	1	1	I	Í	ľ	1	Ĺ	1
Worker	0.65	0.55	0.88	7.73	0.00	0.00	292	292	0.00	29.4	29.4	1	1,435	1,435	0.07	0.05	0.17	1,453
Veto	0.04	0.02	0.96	0.36	0.01	0.01	40.9	40.9	0.01	4,13	4.14	1	863	863	0.01	0.12	0.06	668
Настини	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	00.0
Avelage	1	1	1	1	1	1	I.	1	I	1	1	1	1	1	1	1	1	1
More	0.03	0.02	0.03	0.38	0.00	0.00	11.2	11.2	0.00	1.13	1.13	1	59.2	59.2	< 0.005	< 0.005	0.11	60.0
Vendor	< 0.005	< 0.005	0.04	0.01	< 0.005	< 0.005	1.57	1.57	< 0.005	0.16	0.16	1	33.1	33.1	< 0.005	< 0.005	0.04	34.5
Haurrog	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	i	0.00	0.00	0.00	0.00	0.00	0.00
AnHual	1	1	1	1	1	1	Ĭ	1	1	1	1	1	1	1	Ĩ	L	1	1

9.93 5.72 0.00 0.02 0.00 0.01 < 0,005 < 0.005 00.0 < 0.005 < 0.005 0.00 0.00 9.80 5.48 9.80 5.48 0,00 1 1 1 0.21 0.03 0.00 0.00 0.03 0.21 < 0.005 0.00 0.00 2.04 0.29 0.00 2.04 0.29 0.00 < 0.005 0.00 00.00 < 0.005 0.00 00.0 < 0.005 0.00 0.07 0.01 0.00 0.01 Worker < 0.005 < 0.005 < 0.005 0.00 < 0.005 Hauling 0.00 Vendor

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Criteria Pollutants (Ib/day for daily, ton/yr for annual) and GHGs (Ib/day for daily, MT/yr for annual)

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

	_											1	-	
	CO2e	Ļ	1,842	1,842	1	1,842	1,842	I	305	305			CO2e	
	œ	Ĩ	1	t	ţ	1	1	I	I,	Ĩ		-	œ	
	N20	I	0.02	0.02	Ĺ	0.02	0.02	1	< 0.005	< 0.005			N20	
	CH4	Ĩ	0.13	0.13	ť	0.13	0.13	T	0.02	0.02			CH4	
	CO2T	1	1,834	1,834	t	1,834	1,834	l	304	304			CO2T	
1411	NBCO2	1	1,834	1,834	ţ	1,834	1,834	ſ	304	304			NBCO2	
	BCO2	Ĩ	ĩ	Ê	Ĩ.	I	1	I	Ľ	1			BCO2	
aminan	PM2.51	1	1	Ľ,	L	1	t	ŗ	1	ĺ.		r annual)	PM2.5T	
IN INT IN	PM2.5D	1	1	ţ	E	1	Ê	I	ĩ	I		MT/yr foi	PM2.5D	
i dany, n	PM2.5E	Ï	1	Ĺ	I	1	E	I	1	1		or daily,	PM2.5E	
iningy in	PM10T	1	T	ľ.	I	1	Ĩ,	Ĩ	Ĭ	1		(Ib/day f	PM10T	
2010	PM10D	1	1	Î	Ĩ	1	I	Î	1	1	þ	d GHGs	PM10D	
nine (ieni	PM10E	1	1	Ĩ	I	1	Ľ	1	1	I	nmitigate	nual) and	PM10E	
	S02	. 1	1	ţ	1	I	Ĩ	Ĩ	ì	Ē	Use - Ur	yr for an	S02	
IIIY, IUI IIY	8	1	ŧ	Ī	l	1	Ĩ	I)	l	3y Land	aily, ton/	0)	
ay ion ue	XON	1	1	I	I	1	I	1	1	Ĺ	ssions l	ay for d	XON	
oritoria Foliutarita (ib/day ior daliy, tority) for ariinari) and orios (ib/day ior daliy, ivi ty) for ariinaar	ROG	1	1	I	Ī	Ĩ	ï	ī	1	ţ	4.25 Natural Gas Emissions By Land Use - Unmitigated	Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)	ROG	
	TOG	1	1	I	1	1	I	I	1	1	latural (Polluta	TOG	
	Land Use	Daily, Summer (Max)	General Light Industry	Total	Daily, Winter (Max)	General Light Industry	Total	Annual	General Light	PR		Criteria	Land Usc	KG

Daily, Summer	ł	1	I	1	1	1	1	Ì	1	1	ţ,	1	1	1	1	I	I	L
(Max)																		
- >	0.05	0.02	0.42	0.35	< 0.005	0.03	l	0.03	0.03	I.	0.03	t	502	502	0.04	< 0.005	ĩ	504
Total	0.05	0.02	0.42	0.35	< 0.005	0.03	1	0.03	0.03	1	0.03	1	502	502	-	< 0.005	Ì	504
Daily, Winter (Max)	ł	1	Ì.	I	1	1	1	Ĩ	1	1	1	1	1	1	1	t	1	I
General Light Industry	0.05	0.02	0.42	0.35	< 0.005	0.03	ſ	0.03	0.03	I	0.03	1	502	502	0.04	< 0.005	1	504
Total	0.05	0.02	0.42	0.35	< 0.005	0.03	1	0.03	0.03	1	0.03	1	502	502	0.04	< 0.005	ĩ	504
Annuat	Ĵ.	1	1	1	1	ĵ.	J	1	1	1	ļ	l	I	ĩ	Ţ	1	Ì	I
General Light Industry	0.01	< 0.005	0.08	0.06	< 0.005	0.01	t	0.01	0.01	1	0.01	1	83.2	83.2	0.01	< 0.005	I	83.4
Total	0.01	< 0.005	0.08	0.06	< 0.005	0.01	I	0.01	0.01	ţ	0.01	l	83.2	83.2	0.01	< 0.005	ĩ	83.4
4.3. Ar	4.3. Area Emissions by Source	ssions	by Soı	lrce														
4.3 43 . U	4.374. Unmitigated	ed																

CO2e 1 1 œ £ 1 N2O 1 Ĩ CH4 I 1 CO2T l 1 NBCO2 1 I PM2.5E PM2.5D PM2.5T BCO2 1 1 Critigria Pollutants (Ib/day for daily, ton/yr for annual) and GHGs (Ib/day for daily, MT/yr for annual) 1 1 1 1 1 1 PM10E PM10D PM10T l 1 1 1 I 1 S02 Ĭ. 1 8 I I NOX I. 1 ROG 1.03 TOG I RES NO LEAP KG Squite Ē

Architect ural Coatings	4	0.18	1	1		1	1	1	1	1			1	1		1	1	1
Landsca pe Equipme nt	0.37	0.34	0.02	2.10	< 0.005	< 0.005	I	< 0.005	< 0.005	ĩ	< 0.005	1	8.63	8.63	< 0.005	< 0.005		8.66
Total	0.37	1.56	0.02	2.10	< 0.005	< 0,005		< 0.005 <	< 0.005	•	< 0.005	1	8.63	8.63	< 0.005	< 0.005	f	8.66
Daily, Winter (Max)	ł	1	1	1	1	1	1	i	1				1	Ĩ	1	1	ĩ	1
Consum er Products	1	1.03	1	1	1	1			1	-	j	1	1	I	1	1	1	L
Architect ural Coatings	1	0.18	I	1	1	I	1	Ĭ		1	ľ		1	I	1	1	ī	1
Total	1	1.22	Ĩ	1	1	1	1		1	1	1	I	1	Ĩ	I	1	1	1
Annual	1	1	1	1	1	1	1	i	1	1	1	ĵ	1	1	Ĭ	1	1	1
Consum er Products	I	0.19	1	Í	1	1	1	1	1			1	1	1	1	1	1	1
Architect urant Coatings	1	0.03	1	l	1	Î	Î	1	1	I	1	I	L	1	1	1	1	1
the Bee doca	0.03	0.03	< 0.005	0.19	< 0.005	< 0.005	Ĵ.	< 0.005	< 0.005		< 0.005	I	0.70	0.70	< 0.005	< 0.005	I	0.71
Geo	0.03	0.25	< 0.005	0.19	< 0.005	< 0.005	1	< 0.005	< 0.005	1	< 0.005	_L	0.70	0.70	< 0.005	< 0.005	E	0.71
NAL F	ater En	nission	Z 4. ⋛Water Emissions by Land Use	nd Use	_													
44	4.42. Unmitigated	ted																

23 / 43

4.44. Unmitigated

|--|

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

1 ×. ÷ . 1111 4 1000

1					
	C02e	1	12.6	12.6	t
	œ	Ĩ	12.6	12.6	ï
	N2O	l	1	ľ	I
	CH4	1	L	t	1
	CO2T	1	Ĺ	ĩ	1
	NBCO2	1	Ĩ.	I	1
	PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4	. 1	l,	1	1
- annual)	PM2.5T	Ţ.	I	1	1
GHGs (lb/day for daily, MT/yr for annual)	PM2.5D	1	L	1	1
or daily, I	PM2.5E	(1)	I	ł	I
(lb/day fo	PM10T	Ĩ	Ĩ	Ĩ	J
GHGs	PM10D	1	t	1	1
iual) and	PM10E	Т	I	Ī	T
r for anr	S02	1	Î	J	1
ily, ton/y	00	1	1	1	1
ay for da	ŇON	I	Ĩ	1	1
Criteria Pollutants (lb/day for daily, ton/yr for annual) and	ROG	I,	1	1	I.
Pollutar	TOG	t	1	Ĩ	Ĺ
Criteria	Larid Use			AL	PKG

6/6/2023
Report,
Detailed
Peaker
Alba

4.7.1. Unmitigated

	Ī
1	
_	-
la	
Ĩ	
ar	
đ	
5	
È	
2	
JI V	
ő	
P	
Ň	
p/	
e)	t
S	
Ĭ	
nd GHGs	╞
ⁿ	
e (
ual	
Ы	
r a	
₫	
2	
G	
Y, t	
ail	
P	
9	
ay	Ī
p/q	
=	
nts	t
Jta	
elle	
٦	
Criteria	
Crite	
ō	ſ

Equipme TOG ROG NOX CO SO2 PM10E	Į.	1	Ę	1	Ĩ	1	4. Stationary Emissions By Equipment Type	
S02	ı	1	ſ	1	1	1	luipment ⁻	
	l l	1	i. Î	r T	1	1	Type	
PM10D PM	I I	1	T T	I I	1	1		
PM10T PM2.5E	<u>I</u>	Ĩ	Ĩ	ĩ	I	1		
5E PM2.5D	1	I	T	ţ	1	1		
PM2 5T	I	ĩ	L	I	I	I		
BCO2	1	j.	,]	ĩ	Ĩ	i		
NBCO2 CC	I I	1	1	1 L	I I	I I		
CO2T CH4	t	ļ	1	1	Ĩ	î		
N20	1	1	1	1	ţ	l		
α.	I	I	1	1	1	L		
COZe	t	1	Į	ĩ	I	ĺ.		

Criteria	Pollutan	Its (Ib/da	y for dai	ly, ton/yr	for annu	Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)	3HGs (Ib	/day for	daily, M1	T/yr for a	nnual)							
Equipme TOG nt Type	TOG	ROG	XON	CO	S02	PM10E	PM10D	PM10T	PM10D PM10T PM2.5E PM2.5D		PM2.5T	BCO2	NBCO2 CO2T		CH4	N2O	×	CO2e
Daily, Summer (Max)	Î	I	I	Į.	I	Î	I	Ĩ	*	r I	ſ	1		1	1	1	ī	1
Total	Ī	1	ĵ	1	1	ĩ	1	1	ì	1	1	Ĩ	i I	1	ļ	1	i	1
Daily, Winter (Max)	Î	j.	I	1	1	Ì	1	1	ì	1	1	Ì	1	1	I.	1	1	1
Total	ĩ	I	I	ļ	I	Ī	ţ	l	Ĩ	ī	î	Ĩ	ì	I	Ĩ	t	ī	Ĩ
Annual	Ĩ	I	Ĩ	Ī	I	I	J	1	i	1	1	ĩ	1	1	Ĩ	I	i	ī
Total	Ĩ	1	I	Ĩ	1	1	Ĩ	1	i	, 1	1	ĩ	1	1	Ĩ	t	1	Ĩ
4.9. U	ser Def	ïned Er	nission	s By E(quipme	4.9. User Defined Emissions By Equipment Type												

4.9.1. Unmitigated

Criteria Pollutants (lb/dav for daily, ton/vr for annual) and GHGs (lb/dav for daily. MT/vr for annual)

1							
	CO2e	1	1	1	ļ	I	1
	œ	1	1	l,	Î	Ī	Ĩ
	N2O	Ì	1	Ĩ.	I	ĩ	1
	CH4	1	1	I	I	1	1
	C02T	1	1	1	1	Ī	Ì
	NBCO2 CO2T	ĩ	I	Î	1	1	1
	BCO2	1	L	I	1	1	1
Innual)	PM2.5T	1	ľ	ł	1	Ĵ	1
I /yr tor a	PM2.5D	1	I	ĩ	1	T	T
daily, M	PM2.5E	1	I	1	1	1	I
/day tor	TO105	I	Ĩ	I	T	1	I
al) SOH	PM10D PM10T PM2.5E	I	ī	ī	1		Ľ
) and G	PM10E	1	I		1	Ì	Ĩ
r annua	SO2 F	Ĩ	ì		, I	ĺ	1
ton/yr to	00 00	I			I	I	, T
or daily,	NOX		1	1			
(Ib/day 1	ROG	l)	1	1	ų.	1	1
ollutants		jî	I I	I A	ľ	1	1
Criteria Pollutants (Ib/day for daily, ton/yr for annual) and GHGs (Ib/day for daily, MT/yr for annual)	Equipme TOG nt Typa	Summer –		-		Annual -	
J			- N - N		10	215	25

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

-	
-	7
65	
<u>~~</u>	
~	
_	
C	
ືພ	
_	
- n	
<u>ت</u>	
1220	
-	
>	
5	1
1	
~	
~	
1.0	
_>	•
-	Î
00	
-	
0	
0	
÷	
-	
>	•
- Fr	1
ຸບ	
~	
~	
_	ĺ
-	1
ഗ	
- 10	
(')	
\simeq	
-	
<u> </u>	
U.	
-	
-	
- O	
_	
<u> </u>	
- 67	
-	
Ē	
B	
ua	
laur	
nua	
lanur	
nnua	
annua	
annua	
r annua	
or annual	
or annual	
for annual	
r for annual	
vr for annual	
'vr for annual	
/vr for annual	
n/vr for annual	
on/vr for annual	
on/vr for annual	
ton/vr for annual	
ton/vr for annual	
/, ton/vr for annual	
ly, ton/yr for annual	
ilv. ton/vr for annual	
ailv. ton/vr for annual	
aily, ton/yr for annual	
daily. ton/yr for annual	
daily. ton/yr for annual	
r daily. ton/yr for annual	
or daily, ton/yr for annual	
or daily. ton/yr for annual	
for daily. ton/yr for annual	
r for daily, ton/yr for annual	
v for daily. ton/yr for annual	
av for daily, ton/yr for annual	
lav for daily, ton/yr for annual	
day for daily, ton/yr for annual	
/dav for daily, ton/yr for annual	
o/dav for daily, ton/yr for annual	
b/dav for daily. ton/yr for annual	
(lb/dav for daily, ton/yr for annual	
(lb/dav for daily, ton/vr for annual	
s (Ib/dav for daily, ton/yr for annual	
is (lb/dav for daily, ton/vr for annual	
ts (lb/dav for daily, ton/yr for annual	
nts (lb/dav for daily. ton/vr for annual	
ants (lb/dav for daily, ton/vr for annual	
ants (lb/dav for daily. ton/vr for annual	
tants (lb/dav for daily, ton/vr for annual	
utants (lb/dav for daily, ton/yr for annual	
lutants (lb/dav for daily, ton/vr for annual	
Ilutants (lb/dav for daily, ton/yr for annual	
ollutants (Ib/dav for daily, ton/vr for annual	
collutants (lb/dav for daily, ton/yr for annual	
Pollutants (lb/dav for daily. ton/yr for annual	
Pollutants (Ib/dav for daily, ton/yr for annual	
Pollutants (Ib/dav for daily, ton/yr for annual	
a Pollutants (Ib/dav for daily, ton/yr for annual	
ia Pollutants (lb/dav for daily, ton/vr for annual	
ria Pollutants (Ib/dav for daily, ton/yr for annual	
eria Pollutants (lb/dav for daily, ton/vr for annual	
teria Pollutants (Ib/dav for daily, ton/yr for annual	
iteria Pollutants (Ib/dav for daily, ton/yr for annual	
riteria Pollutants (Ib/dav for daily, ton/yr for annual	
Criteria Pollutants (Ib/dav for daily, ton/yr for annual	
Criteria Pollutants (Ib/dav for daily, ton/yr for annual	
Criteria Pollutants (Ib/day for daily, ton/yr for annual) and GHGs (Ib/day for daily, MT/yr for annu	

	0		ROG		8		PM10E	PM10D	PM10T	: 5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N20	α	CO2e
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>																			
				1	Ĩ		1		1	Ĩ	ĩ	1	Ĩ	1	1	ï	ĩ	1	I
	1			1	I		1		1	1	1	1	1	1	1	1	Ĩ	1	1
				I,	Ē		I		ţ		Ĩ	τ	t	Ĕ	T	1	1	I	1
		- L		1	t	Ĺ	Ĕ	I.	I		Ĕ		Ŭ	Ĩ	ť	E.	I.	ţ	L
				I	I	ī	I	ī	Ĩ	t	Ĩ	I	I	ĺ	1	I	ĩ	ţ	L

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

-
(U
_
=
<u> </u>
C
=
, MT/yr for ann
_
0
≝
-
_
~
<
F
2
_
~
÷.
ιu.
77
-
· •
5
<u> </u>
-
(lb/day for daily,
-
(C)
-
0
0
-
-
S
10
C)
\sim
T
d GHGs (Ib
(D
U.
-
77
<u> </u>
-
- cu
200
-
- CU
4
Ľ
nua
มทนธ
nnua
annua
annua
r annua
or annua
or annua
for annua
r for annua
/r for annua
yr for annua
Nyr for annua
n/yr for annua
on/yr for annua
on/yr for annua
ton/yr for annua
, ton/yr for annua
y, ton/yr for annua
ly, ton/yr for annua
illy, ton/yr for annua
aily, ton/yr for annua
daily, ton/yr for annua
daily, ton/yr for annua
r daily, ton/yr for annua
or daily, ton/yr for annua
or daily, ton/yr for annua
for daily, ton/yr for annua
/ for daily, ton/yr for annua
y for daily, ton/yr for annua
ay for daily, ton/yr for annua
lay for daily, ton/yr for annus
day for daily, ton/yr for annua
/day for daily, ton/yr for annua
b/day for daily, ton/yr for annua
lb/day for daily, ton/yr for annua
(lb/day for daily, ton/yr for annua
(lb/day for daily, ton/yr for annua
s (lb/day for daily, ton/yr for annus
ts (lb/day for daily, ton/yr for annua
nts (Ib/day for daily, ton/yr for annus
ints (lb/day for daily, ton/yr for annus
ants (lb/day for daily, ton/yr for annus
tants (lb/day for daily, ton/yr for annus
itants (lb/day for e
itants (lb/day for e
llutants (lb/day for e
llutants (lb/day for e
llutants (lb/day for e
llutants (lb/day for e
Pollutants (lb/day for e
Pollutants (lb/day for e
Pollutants (lb/day for e
Pollutants (lb/day for e
Pollutants (lb/day for e
Pollutants (lb/day for e
Pollutants (lb/day for e
Pollutants (lb/day for e
Pollutants (lb/day for e
ollutants (Ib/day for e

	CO2e	1	l	Į.	1	I	Ì	
	, œ	I	Ĩ	ť	ī	Ĩ	1	
	N20	1	T	t	I	1	ļ	
	CH4	1	I	ţ	Î	Ĩ	1	
	CO2T	ī	Ĩ	Ĩ	I	ĩ	1	
	NBCO2 CO2T	1	I	I	I	1	1	
	PM2 5T BCO2	1	I	ŀ	Ĩ	Ĩ	Ĩ	
innual)	PM2.5T	1	Ê	ī	1	1	1	
GHGs (lb/day for daily, MT/yr for annual)	M2.5D	1	I	t	1	1	t	
daily, MT	PM10T PM2.5E PM2.5D	1	i	Î	ì	Ť	Î	
day for c	M10T							
HGs (Ib/	PM10D	1	l	1)	1	1	
ЪР		1	I	1	1	I	I,	
iual) an	PM10E	j.	I	Ĩ	I	1	I	
r for anr	\$02	1	ī	1	1	l	ſ	
ly, ton/y	8	T	1	1	1	Ľ	ł	
y for dai	NOX	Ĩ	ī	I	1	Ĕ	ĩ	
Criteria Pollutants (lb/day for daily, ton/yr for annual) and (ROG	ı	1	1	1	ľ,	I	
utan	(7)							
I Poll	TOG	T_	Ι	Ĩ	1	I	Ĩ	
Criteria	Land Use	Summer	Rago		Total	Anny	Tol	

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

1 ÷ 4 יישאיןען אטרע שנייש איין איייע 0 (10) 4 Criteria Pollutants /Ih/day for daily to he

on/yr tor annual) and	D SU2 PMIDE PMIDD	E E E	1	I I I I	I I I I)) 1	1 1 1 1	1	I I I I I				1 1 1 1 1		1 1 1 1 1 1 1			1 1 1 1 1 .		
or daily, M	A101 PM2 5E	1 1]	1	t t	1	т 1	1	1	l L	1	1	1	1	1	1	1	1	1	t t
0000	PM2.51 BC02	r I	j	1	1	1	T L	1	1	l	1		1	Ĩ	1	l	Î I	1	1	I I
	3002	1	1	1	I I	j j	t t]	Î Î		I		1 1	1	1	1	1	1		1
	4	I	1	1	r t	1	I I		1	E E	t t	1	1	1	1	I	1	1 1	1	
		1	1	ļ	t t	1	ľ		1		1	1	1	1	1	1	Ì	1		1

Sequest		Ì.	1	t	ſ	l	ï	1	T	Ĩ	ŧ	Ē	Ē	Ę	1	Ĩ	Ľ	
Subtotal		Ĩ	Ľ	I	I	I	l	ţ	t	Ĩ	I	1	Ĩ	I	I	Ĩ	1	
Remove — d	I	Ĩ	I	Ĩ.	1	1	Ĩ	ţ	I	. I	1	I	Ī	1	1	1	1	
Subtotal		Ĩ	I	I	L	t	Ĩ	l	I	Ĕ	I	I	Î	Ţ	I	Ĩ	I	
1 1		Ì	1	I	I	I	Ĩ	Į	1	Ĩ	į	ī	Ĩ	Ĭ	1	Ĩ	1	

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Dale	End Date	Days Per Week	Work Days per Phase	Phase Description
Grading	Grading	1/1/2024	1/18/2024	5.00	14.0	ï
Pile Installation	Building Construction	1/19/2024	2/8/2024	5.00	15.0	1
Fence Installation	Building Construction	2/9/2024	2/15/2024	5.00	5.00	1
Electrical Installation	Building Construction	2/16/2024	3/28/2024	5.00	30.0	ľ
Container Installation	Building Construction	3/29/2024	4/17/2024	5.00	14.0	I

5.2. Off-Road Equipment

С							
Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Fag Fag	Tractors/Loaders/Backh Diesel oes	Diesel	Average	2.00	B.00	84.0	0.37
Grading	Dumpers/Tenders	Diesel	Average	1.00	8.00	16.0	0.38
Grading	Scrapers	Diesel	Average		8.00	423	0.48
Grading	Rollers	Diesel	Average	1.00	8.00	36.0	0.38
Grading	Off-Highway Trucks	Diesel	Average	1.00	1.00	376	0.38
G							

Grading	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Pile Installation	Bore/Drill Rigs	Diesel	Average	3.00	8.00	83.0	0.50
Pite Installation	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Pile Installation	Off-Highway Trucks	Diesel	Average	1.00	8.00	376	0.38
Pile Installation	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Fence Installation	Air Compressors	Diesel	Average	1.00	8.00	37.0	0.48
Fence Installation	Generator Sets	Diesel	Average	2.00	8.00	14.0	0.74
Fence Installation	Off-Highway Trucks	Diesel	Average	1.00	8.00	376	0.38
Electrical Installation	Tractors/Loaders/Backh Diesel oes	Diesel	Average	3.00	8.00	84.0	0.37
Electrical Installation	Generator Sets	Diesel	Average	6.00	8.00	14.0	0.74
Electrical Installation	Air Compressors	Diesel	Average	5.00	8.00	37.0	0.48
Electrical Installation	Off-Highway Trucks	Diesel	Average	1.00	8.00	376	0.38
Electrical Installation	Forklifts	Diesel	Average	1.00	8.00	82.0	0.20
Container Installation	Cranes	Diesel	Average	1.00	8.00	367	0.29
Container Installation	Off-Highway Trucks	Diesel	Average	1.00	8.00	376	0.38
Contalner Installation	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
6.3 Constructio	Mobiolog						
5.3 Unmitigated							
OHOM Name	Trin Type	a	One-Way Trips ner Day		Miles per Trip	Vehicle Mix	
RI	46. 4						

: c				
Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Grading	1	1	1	1
Grading	Worker	100	20.0	LDA,LDT1,LDT2
Greeng	Vendar	1	20.0	HHDT,MHDT
Grading	Hauling	0.00	20.0	ННDT
Canada	Onsite truck	1	ſ	HHDT
PierAstallation	1	1	1	I
		64 / 40		

32 / 43

Residential Interior Area Coated Residential Exterior Area Coated Non-Residential Interior Area (sq ft)

Place Name

Parking Area Coated (sq ft)

Non-Residential Exterior Area Coated (sq ft)

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Grading	I	I	14.0	0.00	1

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	Other	50%	50%

5.7. Construction Paving

	% Aspha 0%	d (acres)	-and Use General Light industry
Area Paved (acres) % Asphalt % 0.00 0.00			
se Asphalt % Asphalt	%0	0	
	% Asphalt	d (acres)	se

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
S ^B M	0.00	457	0.03	< 0.005
5. Soperational Mobile Sources	ources			
5. 30. Unmitigated				

33 / 43

10,317

0.00

VMT/Sunday

VMT/Saturday

VMT/Weekday

Trips/Year

516

0.00

0.00

1.98

General Light Induery

Trips/Saturday

Trips/Weekday

Land Use Type

0.00

39.6

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq.ft)	Non-Residential Interior Area Coated (sq ft)	(sq ft) Non-Residential Interior Area Coated Non-Residential Exterior Area Coated Parking Area Coated (sq ft) (sq ft)	Parking Area Coated (sq ft)
0	0.00	72,390	24,130	Τ

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	daylyr	0.00
Summer Days	day/yr	180
5.11. Operational Energy Consumption		

5 ю.

5.11.1. Unmitigated

Electricity (kWh/yr) and C	Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)	d Natural Gas (kBTU/yr)			
Land Use	Electricity (kWh/yr)	co2	CH4	N2O	Natural Gas (kBTU/yr)
General Light Industry	1,465,870	457	0.0330	0.0040	1,567,707
5.0. Operational Wat	5.00. Operational Water and Wastewater Consumption	insumption			
5. <mark>这</mark> 1. Unmitigated					
Land Use		Indoor Water (gal/year)		Outdoor Water (gal/year)	
Goodral Light Industry		0.00		0.00	

5.13. Operational Waste Generation

5.13.1. Unmitigated

	Month Handward	Commention (MMP/norr)
General Light Industry	0.00	Ĩ

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate Service Leak Rate		Times Serviced
General Light Industry	Other commercial A/C and heat pumps	R-410A	2,088	0.30	4.00	4.00	18.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Fer Day	Horsepower	
5.16. Stationary Sources	sources					
5. 8.1. Emergency (5. 8.1. Emergency Generators and Fire Pumps	sdung				
	Filel Type	Number per Dav	Hours per Day	Hours per Year	Horsepower	Load Factor

Number per Day

Fuel Type

Equipment Type 5

couloment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day) Annual Heat Input (MMBtu/yr)	Annual Heat Input (MMBtu/yr)

ų Ċ E 47 11

5.17. User Defined			
Equipment Type		Fuel Type	
1		, 1	
5.18. Vegetation			
5.18.1. Land Use Change			
5.18.1.1. Unmitigated			
Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
5.18.1. Biomass Cover Type			
5.18.1.1. Unmitigated			
Biomass Cover Type	Initial Acres	E.	Final Acres
5.18.2. Sequestration			
5. 1812.1. Unmitigated			
Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
630 limate Risk Detailed Report	Report		
6. Climate Risk Summary			
Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported emissions will continue to rise strongly through 2050 and then plateau around 2100.	tions for four hazards are reported below for your 50 and then plateau around 2100.	project location. These are under Repres	Calendapt midcentury 2040-2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.
Climote Hazard	Result for Project Location		Unit

Alba Peaker Detailed Report, 6/6/2023		F			res from observed infall if received over a full 5), and consider different ir simulations make infall and temperature istorical data of climate, infall and temperature infall and temperature	core							
lba Peaker Detaile	eme heat	annual days with precipitation above 20 mm	on depth	Irned	um/minimum temperatu i) by 3.7 mi. be light to moderate rai average under RCP 8.5 for the grid cell. The fou 2), Range of different ra cCP 8.5), and consider h es for the grid cell. The 1 2), Range of different ra	Vulnerability Score	N/A	N/A	N/A	N/A	N/A	N/A	N/A
A	annual days of extreme heat	annual days with p	meters of inundation depth	annual hectares burned	Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed theorical data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ?4 an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (rm) by 3.7 m. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (fladGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (fladGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM	Adaptive Capacity Score	0	N/A	N/A	N/A	N/A	0	N/A
	27.6	0.00	0.00	0.00	Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th histori historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ³ / ₄ day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 ml. Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as report increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range different assumptions about expected rainfall and temperature are: Warmer/drife (HadGEM2-ES), Cooler/wetter (CNRM-CM5), A possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 fect (ft) by 164 ft. Wildfile data are for the grid cell in which your project are located. The projections are from UC Davis, as reported In Cal-Adapt (vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range i different assumptions about expected rainfall and temperature are: Warmer/drifer (HadGEM2-ES), Cooler/wetter (CNRM-CM5), A possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. 6.2. Initial Climate Risk SCOFG	Sensitivity Score	0	N/A	N/A	N/A	NA	0	N/A
					are for grid cell in which your pr amble from Cal-Adapt, 2040–20 grid cell in which your project a sriod of 2 to 4 hours. Each grid ell in which your project are loc with extreme storm events. Use is 50 meters (m) by 50 m, or a is 50 meters (m) by 50 m, or a ich your project are located. T rge (> 400 ha) fire history. Usei rainfall and temperature are: V is 6 kilometers (km) by 6 km, c SCOTES	Exposure Score	-	N/A	N/A	N/A	N/A	0	N/A
	Temperature and Extreme Heat	Extreme Precipitation	Sea Level Rise	Wildfire	Temperature and Extreme Heat data are for grid cell in which your project are located. The pro- historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8. Extreme Precipitation data are for the grid cell in which your project are located. The threshold day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) b Sea Level Rise data are for the grid cell in which your project are located. The projections are 1 increments of sea level rise coupled with extreme storm events. Users may select from four mo different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-E possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft Wildfire data are for the grid cell in which your project are located. The projections are from UC vegetation, population density, and large (> 400 ha) fire history. Users may select from four mo different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-E possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. 6.2. Initial Climate Risk Scores	Climate Hazard	Temperature and Extreme Heat	Extreme Precipitation	Sea Level Rise	Wildfire	Flooging	Dreught	Showpack Reduction

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

ന
\sim
ä
$\widetilde{\sim}$
2
6/6/202
-
യ
÷
5
Ξ.
ode
Ð.
Ω
ĕ
≓
Ξ.
5
d)
ā.
Ð
- -
-
ea
~
σ.
lba
요.
¥

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	5	-	-	2
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	NA	NA	N/A	N/A
Wildfire	N/A	NA	N/A	N/A
Flooding	N/A	NA	N/A	N/A
Drought		Ŧ	-	2
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	NIA	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.00 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	r
Added	58.3
MAR	38.1
AQLDPM	5.72
Dryking Water	68.6
Led Risk Housing	41,2
38	38 / 43

0	0.00 	14.4	2.20	1	78.0	95.2	7.35	99.5	80.0	1	90.6	83.9	5.49	ļ	64.5	51.4	90.5	81.2	96.6		community conditions compared to other census tracts in the state.	Result for Project Census Tract	Ĩ	20.96753497	1.93763634	22.3662261	50 / AS
Bactividas		loxic keleases	Traffic	Effect Indicators	CleanUp Sites	Groundwater	Haz Waste Facilities/Generators	Impaired Water Bodies	Solid Waste	Sensitive Population	Asthma	Cardio-vascular	Low Birth Weights	Socioeconomic Factor Indicators	Education	Housing	Linguistic	Poverty	Undernployment	7.2 Healthy Places Index Scores	The aximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.	Indipator	Economic	Above Poverty	Employed	IH UNIT OF THE O	

3

39 / 43

Education	1
Bachelor's or higher	24.38085461
High school enrollment	100
Preschool enrollment	39.0606955
Transportation	
Auto Access	40.90850764
Active commuting	78.6603362
Social	1
2-parent households	59.96407032
Voting	36.99473887
Neighbarhaad	1
Alcohol availability	72.73193892
Park access	8.533299115
Retail density	3.785448479
Supermarket access	12.52406005
Tree canopy	1.860644168
Housing	1
Homeownership	48.19709996
H <mark>ousi</mark> ng habitability	56.46092647
Low-Inc homeowner severe housing cost burden	79.66123444
Low-inc renter severe housing cost burden	47.27319389
Urepowded housing	38.58591043
Heath Outcomes	I
Instruct adults	40.25407417
Activities	0.0
Asthma ER Admissions	6.4
Historia Blood Pressure	0.0

Cancer (excluding skin)	0.0
Asthma	0.0
Coronary Heart Disease	0.0
Chronic Obstructive Pulmonary Disease	0.0
Diagnosed Diabetes	0.0
Life Expectancy at Birth	22.5
Cognitively Disabled	41.3
Physically Disabled	20.3
Heart Attack ER Admissions	5.3
Mental Health Not Good	0.0
Chronic Kidney Disease	0.0
Obesity	0.0
Pedestrian Injuries	59.8
Physical Health Not Good	0.0
Stroke	0.0
Health Risk Behaviors	I
Binge Drinking	0.0
Current Smoker	0.0
Net the for Physical Activity	0.0
Cimite Change Exposures	1
Witten Risk	0.0
Sumundation Area	0.0
Cuidren	26.6
Eddity	44.5
Endlish Speaking	14.8
Foregon-born	56.7
Ordeor Workers	4.7

Climate Change Adaptive Capacity	1
Impervious Surface Cover	87.7
Traffic Density	18.5
Traffic Access	23.0
Other Indices	I
Hardship	75.1
Other Decision Support	ť
2016 Voting	0.0

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	80.0
Healthy Places Index Score for Project Location (b)	20.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state. b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state. 7. Thealth & Equity Measures

Notes the selected. 7.50 Evaluation Scorecard

Heads & Equity Evaluation Scorecard not completed.

No Health & Equity Custom Measures created.

830 Ser Changes to Default Data

6/6/2023
Report,
Detailed
Peaker
Alba

÷

Screen	Justification
Land Use	Approximately 48,260 square feet inverters and BESS containers 7.1 acre project site
Construction: Construction Phases	Construction equipment and schedule provided by construction team
Construction: Off-Road Equipment	Construction equipment provided by construction tearn Bobcat modeled as tractor/loader/backhoe Water truck (off-highway truck) and generator (construction office) added to each phase Forklift added to electrical phase for cables/conduit deliveries
Construction: Trips and VMT	50 workers per day (100 one-way trips) Maximum of 7 deliveries per day (14 one-way trips) All trip lengths increased to 20 miles
Construction: On-Road Fugitive Dust	All roads used to access project site are paved. ICAPCD recommends modeling 90 percent paved roads during construction activities.
Operations: Vehicle Data	Unmanned/remote facility. 1 round trip (0.041 trips/ksf) modeled to account for any routine maintenance. Trip length increased to 20 miles.
Operations: Road Dust	Used same paved road % as construction workers
Operations: Water and Waste Water	Unmanned facility, no water use
Operations: Solid Waste	Unmanned facility, no solid waste

ATTACHMENT 2

Fugitive Dust Emission Reduction Calculations

Alba Peaker - Fugitive Dust Emission Reduction Calculations

Measure Water Exposed Areas Speed Limit	PM Reduction 50% 44%						
GRADING					BU2 (D	D142 6T	
On-Site Emissions, No Dust Control	PM10E	PM10D	PM10T	PM2 5E	PM2.SD	PM2.5T	
Off-Road Equipment	0.53		0.53	0.49		0,49	
Dust From Material Movement		0,53	0.53		0.06	0.06	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	
Total	0.53	0.53	1.06	0.49	0.06	0.55	
Off-Site Emissions, No Dust Control	0.00	291.86 292.39	291.86 292.92	0.00 0,49	29,36 29,41	29.36 29.90	
TOTAL	0,53	292,39	232.32	0,40	23241	20100	
On-Site Emissions, With Dust Control							
Off-Road Equipment	0.53		0,53	0.49		0.49	
Dust From Material Movement		0,27	0.27		0.03	0.03	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	
Total	0,53	0.27	0,80	0.49	0.03 8.22	0.52 8,71	
Off-Site Emissions, With Dust Control	0.00 0.53	81.72 81,99	81,72 82.52	0,49 0,98	8.22	9,23	
TOTAL	0.53	66,10	02.72	0.50	0,25	2,2	
PILE INSTALLATION	PM10E	PM10D	PM10T	PM2.5E	PM2,5D	PM2.5T	
On Site Emissions No Dust Control	0.35	0.00	0.35	0.32	0.00	0.32	
On-Site Emissions, No Dust Control Off-Site Emissions, No Dust Control	0.01	332,75	332.77	0.01	33.48	33,50	
TOTAL	0.36	332,75	333.12	0.34	33,48	33,82	
101AL	• • -						
On-Site Emissions, With Dust Control	0.35	0.00	0.35	0.32	0.00	0.32	
Off-Site Emissions, With Dust Control	0,36	93.17	93.53	0.01	9,38	9.39	
TOTAL	0.71	93.17	93.89	0,34	9,38	9.71	
FENCE INSTALLATION	DI 110E	D) (10D)	DMINT		PM2,5D	PM2,5T	
	PM10E	PM10D 0.00	PM10T 0.22	PM2,5E 0.20	0,00	0.20	
On-Site Emissions, No Dust Control	0.22	332,75	332,77	0,20	33,48	33,50	
Off-Site Emissions, No Dust Control TOTAL	0.23	332.75	332.99	0.21	33.48	33.70	
TOTAL	0.23	55615	550.55				
On-Site Emissions, With Dust Control	0.22	0.00	0.22	0 20	0.00	0,20	
Off-Site Emissions, With Dust Control	0,23	93,17	93.40	0.01	9 38	9.39	
TOTAL	0,45	93.17	93.62	0.21	9.38	9.59	
ELECTRICAL INSTALLATION				DL 12 55	DL ID CC	DM (3 CT	
	PM10E	PM10D	PM10T	PM2.SE	PM2,5D 0.00	PM2,5T 0.67	
On-Site Emissions, No Dust Control	0.73	0.00	0.73 332.77	0.67 0.01	33,48	33.50	
Off-Site Emissions, No Dust Control TOTAL	0.01 0.74	332.75 332.75	333.49	0.68	33,48	34.16	
TOTAL	0.74	22212	555.45	0.00	55,15	5 1110	
On-Site Emissions, With Dust Control	0.73	0.00	0,73	0 67	0.00	0.67	
Off-Site Emissions, With Dust Control	0 74	93.17	93,91	0.01	9.38	9.39	
TOTAL	1,47	93.17	94.64	0,68	9,38	10.06	
CONTAINER INSTALLATION				-	DL (0.75	DMD FT	
	PM10E	PM10D	PM10T	PM2.SE	PM2.5D	PM2.5T	
On-Site Emissions, No Dust Control	0.31	0.00	0,31	0.28	0.00 33.48	0.28 33,50	
Off-Site Emissions, No Dust Control	0.01	332,75	332.77 333.07	0.01	33.48 33.48	33,50	
TOTAL	0.32	332,75	333.07	0,23	10.40	20,10	
On-Site Emissions, With Dust Control	0 31	0.00	0,31	0.28	0.00	0.28	
Off-Site Emissions, With Dust Control	0.32	93,17	93.49	0.01	9.38	9.39	
TOTAL	0.62	93,17	93.79	0.29	9.38	9,67	

RECON

Biological Resources Report for the Alba Peaker Battery Energy Storage System Project Imperial County, California

Prepared for Z Global 750 W. Main Street El Centro, CA 92243 Contact: Ramon Gonzalez

Prepared by RECON Environmental, Inc. 3111 Camino del Rio North, Suite 600 San Diego, CA 92108 P 619.308.9333

RECON Number 10324 May 24, 2023

Geny Schild

Gerry Scheid, Senior Biologist

TABLE OF CONTENTS

Acron	yms ar	nd Abbreviations	ii						
1.0	Introd	duction							
	1.1	Project Location							
	1.2	Project Description	.1						
2.0	Meth	ods	.1						
3.0		y Results/Existing Conditions							
	3.1	Physical Characteristics							
	3.2	Biological Resources	5						
	3.3	Sensitive Biological Resources	. 8						
4.0	Proje	ct Impact Analysis	15						
5.0	Avoid	lance Measures and Monitoring Recommendations	17						
6.0	Refer	References Cited							

FIGURES

1:	Regional Location	. 2
2:	Project Location on USGS Map	
3:	Project Location on Aerial Photograph	
4:	Soils	
5:	Vegetation Communities	
6:	Project Impacts	

TABLES

1.	Wildlife Species Observed	8
2:	Sensitive Plant Species Observed or with the Potential to Occur	
3:	Sensitive Wildlife Species Observed or with the Potential to Occur	14

PHOTOGRAPHS

1:	View of Desert Saltbush Scrub Looking South	9
1. D	View of Desert Saltbush Scrub Showing Size of Big Saltbush (Atriplex lentiformis)	9
2:	View of Desert Satbush Scrub Showing Size of Sig Satbush Charles Charles	10
	View of Disturbed Land on Northern Portion of Site Looking North	
4:	View of Disturbed Land on Northern Portion of Site Looking West	10

i

Acronyms and Abbreviations

BESS	Battery Energy Storage System
CDFW	California Department of Fish and Wildlife
CEQA	California Environmental Quality Act
CFR	Code of Federal Regulations
CNDDB	California Natural Diversity Database
CNPS	California Native Plant Society
ESA	Endangered Species Act
MBTA	Migratory Bird Treaty Act
project	Alba Peaker Battery Energy Storage System Project
RECON	RECON Environmental, Inc.
USDA	U.S. Department of Agriculture
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geological Survey

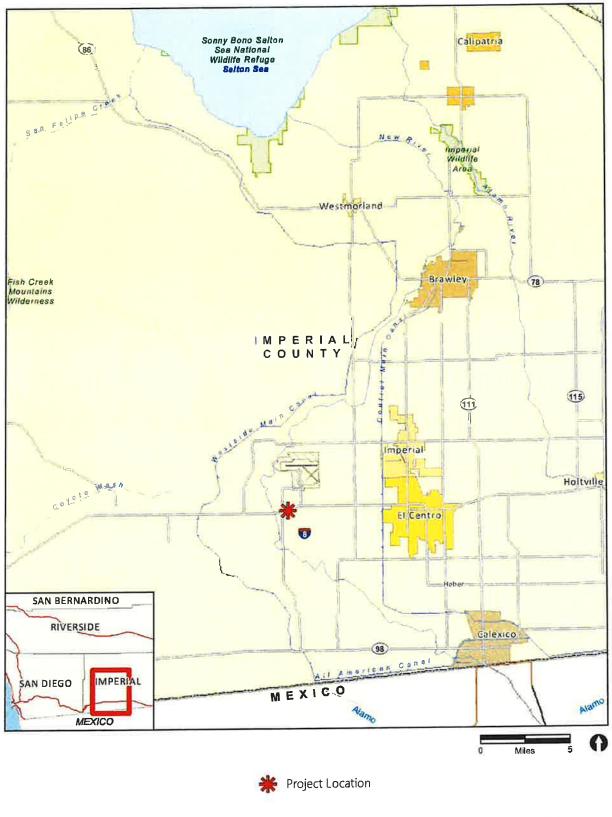
Alba Peaker Battery Energy Storage System Project

1.0 Introduction

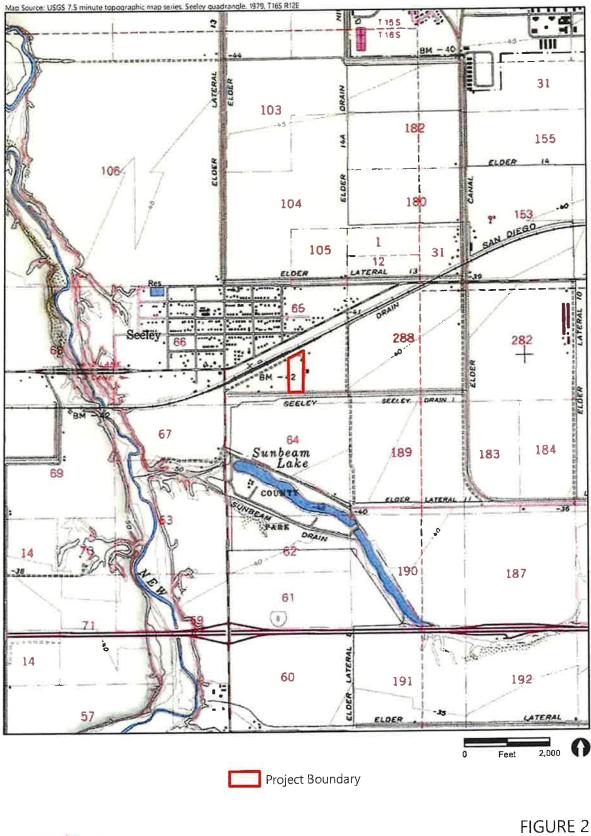
This biological resource report was prepared by RECON Environmental, Inc. (RECON) for the Alba Peaker Battery Energy Storage System (BESS) Project (project). The purpose of this biological resources report is to (1) document the existing biological conditions within the project survey area; (2) evaluate the survey area for the potential to support sensitive biological resources; (3) provide an analysis of potential impacts associated with the proposed project; and (4) provide a discussion of potential avoidance, minimization, and mitigation measures that may be required to reduce potential impacts to sensitive biological resources to below a level of significance.

1.1 Project Location

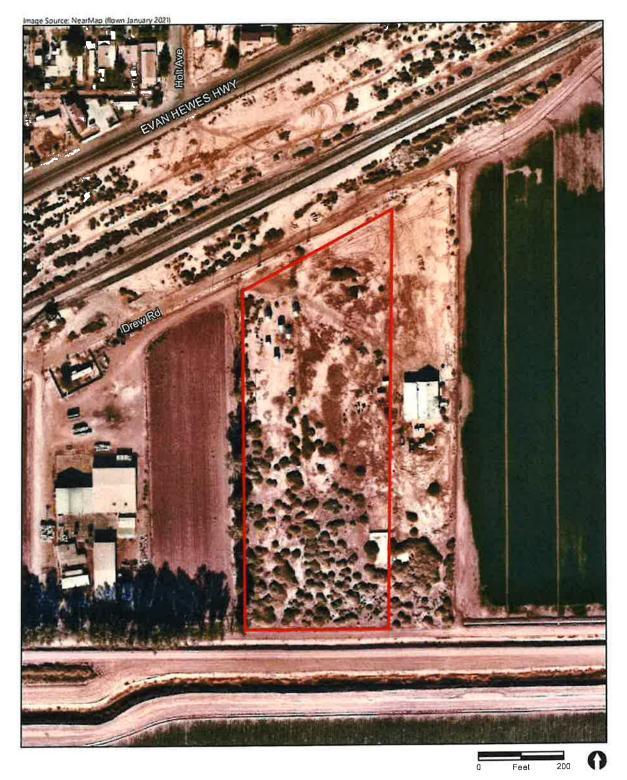
The project site is in the unincorporated community of Seeley in Imperial County, approximately 7.5 miles west of the city of El Centro and approximately one mile north of Interstate 8 (Figures 1 and 2). The project site is comprised of Assessor's Parcel Number (APN) 051-420-042, totaling approximately 7.1 acres. The project is located to the east of Drew Road, south of West Evan Hewes Highway, and north of the Seeley Drain (Figure 3). Land uses surrounding the project site consist of active agriculture to the west and south, disturbed land and railroad tracks to the north, and an agricultural facility and fields to the east.


1.2 Project Description

The project would construct and operate a 100-megawatt BESS that would connect to an existing 92-kilovolt gen-tie line. The BESS facility would include battery containers and storage sites, a control room, and associated facilities surrounded by fencing. The BESS would store energy generation from the electrical grid, and optimally discharge that energy back into the grid as firm, reliable generation and/or grid services.


2.0 Methods

Biological resource data for the project resulted from a combination of literature review and a general biological survey. The general biology survey occurred on March 24, 2023, under clear skies, mild winds, and temperatures between 70–72 degrees Fahrenheit. Plant and wildlife species lists were compiled along with mapping of vegetation communities on a recent aerial photograph of the site.


Zoological nomenclature is in accordance with the Checklist of North and Middle American Birds (Chesser et al. 2022); Scientific and Standard English Names of Amphibians and Reptiles of North America North of Mexico (Crother et al. 2017); the Revised Checklist of North American Mammals North of Mexico (Baker et al. 2003). Floral nomenclature for common plants follows Baldwin (2012) as updated by the Jepson Online Interchange (University of California 2023) and for sensitive plants the California Native Plant Society online database (CNPS; 2019).

RECON M:\/OBS6\10324\common_gis\MXD\fig1 mxd 5/15/2023 fmm FIGURE 1 Regional Location

RECON M:UOBS6\10324\con\mon_gis\MXD\fig2_USGS mxd 03/08/2023 bma FIGURE 2 Project Location on USGS Map

RECON M:\JOBS5\10324\continon_gis\MXD\fig3_aerial.mxd 5/15/2023 (mm FIGURE 3 Project Location on Aerial Photograph

RECON conducted an analysis of existing sensitive species data recorded within one mile of the project site. This analysis included searches of the California Natural Diversity Database (CNDDB; California Department of Fish and Wildlife [CDFW] 2023a), and the All Species Occurrences Database (U.S. Fish and Wildlife Service [USFWS] 2019. Additional maps, imagery, and databases reviewed included U.S. Geological Survey (USGS) topographic maps (1979), soils survey maps (U.S. Department of Agriculture [USDA] 1981), and online aerial images.

3.0 Survey Results/Existing Conditions

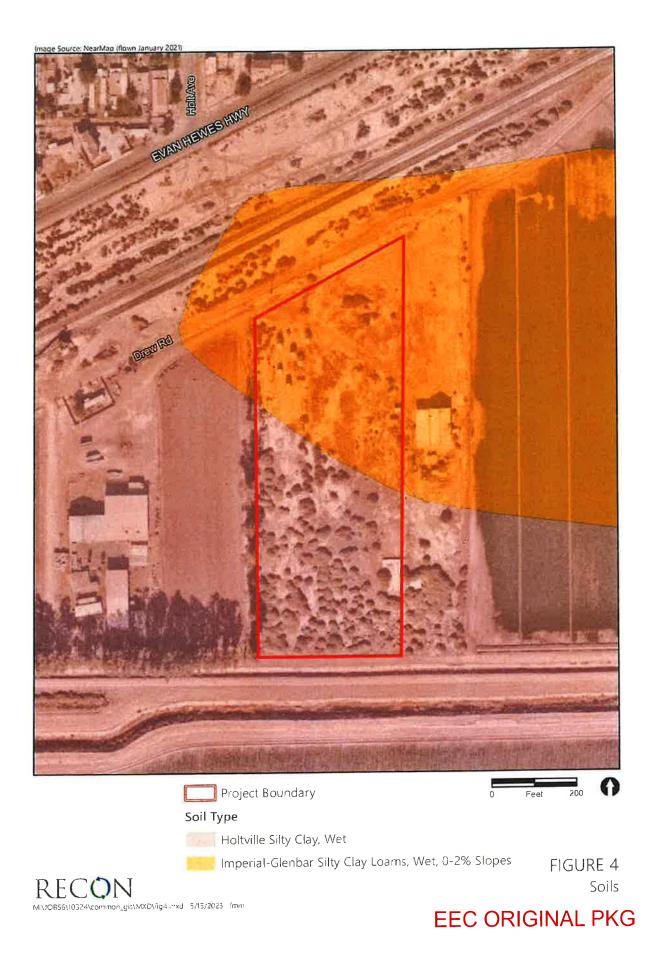
This section describes the existing physical and biological conditions of the project site. This includes a summary of land use, topographical features, soils, and observed biological resources on the project site.

3.1 Physical Characteristics

3.1.1 Existing Land Use

The project site consists of agriculturally-zoned land that was previously used for agricultural cultivation but has not been actively tilled for at least two decades. Some minor vehicle access still occurs in the north and eastern portion of the site as these areas are devoid of any vegetation. Reestablishment of patches of native vegetation within the less active southern half of the site has occurred.

3.1.2 Topography and Soils


Topography within the project site is generally level. Two soil types are mapped within the project site, Imperial-Glenbar silty clay loams 0 - 2 percent, and Holtville silty clay 0 - 2 percent (USDA 1981; Figure 4). Permeability on both soil types is slow in the surface layers and both are saline to slightly saline. These two soils can be used for crops with irrigation supplied.

3.2 Biological Resources

The botanical and wildlife species observed during the general survey are discussed below. A map showing the location of the vegetation communities that occur on the project site are shown on Figure 5.

3.2.1 Botanical Resources

Two vegetation communities were mapped within the project site; desert saltbush scrub and disturbed land (see Figure 5). Each community is discussed below.

Desert saltbush scrub is the predominant vegetation community on the southern half of the project site and as a narrow strip along the western boundary. It is comprised of a single shrub species, big saltbush (*Atriplex lentiformis*). These bushes have colonized the site and have grown to a large stature (Photographs 1 and 2). Total shrub cover ranges between 20 and 60 percent. It occurs on 3.2 acres of the project site.

Disturbed land consists of mostly bare ground that is subjected to continued disturbance, preventing establishment of substantial vegetation cover. The disturbed land areas occur primarily on the northern half of the site and along the eastern boundary (see Figure 5). Some areas contain abandoned farm equipment, vehicles, wooden crates, and other debris in scattered small piles (Photographs 3 and 4). It occurs on 3.9 acres of the project site.

3.2.2 Zoological Resources

A total of eight animal species were detected within the project site. Seven bird species and one mammal species were identified and are typical of Colorado Desert communities and agricultural areas (Table 1). The lack of plant species diversity, soil type, and level of disturbance limit the number of wildlife species that can be supported on the site.

Family	Scientific / Common Name	Origin*
Odontophoridae / New World Quail	Callipepla gambelii / Gambel's quail	N
	Falco sparverius / American kestrel	N
	Zenaida macroura / mourning dove	N
	Calypte anna / Anna's hummingbird	N
		N
		N
		N
Leporidae / Rabbits & Hares	Sylvilagus audubonii / desert cottontail	N
	Wildlife Sp Family Odontophoridae / New World Quail Falconidae / Falcons Columbidae / Pigeons & Doves Trochilidae / Hummingbirds Tyrannidae / Tyrant Flycatchers Remizidae / Verdin Mimidae / Mockingbirds & Thrashers	Odontophoridae / New World QuailCallipepla gambelii / Gambel's quailFalconidae / FalconsFalco sparverius / American kestrelColumbidae / Pigeons & DovesZenaida macroura / mourning doveTrochilidae / HummingbirdsCalypte anna / Anna's hummingbirdTyrannidae / Tyrant FlycatchersTyrannus verticalis / western kingbirdRemizidae / VerdinAuriparus flaviceps / verdinMimidae / Mockingbirds & ThrashersMimus polyglottos / northern mockingbird

3.3 Sensitive Biological Resources

3.3.1 Regulatory Setting

3.3.1.1 Regulatory Framework

Various federal and state regulations or policies apply to biological resources on the project site and are summarized below.

PHOTOGRAPH 1 View of Desert Saltbush Scrub Looking South

PHOTOGRAPH 2 View of Desert Saltbush Scrub Showing Size of Big Saltbush (*Atriplex lentiformis*)

RECON

P:\10324\Bio\Photos\photos1-4.docx 05/12/23

PHOTOGRAPH 3 View of Disturbed Land on Northern Portion of Site Looking North

PHOTOGRAPH 4 View of Disturbed Land on Northern Portion of Site Looking West

P:\10324\Bio\Photos\photos1-4.docx 05/12/23

a. Federal Regulations

The federal Endangered Species Act (ESA) provides the legal framework for the listing and protection of species (and their habitats) that are identified as being endangered or threatened with extinction. Actions that jeopardize endangered or threatened species and the habitats upon which they rely are considered 'take' under the ESA. Section 9(a) of the ESA defines 'take' as "to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or attempt to engage in any such conduct." The ESA is administered by the USFWS.

The Migratory Bird Treaty Act (MBTA; 16 United States Code 703 et seq.) is a federal statute that implements treaties with several countries on the conservation and protection of migratory birds. The number of bird species covered by the MBTA is listed at 50 Code of Federal Regulations (CFR) 10.13. The regulatory definition of "migratory bird" is broad and includes any mutation or hybrid of a listed species and any part, egg, or nest of such birds (50 CFR 10.12). The MBTA, which is enforced by USFWS, makes it unlawful "by any means or in any manner, to pursue, hunt, take, capture, [or] kill" any migratory bird, or attempt such actions, except as permitted by regulation. The take, possession, import, export, transport, sale, purchase, barter, or offering of these activities is prohibited, except under a valid permit or as permitted in the implementing regulations (50 CFR 21.11). Pursuant to U.S. Department of the Interior Memorandum M-37050, the federal MBTA is no longer interpreted to cover incidental take of migratory birds (U.S. Department of the Interior 2017). Therefore, impacts that are incidental to implementation of an otherwise lawful project would not be considered significant.

b. State Regulations

The California Environmental Quality Act (CEQA) requires an environmental review for projects with potentially adverse impacts on the environment. Adverse environmental impacts are typically mitigated in accordance with state laws and regulations.

The California ESA is similar to the federal ESA in that it provides the legal framework for the listing and protection of species (and their habitats) that are identified as being endangered or threatened with extinction.

Section 3503 of the California Fish and Game Code states that it is "unlawful to take, possess, or needlessly destroy the nest or eggs of any bird, except as otherwise provided by this code or any regulation made pursuant thereto," and Section 3503.5 states that it is "unlawful to take, possess, or destroy any birds of prey or to take, possess, or destroy the nest or eggs of any such bird" unless authorized (State of California 1991).

3.3.1.2 Sensitivity Criteria

Vegetation communities are considered sensitive natural communities if they are of limited distribution; have federal, state, or local laws regulating their development; and/or support concentrations of sensitive plant or wildlife species. For purposes of this report, the following natural communities are considered sensitive: (1) communities with state rarity ranks of S1-S3, as reviewed

by the Vegetation Classification and Mapping Program (VegCAMP) and CNPS, and recognized by CDFW (2023a); and (2) wetlands and waters under the jurisdiction of federal and state agencies.

For purposes of this report, plant and wildlife species would be considered sensitive if they are: (1) listed by state or federal agencies as rare, threatened, or endangered or are proposed for listing; (2) given a California Rare Plant Rank 1B (considered endangered throughout its range), 2 (considered endangered in California but more common elsewhere), 3 (more information about the plant's distribution and rarity needed), or 4 (plants of limited distribution) in the CNPS Inventory of Rare and Endangered Vascular Plants of California (2023); (3) considered rare, endangered, or threatened by CDFW (2023b-f); or (4) identified by another recognized conservation or scientific group as being depleted, potentially depleted, declining, rare, critical, endemic, endangered, or threatened.

3.3.2 Sensitive Vegetation Communities

No sensitive vegetation communities occur on the site.

3.3.3 Sensitive Plant Species

No sensitive plant species were observed and no sensitive plant species were determined to have a potential to occur within project site. Two sensitive plant species have historic records from the vicinity of the project but have not been documented in the area in decades. The two species include chaparral sand verbena (*Abronia villosa* var. *aurita*) and mud nama (*Nama stenocarpa*; Table 2). Given the level of past and current disturbance and lack of suitable habitat, these species are not expected to occur on the site.

3.3.4 Sensitive Wildlife Species

Based on an assessment of species location records, the following three sensitive wildlife species were found to have historic records in the vicinity of the project site. These species include mountain plover (*Charadrius montanus*), Yuma ridgeway's rail (*Rallus obsoletus yumanensis*), and California black rail (*Laterallus jamaicensis coturniculus*; Table 3). The mountain plover is a winter resident species that prefers grasslands and fields which do not occur on the project site. The Yuma ridgeway's rail and California black rail prefer emergent marshland vegetation associated with wetlands and rivers which do not occur on the project site.

One other sensitive wildlife species, burrowing owl (*Athene cunicularia*), was evaluated for presence on the project site given species observations in the Imperial Valley. This species is not expected to use or breed on the site due to the lack of suitable burrows, evidence of small burrowing mammals (prey species), and overall level of disturbance.

		Sensitive Pla	int Species	Table 2 Observed oi	e 2 1 or with the P	Table 2 Sensitive Plant Species Observed or with the Potential to Occur		
Major Plant		Scientific Name /	Federal	State	CNPS Rare	Habitat Preference /	Potential to Occur	Basis for Determination
Group	Family	Common Name	Status	Status	Plant Rank	Requirements	On-site	of Occurrence Potential
	Namaceae /	Nama stenocarpum /	1	1	2B 2	Annual/perennial herb; marshes	Low	Site lacks suitable
	Nama Family	mud nama				and swamps, lake margins,		wet habitat required
						riverbanks; blooms January–July;		by the species.
						elevation less than 1,700 feet.		
Anglosperms:	Nyctaginaceae /	Abronia villosa var. aurita /	ŧ	Ę	1B.1	Annual herb; sandy floodplains	Low	Site is not part of a
Educors	Four O'clock	chaparral sand verbena,				in inland, arid areas of coastal		sandy floodplain;
	Family	foothill sand-verbena*				sage scrub and open chaparral;		lacks suitable habitat.
						blooms January–September;		
						elevation 300-5,300 feet.		
California Native	Plant Society (CNPS)	California Native Plant Society (CNPS): California Rare Plant Ranks (CRPR)	0					
1B = Species rare	e, threatened, or enda	IB = Species rare, threatened, or endangered in California and elsewhere. These species are eligible for state listing.	a. These spi	ecies are	eligible for sta	te listing.		
2B = Species ran	e, threatened, or ends	2B = Species rare, threatened, or endangered in California but more common elsewhere. These species are eligible for state listing.	nmon elsev	vhere. Th	ese species an	e eligible for state listing.		
0,1 = Species ser	iously threatened in C	0.1 = Species seriously threatened in California (over 80% of occurrences threatened; high degree and immediacy of threat).	threatene	d; high de	egree and imn	nediacy of threat).		
0.2 = Species fair	rlv threatened in Calif	0.2 = Species fairly threatened in California (20-80% occurrences threatened; moderate degree and immediacy of threat).	ined; mode	rate degr	ee and immer	diacy of threat).		

		Sensitive Wildlif	fe Species C	Table 3 Observed or 9	Table 3 Sensitive Wildlife Species Observed or with the Potential to Occur		
Major Wildlife	197 197	Scientific Name / Common	Federal	State	Habitat Preference /	Potential to Occur	Basis for Determination of Occurrence
Group	5 Family	Name	Status	Status	Requirements	On-Site	Potential
	Rallidae / Rails.	<i>Laterallus jamaicensis</i> <i>coturniculus /</i> California black rail		ST, CFP	Tidal marshes, grassy marshes. Resident populations extirpated.	Low	Site lacks suitable wetland emergent vegetation. The past and current level of disturbance make it unlikely for the site to support this species.
Birds	Gallinules, & Coots	Rallus obsoletus [=longirostris] yumanensis / Yuma Ridgway's [=clapper] rail	빞	ST, CFP	Marshland vegetation, dense cattail stands, bulrush, reeds. Resident.	Law	Site lacks suitable wetland emergent vegetation. The past and current level of disturbance make it unlikely for the site to support this species.
	Charadriidae / Lapwings & Plovers	Charadrius montanus / mountain plover		SSC	Grasslands, fields, valleys, Localized winter resident.	Low	Site lacks suitable habitat for this species. The past and current level of disturbance makes the site unlikely to support this species.
	Strigidae / Typical Owls	Athene cunicularia / burrowing owl		SSC	Grassland, agricultural land, coastal dunes. Require rodent burrows. Declining resident.	Low	Site lacks suitable burrowing mammals and associated burrows. No evidence of burrowing owl habitat or usage was observed on the site.
	STATUS CODES Federal Status FE = Listed as endangered by the federal government	deral government	•				
	<u>State Status</u> CFP = California fully protected species ST = Listed as threatened by the state of California SSC = California Department of Fish and Wildlife sp	<u>State Status</u> CFP = California fully protected species ST = Listed as threatened by the state of California SSC = California Department of Fish and Wildlife species of special concern	E				

3.3.5 Wildlife Movement Corridors

Wildlife movement corridors are defined as areas that connect suitable wildlife habitat areas in a region otherwise fragmented by rugged terrain, changes in vegetation, or human disturbance. The project site lies adjacent to a large expanse of agricultural land, which isolates the project site from undisturbed desert habitats. While the project site functions as part of general habitat that provides for local movement of terrestrial wildlife, it does not serve as a corridor between native desert habitat.

4.0 Project Impact Analysis

Although the final footprint of the completed BESS facility would not occupy the entire project site, construction activities would likely have direct impacts to the entire 7.1 acres (Figure 6). Thus, there would be impacts to 3.2 acres of desert salt bush scrub and 3.9 acres of disturbed land. The significance of these impacts to biological resources is discussed below.

In accordance with Appendix G of the CEQA Guidelines, the project would have a significant impact if it would:

- Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies or regulations, or by the CDFW or USFWS;
- Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations or by the CDFW or USFWS;
- Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites;
- Have a substantial adverse effect on federally protected wetlands as defined by Section 404
 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through
 direct removal, filling, hydrological interruption, or other means;
- Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance; and/or
- Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan.

The project site does not support, nor would it affect, any species identified as a candidate, sensitive, or special status species in local or regional plans, policies or regulations, or by the CDFW or USFWS. The project site does not support any riparian habitat or other sensitive natural community. The project site does not contain any federally protected wetlands. Development of the site would not conflict with any local policies or ordinances protecting biological resources nor would it conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state Habitat Conservation Plan. Therefore, no significant impacts to biological resources in these categories would occur from the project.

Nesting birds including raptors covered under the California Fish and Game Code Sections 3503 and 3503.5 have potential to be directly impacted by the project if construction activities (i.e., clearing, grubbing, grading) occur during the general nesting season of February 1 to September 15. Direct impacts to nesting birds and raptors would be considered significant and require avoidance measures.

5.0 Avoidance Measures and Monitoring Recommendations

As currently designed, the project has the potential to result in significant direct impacts to nesting birds. The following general mitigation for biological resource protection during construction would be included in the environmental document:

To avoid direct impacts to avian species, removal of habitat that supports active nests in the proposed area of disturbance should occur outside the general breeding season for these species (February 1 to September 15). If removal of habitat in the proposed area of disturbance must occur during the breeding season, the qualified biological monitor would conduct a preconstruction survey to determine the presence or absence of nesting birds on the proposed area of disturbance. The pre-construction survey would be conducted within 10 calendar days prior to the start of construction activities (including removal of vegetation). The applicant would submit the results of the pre-construction survey for review and approval prior to initiating any construction activities.

If nesting birds are detected, a letter report or mitigation plan in conformance with applicable state and federal law (i.e., appropriate follow up surveys, monitoring schedules, construction and noise barriers/buffers, etc.) would be prepared and include proposed measures to be implemented to ensure that take of birds or eggs or disturbance of breeding activities is avoided. The report or mitigation plan would be submitted for review and approval.

6.0 References Cited

Baker, R. J., Lisa C. Bradley, Robert D. Bradley, Jerry W. Dragoo, Mark D. Engstrom, Robert S. Hoffman, Cheri A. Jones, Fiona Reid, Dale W. Rice, and Clyde Jones

2003 Revised Checklist of North American Mammals North of Mexico. Occasional Papers, Museum of Texas Tech University No. 229. December.

Baldwin, B. G., D. Goldman, D. J, Keil, R. Patterson, T. J. Rosatti, and D. Wilken (editors)

2012 *The Jepson Manual: Vascular Plants of California.* Second edition, thoroughly revised and expanded. University of California Press, Berkeley, Los Angeles, and London. January.

California Department of Fish and Wildlife (CDFW)

- 2023a California Sensitive Natural Communities list. Accessed on April 19, 2019. https://www.wildlife.ca.gov/Data/VegCAMP/Natural-Communities.
- 2023b State and Federally Listed Endangered, Threatened, and Rare Plants of California. Natural Diversity Database. August 6.
- 2023c Special Animals List. Periodic Publication. 67 pp. Natural Diversity Database. November.
- 2023d State & Federally Listed Endangered & Threatened Animals of California. Natural Diversity Database. August 6.
- 2023e Natural Diversity Data Base. Nongame-Heritage Program, California Department of Fish and Wildlife, Sacramento. Accessed March. RareFind Version 5.2.14.
- 2023f Special Vascular Plants, Bryophytes, and Lichens List. Quarterly Publication. 140 pp. Natural Diversity Database. March.

California Native Plant Society (CNPS)

2019 Inventory of Rare and Endangered Plants of California (online edition, v8-03 0.39). Accessed on April 17, 2019. http://www.rareplants.cnps.org.

California, State of

1991 Fish and Game Code of California.

Chesser, R. T., S. M. Billerman, K. J. Burns, C. Cicero, J. L. Dunn, B. E. Hernández-Baños, R. A. Jiménez, A. W. Kratter, N. A. Mason, P. C. Rasmussen, J. V. Remsen, Jr., D. F. Stotz, and K. Winker

2022 Check-list of North American Birds (online). American Ornithological Society. https://checklist.americanornithology.org/taxa/.

Crother, B. I., Ronald M. Bonett, Jeff Boundy, Frank T. Burbrink, Kevin de Queiroz, Darrel R. Frost, Richard Highton, John B. Iverson, Elizabeth L. Jockusch, Fred Kraus, Kenneth L. Krysko, , Adam D.

Leaché, Emilly Moriarty Lemmon, Roy W. McDiarmid, Joseph R. Mendelson III, Peter A. Meylan, Tod W. Reeder, Sara Ruane, and Michael E. Seidel

- 2017 Scientific and Standard English Names of Amphibians and Reptiles of North America North of Mexico, with Comments Regarding Confidence in our Understanding, Eighth Edition. Society for the Study of Amphibians and Reptiles Herpetological Circular No. 43.
- U.S. Department of Agriculture (USDA)
- 1981 Soil Survey, Imperial Valley Area, California. Edited by Robert P. Zimmerman. Soil Conservation Service.
- U.S. Fish and Wildlife Service (USFWS)
 - 2019 All Species Occurrences Database. Accessed March 2019. https://www.fws.gov/carlsbad/GIS/CFWOGIS.html.
- U.S. Department of the Interior
 - 2017 Memorandum M-37050. The Migratory Bird Treaty Act Does Not Prohibit Incidental Take. December 22.
- U.S. Geological Survey (USGS)
 - 1979 Seeley, California 7.5 Minute Topographic Map.
- University of California
 - 2023 Jepson eFlora. The Regents of the University of California. Accessed March 2023. http://ucjeps.berkeley.edu/eflora/.

RECON

An Employee-Owned Company

May 31, 2023

Mr. Ramon Gonzalez Senior Project Coordinator Z Global 750 W. Main Street El Centro, CA 92243

Reference: Cultural Resources Report for the Alba Peaker Battery Energy Storage System Project, Seeley, California (RECON Number 10324)

Dear Mr. Gonzalez:

This report details the results of a cultural resources survey conducted for the Alba Peaker Battery Energy Storage System (BESS) Project (project). This report has been prepared to provide necessary information to identify the effects of the project on historical resources.

PROJECT LOCATION AND DESCRIPTION

The project site is located within the unincorporated community of Seeley, in Imperial County, approximately 7.5 miles west of the city of El Centro and approximately one mile north of Interstate 8 (Figure 1). The project site occurs within Section 72, Township 16 South, Range 12 East of the U.S. Geological Survey 7.5-minute topographic map, Seeley quadrangle (Figure 2). The project site is comprised of Assessor's Parcel Number (APN) 051-420-042, totaling approximately 7.1 acres. The project is located to the east of Drew Road, south of West Evan Hewes Highway, and north of the Seeley Drain. Land uses surrounding the project site consist of active agricultural uses to the west and south, disturbed land and railroad tracks to the north, and an agricultural facility and fields to the east (Figure 3).

The project would construct and operate a 100-megawatt BESS facility that would connect to an existing 92-kilovolt gen-tie line (see Figure 3). The BESS facility would include battery containers and storage sites, a control room, and associated facilities surrounded by fencing. The BESS would store energy generation from the electrical grid, and optimally discharge that energy back into the grid as firm, reliable generation and/or grid services.

Area of Potential Effect

The 7.1-acre parcel is considered the area potential effect (APE).

METHODS

To determine if the project would adversely impact historical resources, background research, review of topographic maps and historic aerial photographs, and an on-foot survey were completed. Prior to the survey, a records search was requested from the California Historical Resources Information System, South Coastal Information Center (SCIC) to identify any previously recorded cultural resources within a one-mile radius of the APE. On March 22, 2023, RECON Environmental, Inc. (RECON) archaeologists Nathanial Yerka and Charlie Musser accompanied by Anthony LaChappa, a Native American monitor from Red Tail Environmental, conducted a pedestrian survey of the APE using 15-meter transects. Carmen Zepeda-Herman served as principal investigator. Ms. Zepeda-Herman is a member of the

3111 Camino del Rio North, Suite 600, San Diego, CA 92108 | 619.308.9333 | reconenvironmental.com SAN DIEGO | OAKLAND | TUCSON

Mr. Ramon Gonzalez Page 2 May 31, 2023

Register of Professional Archaeologists (RPA) and meets the Secretary of the Interior Standards for Archaeology and Historic Preservation.

The primary goal of this survey was to determine (1) if there are previously unrecorded cultural resources present, and if so, document the resources' locations and what they consist of and (2) to update conditions of previously recorded cultural resources. The APE was inspected for evidence of archaeological materials such as flaked and ground stone tools or fragments, ceramics, milling features, and human remains. Photographs were taken to document the environmental setting and general conditions. RECON used an Apple iPad running ESRI's ArcGIS Collector application paired with a Trimble R1 sub-meter global positioning system (GPS) containing shapefiles and aerial photography to pinpoint our location in real-time, which was used to navigate the APE.

NATIVE AMERICAN CONSULTATION

A letter was sent on March 8, 2023, to the Native American Heritage Commission (NAHC) requesting a search of their Sacred Lands File to identify spiritually significant and/or sacred sites or traditional use areas in the project vicinity. The NAHC was also asked to provide a list of local Native American tribes, bands, or individuals that may have concerns or interests regarding cultural resources potentially occurring within the APE. The NAHC responded on March 22, 2023, indicating that their search of the Sacred Lands File was positive. The NAHC attached a list of Native American tribes who may also have knowledge of cultural resources in the project area (Attachment 1).

BACKGROUND RESEARCH

The SCIC records search indicated that there have been eight cultural investigations conducted within one mile of the APE, one of which includes a portion of the APE (Confidential Attachment 1). The record search also indicated five historic-era cultural resources situated within one mile of the APE (Table 1). These cultural resources are comprised of a railroad, a highway, a government building, foundations, a monument, and a trash scatter. None of the previously recorded cultural resources were mapped within the APE.

Table 1 Cultural Resources within a One-Mile Radius of the APE							
Primary #	Trinomial	Period	Site Type	Recording Events			
				2001, 2009, 2011 (ASM Affiliates);			
P-13-008418	CA-IMP-007886	Historic	Highway	2007 (McKenna); 2007 (SWCA); 2009 (URS);			
1 10 000 110				2011 (AECOM)			
P-13-009223		Historic	Trash scatter	2007 (Jones & Stokes)			
P-13-009224		Historic	Foundations; Monument	2007 (Jones & Stokes)			
P-13-009225		Historic	Government building	2007 (Jones & Stokes)			
				2007, 2009 (McKenna et al.); 2007 (SWCA);			
P-13-009302 CA-IMP-008489	CA-IMP-008489	-IMP-008489 Historic	Railroad	2009, 2011 (ASM); 2009 (URS);			
				2010, 2011 (AECOM)			

A review of topographic maps and historic aerial photographs show that the APE has been subject to agricultural cultivation since at least 1953—the first available aerial photograph—with the northern boundary being the presentday Drew Road alignment, the southern boundary on the down slope of a drain alignment, and the western and eastern boundaries established by tilling rows. The next available aerial from 1984 exhibits the parcel free of all vegetation and a building towards the southeastern corner of the APE. Also in 1984, the building adjacent to the eastern boundary near the center of the parcel is exhibited. By 1985, the superstructure of the southern building is removed leaving only a concrete foundation. A structure is represented as occurring at the northeast corner of the APE on the 1958 topographic map and continues on the subsequent 1961, 1976, 1980, and 1983 maps. The structure

Mr. Ramon Gonzalez Page 3 May 31, 2023

does not appear on any available photographs. The 1980 topographic map first represents the building adjacent to the east and continues to appear on subsequent maps. The building towards the south within the APE is never represented on any topographic map. By 2002, several alignments of vehicle and materials storage occur across the APE. The parcel is kept free of vegetation through 2016, but by 2017, most vehicles and materials have been removed from the southern two-thirds and non-native vegetation takes over. No apparent changes occur within the APE in subsequent photographs dating to 2019 and 2020 (Nationwide Environmental Title Research LLC 2023).

RESULTS OF SURVEY

No significant or potentially significant prehistoric or historic cultural resources were observed during the survey of the APE. RECON and Red Tail Environmental completed the survey under sunny and mild conditions. The survey commenced in the southeast corner utilizing east-west transects and translated north across the APE. The entirety of the APE has been subject to ground disturbance from past agricultural activity. Ground visibility averaged approximately 60 percent across the APE with areas of dense ground cover composed of non-native weeds and bushes, as well as materials staging and dumping, assorted vehicles, and assorted agricultural equipment. The remainder is open soil (Photographs 1-3). The APE is fenced on the western, northern, and southern sides, with the eastern boundary open to the adjacent parcel. The dominant feature of the APE is the circa 1980, 75-foot (north/south) by 50-foot (east/west) concrete foundation that is 1 foot in height on the south side and 3 feet in height on the north side. Along the eastern edge of the concrete foundation and towards its southeast corner is an angled metal traffic guard that is approximately 8 feet in length (Photographs 4 and 5). Towards the southeast corner of the APE, there are several utility poles that make up the eastern boundary. A pair of north-south pole alignments is situated near the western boundary that was used as a mid-2000s shade structure for vehicle storage (Photograph 6). There are three areas along the western boundary used as wheel and tire dumps. Other staged material includes numerous stacked wooden pallets, cut wood rounds, and agricultural equipment. Other surface disturbances include several trash burn areas, assorted metal, concrete and asphalt fragments, dimensional lumber, and modern rubbish comprised of assorted paper, plastic, and consumer bottle glass.

REGULATORY CONTEXT

The project is subject to state and County of Imperial environmental regulations. The County is the lead agency for the California Environmental Quality Act (CEQA) guidelines and regulations.

California Environmental Quality Act

The regulatory framework and methods for determining impacts on cultural resources include compliance with CEQA requirements as defined in Section 15064.5 of the CEQA Guidelines, Determining the Significance of Impacts to Archaeological and Historical Resources. These guidelines require the identification of cultural resources that could be affected by the project, the evaluation of the significance of such resources, an assessment of project impacts on significant resources, and a development of a research design and data recovery program to avoid or address adverse effects to significant resources. Significant resources, also called historical resources, are those cultural resources (whether prehistoric or historic) that have been evaluated and determined to be eligible for listing in the California Register of Historical Resources.

According to CEQA Section 15064.5(a), a historical resource includes the following:

- 1. A resource listed in, or determined to be eligible for listing on, the California Register of Historical Resources.
- 2. A resource included in the local register.

Mr. Ramon Gonzalez Page 4 May 31, 2023

- 3. A resource which an agency determines to be historically significant. Generally, a resource shall be considered to be "historically significant," if the resource meets the criteria for listing on the California Register of Historical Places (Public Resources Code Section 5024.1 Title 14 California Code of Regulations, Section 4852) including the following:
 - A. Is associated with events that have made a significant contribution to the broad patterns of California's history or cultural heritage;
 - B. Is associated with the lives of persons important in our past;
 - C. Embodies the distinctive characteristics of a type, period, region or method of construction or represents the work of an important creative individual, or possesses high artistic values; or
 - D. Has yielded, or maybe likely to yield, information important to prehistory or history.
- 4. The fact that a resource is not listed in or determined to be eligible for listing in the California Register of Historical Resources or a local register does not preclude a lead agency from determining that the resource may be an historical resource as defined in Public Resources Code Sections 5020.1(j) or 5024.1.

A resource must meet one of the above criteria and must have integrity; that is, it must evoke the resource's period of significance or, in the case of criterion D, it may be disturbed, but it must retain enough intact and undisturbed deposits to make a meaningful data contribution to regional research issues.

MANAGEMENT RECOMMENDATIONS

No significant or potentially significant prehistoric or historic cultural resources were observed during the survey of the APE. The SCIC records search was negative for the APE and returned only historic-era resources within the requested search area. The possibility of intact buried significant cultural resources being present within the APE is considered low due to past agricultural cultivation. RECON recommends no additional cultural resource work for this project.

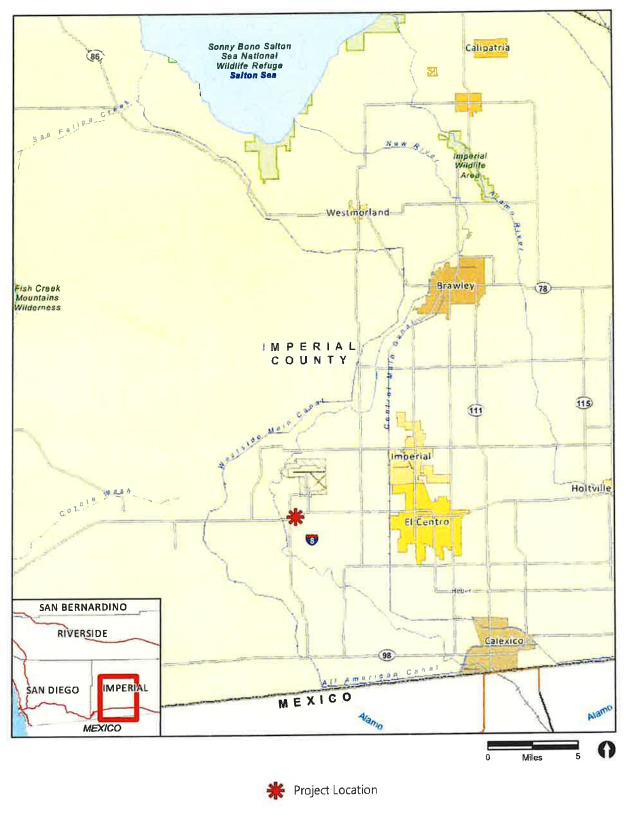
Please call Ms. Zepeda-Herman at (619) 308-9333 ext. 133 if you have any questions or concerns about this project.

Sincerely

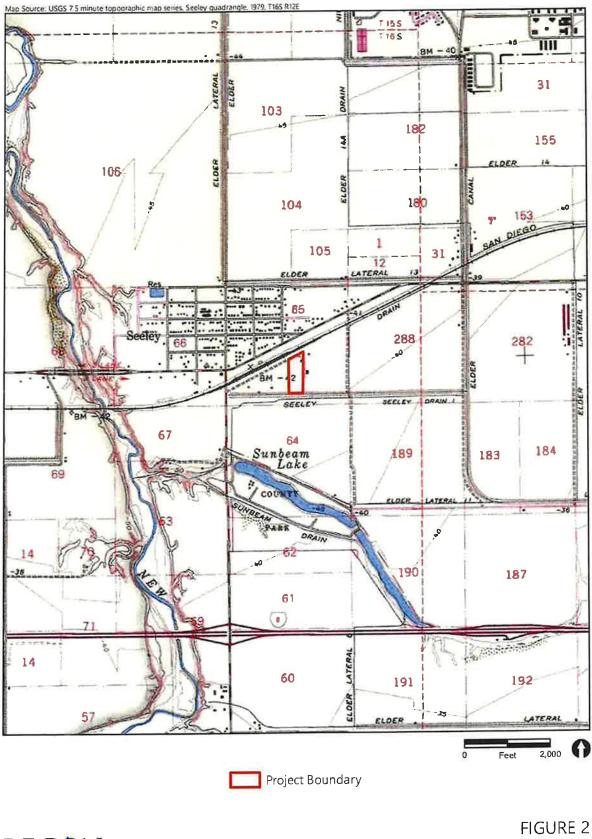
anial Yerka. Project Archaeologist

NDY:CZH:sh

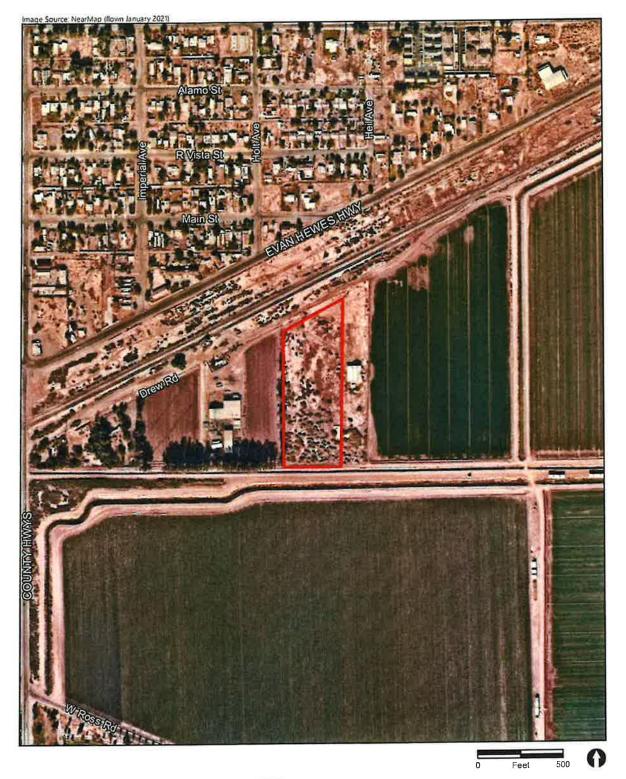
Attachment


REFERENCE CITED

Carmen Zepuda Harnan


Carmen Zepeda-Herman, M.A., RPA Principal Investigator

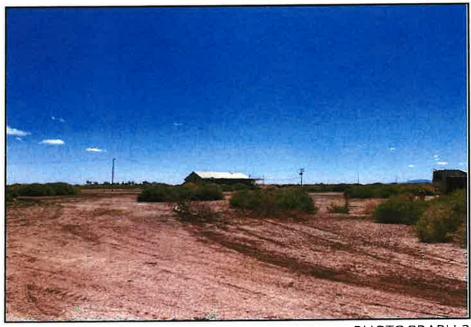
Nationwide Environmental Title Research 2023 Historic Aerials. http://www.historicaerials.com/. Accessed on May 19, 2023.


FEC ORIGINAL PKG

RECON M:\JO856\10324\common_gis\MXD\fig1mxd 03/08/2023 bma FIGURE 1 Regional Location

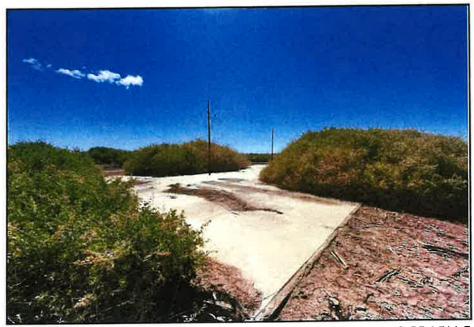
RECON M:\/OBS6\10324\common_gis\MXD\fig2_USGS nxd 03/08/2023 bma Project Location on USGS Map

RECON M:\J0856\10324\conimon_gis\MXD\fig3_aerial.inxd 03/08/2023 bma FIGURE 3 Project Location on Aerial Photograph


PHOTOGRAPH 1 Overview of Survey Area in Southern Portion of APE, Looking North

PHOTOGRAPH 2 Overview of Materials Staging in Northern Portion of APE, Looking North-Northeast

P:\10324\Arc\Photos\photos1-6.docx 05/24/23


PHOTOGRAPH 3 Overview of Survey Area from Northwestern APE Corner, Looking Southeast

PHOTOGRAPH 4 Overview of circa 1980 Concrete Foundation in Southeast Project APE, Looking Northwest

P:\10324\Arc\Photos\photos1-6.docx 05/24/23

PHOTOGRAPH 5 Overview of circa 1980 Concrete Foundation in Southeast Project APE, Looking Southeast

PHOTOGRAPH 6 Overview of Shade Structure Support Poles, Looking Southwest

RECON

P:\10324\Arc\Photos\photos1-6.docx 05/24/23

RECON

An Employee-Owned Company

June 6, 2023

Mr. Ramon Gonzalez Senior Project Coordinator Z Global 750 W. Main Street El Centro, CA 92243

Reference: Greenhouse Gas Analysis for the Alba Peaker BESS Project, Seeley, California (RECON Number 10324)

Dear Mr. Gonzalez:

The purpose of this letter report is to assess potential greenhouse gas (GHG) impacts associated with construction and operation of the Alba Peaker Battery Energy Storage Site (BESS) Project (project). As discussed in this analysis, the project would not make a cumulatively considerable contribution to total GHG emissions in Imperial County or California. As California procures increasing amounts of renewable energy to meet the goals of Senate Bill (SB) 100, the state will need to deploy a significant amount of energy storage capability. As the project would provide energy storage, it would assist the state's goal of utilizing 100 percent renewable energy by 2045. Therefore, the project would not conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emission of GHGs, and impacts would be less than significant.

1.0 Project Description

The project site is located within the unincorporated community of Seeley in Imperial County, approximately 7.5 miles west of the city of El Centro and approximately one mile north of Interstate 8 (Figure 1). The project site is comprised of Assessor Parcel Number 051-420-042, totaling approximately 7.1 acres. The project is located to the east of Drew Road, south of West Evan Hewes Highway, and north of the Seeley Drain (Figure 2). Land uses surrounding the project site consist of active agricultural uses to the west and south, disturbed land and railroad tracks to the north, and an agricultural facility and fields to the east.

The project would construct and operate a 100-megawatt BESS facility that would connect to an existing 92-kilovolt gen-tie line (Figure 3). The BESS facility would include battery containers and storage sites, a control room, and associated facilities surrounded by fencing. The BESS would store energy generation from the electrical grid, and optimally discharge that energy back into the grid as firm, reliable generation and/or grid services.

2.0 Environmental Setting

2.1 State GHG Inventory

The California Air Resources Board (CARB) performs statewide GHG inventories. The inventory is divided into nine broad sectors of economic activity: agriculture, commercial, electricity generation, forestry, high global warming potential (GWP) emitters, industrial, recycling and waste, residential, and transportation. Emissions are quantified in million metric tons of carbon dioxide equivalent (MMT CO₂E). Table 1 shows the estimated statewide GHG emissions for the years 1990, 2005, 2012, and 2018. Although annual GHG inventory data is available for years 2000 through 2020, the years 1990, 2005, 2012, and 2018 are highlighted in Table 1 because 1990 is the baseline year for established

3111 Carnino del Rio North, Suite 600, San Diego, CA 92108-5726 | 619.308.9333 | reconenvironmental.com SAN DIEGO | OAKLAND | TUCSON

Mr. Ramon Gonzalez Page 2 June 6, 2023

reduction targets, and 2005, 2012, and 2018 correspond to the same years for which inventory data for the region is available.

	California G	Table 1 HG Emissions by Se	ctor	
Sector	1990 ¹ Emissions in MMT CO ₂ E (% total) ²	2005 ³ Emissions in MMT CO ₂ E (% total) ²	2012 ³ Emissions in MMT CO ₂ E (% total) ²	2018 ³ Emissions in MMT CO ₂ E (% total) ²
Electricity Generation	110.5 (25.7%)	108.1 (22.6%)	99.1 (22.8%)	65.1 (15.8%)
Transportation	150.6 (35.0%)	187.6 (39.2%)	161.8 (37.2%)	169.6 (41.3%)
Industrial	105.3 (24.4%)	102.3 (21.4%)	91.0 (20.9%)	93.7 (22.8%)
Commercial	14.4 (3.4%)	16.1 (3.4%)	19.6 (4.5%)	22.3 (5.4%)
Residential	29.7 (6.9%)	30.3 (7.0%)	27.9 (6.4%)	28.1 (6.8%)
Agriculture & Forestry	18.9 (4.4%)	33.7 (7.0%)	35.2 (8.1%)	32.2 (7.8%)
Not Specified	1.3 (0.3%)			
Total ⁴	430.7	478.1	434.6	411.0
SOURCE: CARB 2007 and 2022 1990 data was obtained from (IPCC) fourth assessment rep 2Percentages may not total 100 32005, 2012, and 2018 data wa report GWPs. 4Totals may vary due to indep	the CARB 2007 source ort GWPs.) due to rounding. s retrieved from the CA			

As shown in Table 1, statewide GHG source emissions totaled approximately 431 MMT CO₂E in 1990, 478 MMT CO₂E in 2005, 435 MMT CO₂E in 2012, and 411 MMT CO₂E in 2018. Many factors affect year-to-year changes in GHG emissions, including economic activity, demographic influences, environmental conditions such as drought, and the impact of regulatory efforts to control GHG emissions. As shown in Table 1, transportation-related emissions consistently contribute to the most GHG emissions.

2.2 Regional GHG Inventory

The Imperial County (County) Regional Climate Action Plan (Regional CAP) was adopted in June 2021 (Imperial County 2021). The Regional CAP inventoried existing emissions within the County and each of its incorporated cities. The results of the countywide emissions inventories are summarized in Table 2. As shown in Table 2, agricultural-related GHG emissions contributed the most countywide.

Mr. Ramon Gonzalez Page 3 June 6, 2023

		Imperial Valle	Table 2 ey Regional GH		nventory		
	20	-9.0° V	20		2018		
Emissions Sector	MT CO ₂ E ¹	% Total	MT CO ₂ E ¹	% Total	MT CO2E'	% Total	% Change from 2005
Transportation	656,655	16.3%	650,729	17.3%	748,111	19.7%	+13.9%
Energy	1.006.987	25,1%	757,037	20.2%	484,863	12.8%	-51.9%
Water	28,114	0.7%	30,158	0.8%	34,291	0.9%	+22.0%
Solid Waste	218,847	5.4%	132,773	3.5%	148,337	3.9%	-32.2%
Agriculture	2,081,481	51.8%	2,155,325	57.4%	2,354,168	61.9%	+13.1%
Propane	13,698	0.3%	14,856	0.4%	19,112	0.5%	+39.5%
Calexico POE ²	12,649	0.3%	12.649	0.3%	12,649	0.3%	0.0%
Total ³	4,018,430	100%	3,753,527	100%	3,801,531	100%	-5.4%

SOURCE: Imperial County 2021.

NOTE: Totals may vary due to independent rounding.

 $^{1}MT CO_{2}E = metric tons of carbon dioxide equivalent.$

²Data for emissions at the ports of entry (POEs) was only available for 2015. For purposes of this inventory, emissions estimates from 2015 were assumed constant for each inventory year. Emissions from POEs are not apportioned to individual jurisdictions. ³Electricity consumption associated with potable water treatment and delivery is not included in this total, as data for this activity was not available for unincorporated County.

2.4 Regulatory Setting

In response to rising concern associated with increasing GHG emissions and global climate change impacts, several plans and regulations have been adopted at the international, national, and state levels with the aim of reducing GHG emissions. The main source of GHG emissions associated with the project would be construction activities. The following is a discussion of the plans and regulations most applicable to the project.

2.4.1 Federal

On September 27, 2019, the United States Environmental Protection Agency (U.S. EPA) and the National Highway Traffic Safety Administration published the "Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule Part One: One National Program" (84 Federal Register 51310). The Part One Rule revokes California's authority to set its own GHG emissions standards and set zero-emission vehicle mandates in California. On April 30, 2020, the U.S. EPA and the National Highway Traffic Safety Administration published the final SAFE Vehicles Rule: Part Two (85 Federal Register 24174). The SAFE Vehicles Rule proposes amended Corporate Average Fuel Economy and Light-Duty Vehicle Greenhouse Gas Emissions Standards. The SAFE Rule relaxed federal GHG emissions and Corporate Average Fuel Economy standards to increase in stringency at only about 1.5 percent per year from model year 2020 levels over model years 2021 through 2026. The previously established emission standards and related "augural" fuel economy standards would have achieved about 4 percent per year improvements through model year 2025. Part Two of the SAFE Vehicles Rule set amended fuel economy and CO₂ standards for Passenger Cars and Light Trucks for model years 2021 through 2026.

Mr. Ramon Gonzalez Page 4 June 6, 2023

2.4.2 State

2.4.2.1 Executive Orders and statewide GHG Emission Targets

Executive Order S-3-05

This Executive Order (EO) established the following GHG emission reduction targets for the state of California:

- by 2010, reduce GHG emissions to 2000 levels;
- by 2020, reduce GHG emissions to 1990 levels; and
- by 2050, reduce GHG emissions to 80 percent below 1990 levels.

This EO also directs the secretary of the California Environmental Protection Agency to oversee the efforts made to reach these targets, and to prepare biannual reports on the progress made toward meeting the targets and on the impacts to California related to global warming, including impacts to water supply, public health, agriculture, the coastline, and forestry. With regard to impacts, the report shall also prepare and report on mitigation and adaptation plans to combat the impacts. The first Climate Action Team Assessment Report was produced in March 2006 and has been updated every two years.

Executive Order B-30-15

This EO establishes an GHG emission reduction goal for the State of California by 2030 of 40 percent below 1990 levels. This EO also directed all state agencies with jurisdiction over GHG-emitting sources to implement measures designed to achieve the 2030 goal, as well as the pre-existing, long-term 2050 goal identified in EO S-3-05. Additionally, this EO directed California Air Resources Board (CARB) to update its Climate Change Scoping Plan to address the 2030 goal.

2.4.2.2 California Global Warming Solutions Act

In response to EO S-3-05, the California Legislature passed Assembly Bill 32 (AB) 32, the California Global Warming Solutions Act of 2006, and thereby enacted Sections 38500–38599 of the California Health and Safety Code. The heart of AB 32 is its requirement that CARB establish an emissions cap and adopt rules and regulations that would reduce GHG emissions to 1990 levels by 2020. AB 32 also required CARB to adopt a plan by January 1, 2009, indicating how emission reductions would be achieved from significant GHG sources via regulations, market mechanisms, and other actions.

In 2008, CARB estimated that annual statewide GHG emissions were 427 MMT CO₂E in 1990 and would reach 596 MMT CO₂E by 2020 under a business as usual (BAU) condition (CARB 2008). To achieve the mandate of AB 32, CARB determined that a 169 MMT CO₂E (or approximate 28.5 percent) reduction in BAU emissions was needed by 2020. In 2010, CARB prepared an updated 2020 forecast to account for the recession and slower forecasted growth. CARB determined that the economic downturn reduced the 2020 BAU by 55 MMT CO₂E; as a result, achieving the 1990 emissions level by 2020 would require a reduction in GHG emissions of 21.7 (not 28.5) percent from the 2020 BAU. California has achieved its 2020 goal.

Approved in September 2016, SB 32 updates the California Global Warming Solutions Act of 2006 and enacts EO B-30-15. Under SB 32, the state would reduce its GHG emissions to 40 percent below 1990 levels by 2030. This is equivalent to an emissions level of approximately 260 MMT CO₂E for 2030. In implementing the 40 percent reduction goal, CARB is required to prioritize emissions reductions to consider the social costs of the emissions of GHGs; where "social costs" is defined as "an estimate of the economic damages, including, but not limited to, changes in net agricultural productivity; impacts to public health; climate adaptation impacts, such as property damages from increased flood risk; and changes in energy system costs, per metric ton of greenhouse gas emission per year."

Mr. Ramon Gonzalez Page 5 June 6, 2023

2.4.2.3 Climate Change Scoping Plan

As directed by the California Global Warming Solutions Act of 2006, in 2008, CARB adopted the Climate Change Scoping Plan: A Framework for Change (Scoping Plan), which identified the main strategies California implemented to achieve the GHG reductions necessary to reduce forecasted BAU emissions in 2020 to the state's historic 1990 emissions level (CARB 2008). The 2020 reduction goals were met. In November 2017, CARB released the 2017 Climate Change Scoping Plan Update, the Strategy for Achieving California's 2030 Greenhouse Gas Target (2017 Scoping Plan; CARB 2017a). The 2017 Scoping Plan identifies state strategies for achieving the state's 2030 GHG emissions reduction target codified by SB 32. Measures under the 2017 Scoping Plan Scenario build on existing programs such as the Low Carbon Fuel Standard, Advanced Clean Cars Program, Renewables Portfolio Standard (RPS), Sustainable Communities Strategy, Short-Lived Climate Pollutant Reduction Strategy, and the Cap-and-Trade Program. Additionally, the 2017 Scoping Plan proposes new policies to address GHG emissions from natural and working lands. The 2022 Scoping Plan was adopted in December 2022. The 2022 Scoping Plan assesses the progress towards the 2030 GHG emissions reduction target identified in the 2017 Scoping Plan and lays out a path to achieve targets for carbon neutrality and reduce anthropogenic GHG emissions by 85 percent below 1990 levels no later than 2045, as directed by AB 1279. The 2022 Scoping Plan identifies strategies related to clean technology, energy development, natural and working lands, and others, and is designed to meet the state's long-term climate objectives and support a range of economic, environmental, energy security, environmental justice, and public health priorities (CARB 2022b).

2.4.2.4 Regional Emissions Targets - Senate Bill 375

SB 375, the 2008 Sustainable Communities and Climate Protection Act, was signed into law in September 2008 and requires CARB to set regional targets for reducing passenger vehicle GHG emissions in accordance with the Scoping Plan. The purpose of SB 375 is to align regional transportation planning efforts, regional GHG reduction targets, and fair-share housing allocations under state housing law. SB 375 requires Metropolitan Planning Organizations (MPOs) to adopt a Sustainable Communities Strategy or Alternative Planning Strategy to address GHG reduction targets from cars and light-duty trucks in the context of that MPO's Regional Transportation Plan. Southern California Association of Governments (SCAG) is the region's MPO. In 2018, CARB set targets for the SCAG region of an 8 percent reduction in GHG emissions per capita from automobiles and light-duty trucks compared to 2005 levels by 2020 and a 19 percent reduction by 2035. These targets are periodically reviewed and updated.

2.4.2.5 Renewables Portfolio Standard

The RPS promotes diversification of the state's electricity supply and decreased reliance on fossil fuel energy sources. Renewable energy includes (but is not limited to) wind, solar, geothermal, small hydroelectric, biomass, anaerobic digestion, and landfill gas. Originally adopted in 2002 with a goal to achieve a 20 percent renewable energy mix by 2020 (referred to as the "Initial RPS"), the goal has been accelerated and increased by EOs S-14-08 and S-21-09 to a goal of 33 percent by 2020. In April 2011, SB 2 (1X) codified California's 33 percent RPS goal. SB 350 (2015) increased California's renewable energy mix goal to 50 percent by year 2030. SB 100 (2018) further increased the standard set by SB 350 establishing the RPS goal of 44 percent by the end of 2024, 52 percent by the end of 2027, and 60 percent by 2030.

2.4.3 Local

2.4.3.1 Regional Climate Action Plan

The Regional CAP was prepared to address the impacts of climate change and reduce GHG emissions in the Imperial Valley region which includes the County and its seven incorporated cities. The Regional CAP is consistent with statewide legislation and regulatory mandates, and establishes local strategies, measures, and actions aimed at

Mr. Ramon Gonzalez Page 6 June 6, 2023

reducing GHG emissions. Reduction targets for the County were established in alignment with SB 32 and EO S-3-05, based on the 2005 GHG inventory and sector-specific targets in the 2017 Scoping Plan. For the County, they include reducing emissions to 24 percent below 2005 levels by 2030 and to 34 percent below 2005 levels by 2050. To meet these targets, the County would need to reduce communitywide emissions to 2,022,285 MT CO₂E by 2030 and 1,771,509 MT CO₂E by 2050 (Imperial County 2021).

2.4.3.2 Imperial County General Plan

The Imperial County General Plan Renewable Energy and Transmission Element was adopted in October 2015. As stated in the element, the benefits of renewable energy development include reduction in potential GHG by displacing fossil-fuel-generated electricity with renewable energy, which does not add to the greenhouse effect; contribution towards meeting the state's RPS mandate; and minimization of impacts to local communities, agriculture, and sensitive resources (Imperial County 2015). Of importance to the project, the General Plan contains the following objectives:

- 3.3 Encourage the development of services and industrial associated with renewable energy facilities.
- 5.2 Encourage development of utility-scale distributed generation projects in the County.

3.0 Guidelines for Determining Significance

Based on the CEQA Guidelines Appendix G, impacts related to GHG emissions would be significant if the project would:

- 1. Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment; or
- 2. Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emission of GHGs.

As stated in the State CEQA Guidelines, these questions are "intended to encourage thoughtful assessment of impacts and do not necessarily represent thresholds of significance" (Title 14, Division 6, Chapter 3 Guidelines for Implementation of the CEQA, Appendix G, Environmental Checklist Form). The State CEQA Guidelines encourage lead agencies to adopt regionally specific thresholds of significance. When adopting these thresholds, the amended Guidelines allow lead agencies to consider thresholds of significance adopted or recommended by other public agencies, or recommended by experts, provided that the thresholds are supported by substantial evidence.

The project site is in the Salton Sea Air Basin. The Imperial County Air Pollution Control District (ICAPCD) is responsible for regulating air quality within the Imperial County portion of the Salton Sea Air Basin. No GHG emission significance threshold has been adopted by the County or the ICAPCD for land development projects. Thus, in the absence of a threshold of significance for GHG emissions that has been adopted in a public process following environmental review, this analysis considers guidance promulgated by other agencies.

The County is a member of Southern California Association of Governments (SCAG). SCAG is comprised of several different counties including Imperial, Los Angeles, Orange, Riverside, San Bernardino, and Ventura counties. Air districts responsible for managing air quality within the SCAG boundaries include the South Coast Air Quality Management District (AQMD), the Mojave Desert Air Pollution Control District (APCD), Ventura County APCD, and the Antelope Valley AQMD.

Mr. Ramon Gonzalez Page 7 June 6, 2023

Due to the climate and land use patterns, the Antelope Valley AQMD and Mojave Desert APCD are air districts that are most similar to the ICAPCD's jurisdiction. The Antelope Valley AQMD is within the northern part of Los Angeles County, and the Mojave Desert APCD contains San Bernardino County's high desert region and Riverside County's Palo Verde Valley region. These jurisdictions are in inland desert regions with rural land use patterns; with a substantial number large-scale agricultural, warehousing/distribution, industrial, and military operations. Additionally, both of these agencies have adopted GHG thresholds for use in CEQA analysis. As outlined in the Antelope Valley AQMD's 2016 *California Environmental Quality Act (CEQA) and Federal Conformity Guidelines and Mojave Desert APCD's 2016 California Environmental Quality Act (CEQA) and Federal Conformity Guidelines*, the two air districts both recommend use of a GHG emissions significance threshold of 100,000 short tons of CO₂E per year (90,718 MT CO₂E). Projects with emissions that exceed this threshold are required to incorporate mitigation sufficient to reduce emissions to less than this significance threshold or must incorporate all feasible mitigation.

This recommended significance threshold is consistent with the federal trigger level for GHG emissions "subject to regulation" under the U.S. EPA's Clean Air Act Title V Permitting requirements (40 Code of Federal Regulations 70.2). Additionally, as ICAPCD Title IX Regulations are based on Clean Air Act Title V Permitting requirements, this recommended significance threshold is also consistent with local ICAPCD Rule 900–Procedures for Issuing Permits to Operate for Sources Subject to Title V of the Federal Clean Air Act Amendments of 1990 and Rule 904–Prevention of Significant Deterioration Permit Program.

In the absence of adopted GHG significance thresholds, the threshold of 90,718 MT CO₂E is an appropriate CEQA significance threshold for the assessment of GHG emissions for the purposes of this project. The project was also evaluated qualitatively for how it will support the state's renewable energy goals.

4.0 Project Impact Analysis

1. Would the project generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment?

Operational GHG emissions associated with a project break down into the following five categories: mobile (on-road vehicles), energy (electricity, natural gas), area (landscape maintenance equipment), water and wastewater, and solid waste sources. GHG emissions also result from construction activities. Emissions were calculated using California Emissions Estimator Model (CalEEMod) Version 2022.1 (California Air Pollution Control Officers Association [CAPCOA] 2022). The CalEEMod program is a tool used to estimate emissions resulting from land development projects in the state of California. CalEEMod was developed with the participation of several state air districts.

CalEEMod estimates parameters such as the type and amount of construction equipment required, trip generation, and utility consumption based on the size and type of each specific land use using data collected from surveys performed in South Coast AQMD. Where available, parameters were modified to reflect project-specific data.

4.1 Construction-related Emissions

Construction activities emit GHGs primarily through combustion of fuels (mostly diesel) in the engines of off-road construction equipment and through combustion of diesel and gasoline in on-road construction vehicles and the commute vehicles of the construction workers.

Primary inputs are the numbers of each piece of equipment and the length of each construction stage. The construction equipment estimates are based on surveys performed by the South Coast AQMD and the Sacramento Metropolitan AQMD of typical construction projects which provide a basis for scaling equipment needs and schedule with a project's size. GHG emission estimates in CalEEMod are based on the duration of construction phases;

Mr. Ramon Gonzalez Page 8 June 6, 2023

construction equipment type, quantity, and usage; grading area; season; and ambient temperature, among other parameters.

The construction schedule and equipment were obtained from the applicant. Construction activities were modeled beginning in January 2024 and lasting approximately five months. Construction stages would include grading, pile installation, fence installation, electrical installation, and container installation.

CalEEMod calculates emissions of all pollutants from construction equipment using emission factors from CARB's off-road diesel equipment emission factors database. All construction equipment required during a phase was modeled over the entire duration of the phase even if it would only be required for a portion of the phase. Additionally, an off-highway truck and a generator were added to each phase to account for a water truck and a generator needed to power the construction office. The modeled construction equipment is summarized in Table 3.

Construct	Table 3 tion Phases and Equi	inment
Equipment	Quantity	Daily Operation Time (hours)
Equipment	Grading (14 days)	
Tractors/Loaders/Backhoes	2	8
Dump Truck	1	8
Scraper	1	8
Roller	1	8
Water Truck	11	8
Office Generator	1	8
Pile	Installation (15 days	;)
Drill Rigs	3	8
Welder	1	8
Water Truck	1	8
Office Generator	1	8
Fen	ce Installation (5 day	s)
Air Compressor	1	8
Generator	1	8
Water Truck	1	8
Office Generator	1	8
Electri	cal Installation (30 d	ays)
Tractors/Loaders/Backhoes	3	8
Generators	5	8
Air Compressors	5	8
Forklift	1	8
Water Truck	1	8
Office Generator	1	8
Contai	iner Installation (14 c	lays)
Crane	1	8
Water Truck	1	8
Office Generator	1	8

Mr. Ramon Gonzalez Page 9 June 6, 2023

The ICAPCD requires that, regardless of the size of a project, all feasible standard measures for construction equipment must be implemented at construction sites. Standard measures from the ICAPCD handbook include the following (ICAPCD 2017):

Standard Measures for Construction Combustion Equipment

- a) Use of alternative fueled or catalyst equipped diesel construction equipment, including all off-road and portable diesel powered equipment.
- b) Minimize idling time either by shutting equipment off when not in use or reducing the time of idling to 5 minutes as a maximum.
- c) Limit, to the extent feasible, the hours of operation of heavy duty equipment and/or the amount of equipment in use.
- d) Replace fossil fueled equipment with electrically driven equivalents (provided they are not run via a portable generator set).

Construction would also generate mobile source emissions from worker trips, hauling trips, and vendor trips. CalEEMod calculates emissions of all pollutants from on-road trucks and passenger vehicles using emission factors derived from CARB's motor vehicle emission inventory program EMFAC2017 (CARB 2017b). Vehicle emission factors were multiplied by the model default total estimated number of trips and the average trip length to calculate the total mobile emissions. The project would require up to 50 workers per day and seven deliveries per day. The average worker, hauling, and vendor trip lengths were increased to 20 miles to be conservative.

Based on guidance from the SCAQMD, total construction GHG emissions resulting from a project should be amortized over 30 years and added to operational GHG emissions to account for their contribution to GHG emissions over the lifetime of a project (SCAQMD 2009).

4.2 Operation-related Emissions

4.2.1 Mobile Sources

GHG emissions from vehicles come from the combustion of fossil fuels in vehicle engines. The vehicle emissions are calculated based on the vehicle type and the trip rate for each land use. CalEEMod calculates mobile source emissions using emission factors derived from CARB's motor vehicle emission inventory program, EMFAC2017 (CARB 2017b). The project would be an unmanned facility that would be operated remotely. Therefore, the project would not generate routine daily trips. Occasional maintenance trips would be required. To account for these trips, a total of one round trip (two one-way trips) was modeled per weekday. The default trip length was increased to 20 miles. CalEEMod default emission factors for the soonest operational year of 2024 were modeled.

4.2.2 Energy Sources

GHGs are emitted as a result of activities in buildings for which electricity and natural gas are used as energy sources. GHGs are emitted during the generation of electricity from fossil fuels off-site in power plants. These emissions are considered indirect but are calculated in association with a building's operation. Combustion of fossil fuel emits criteria pollutants and GHGs directly into the atmosphere. When this occurs in a building, this is considered a direct emissions source associated with that building. Energy source GHG emissions were calculated using the default

Mr. Ramon Gonzalez Page 10 June 6, 2023

emission factors for a light industrial land use. This is conservative since the project would not be a source of natural gas emissions.

4.2.3 Area Sources

Area sources include GHG emissions that would occur from the use of landscaping equipment. The use of landscape equipment emits GHGs associated with the equipment's fuel combustion. The project would not include any landscape maintenance. However, as a conservative analysis, area-source emissions were calculated using the default emission factors for a light industrial land use.

4.2.4 Water and Wastewater Sources

The amount of water used and wastewater generated by a project has indirect GHG emissions associated with it. These emissions are a result of the energy used to supply, distribute, and treat the water and wastewater. In addition to the indirect GHG emissions associated with energy use, wastewater treatment can directly emit both methane and nitrous oxide. As the project would be an unmanned facility, it would not include any water use.

4.2.5 Solid Waste Sources

The disposal of solid waste produces GHG emissions from anaerobic decomposition in landfills, incineration, and transportation of waste. As the project would be an unmanned facility, it would not generate any operational waste.

4.2.6 Refrigerant Sources

Small amounts of GHG emissions result from refrigerants used in air conditioning and refrigeration equipment. CalEEMod quantifies refrigerant emissions from leaks during regular operation and routine servicing over the equipment lifetime and then derives average annual emissions from the lifetime estimate. Emissions due to refrigerants were calculated using CalEEMod default values for a light industrial land use, which are based on industry data from the U.S. EPA.

4.3 Total GHG Emissions

Table 4 shows the estimated annual GHG construction emissions associated with the project, as well as the amortized construction emissions over a 30-year project life. Table 5 summarizes the total project GHG emissions.

G Emissions
GHG Emissions (MT CO₂E)
191
6

Mr. Ramon Gonzalez Page 11 June 6, 2023

	Emissions				
	GHG Emissions				
Source	(MT CO ₂ E)				
1obile	4				
nergy	388				
rea	<1				
Vater	0				
olid Waste	0				
efrigerants	2				
onstruction	6				
otal	401				
creening Threshold	90,718				
xceeds Threshold?	No				

As shown in Table 5, the project would result in a total emission of 401 MT CO₂E annually. This is less than the 90,718 MT CO₂E screening threshold. Therefore, the project would not generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment, and impacts would be less than significant.

2. Would the project conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emission of GHGs?

State GHG emissions reduction policy was established by EOs S-3-05 and B-30-15 and was subsequently codified by AB 32 and SB 32. EO S-3-05 established GHG emission reduction targets of year 2000 GHG emission levels by 2010, year 1990 GHG emission levels by 2020, and 80 percent below year 1990 levels by 2050; and EO B-30-15 established an interim GHG emission reduction target of 40 percent below year 1990 levels by 2030. AB 32 launched the CARB Climate Change Scoping Plan that outlined the reduction measures needed to reach the 2020 target, which has been achieved. SB 32 enacts the EO B-30-15 target of reducing GHG emissions to 40 percent below year 1990 levels by 2030.

As shown in Table 5 above, the project's annual GHG emissions would be less than the screening threshold of 90,718 MT CO₂E per year. Additionally, the project would support the state's goal to increase use of renewable energy. In September 2018, the California Legislature passed SB 100, which set a goal that "renewable energy resources and zero-carbon resources supply 100 percent of retail sales of electricity to California end-use customers and 100 percent of electricity procured to serve all state agencies by December 31, 2045." As California procures increasing amounts of renewable energy to meet the goals of SB 100, the state will need to deploy a significant amount of energy storage capability. Renewable energy resources such as wind and solar generate electricity intermittently. Energy storage allows utilities and system operators to manage the effect of intermittent renewable generation on the grid and create reliable, dispatchable generation upon demand. Energy storage also allows excess solar energy produced during the day to be stored and dispatched optimally during peak evening hours or other periods of high demand. Therefore, the project would serve as an integral component of the state's overarching renewable energy storage. The project would assist the state's goal of utilizing 100 percent renewable energy by 2045, which would result in a net decrease in use of fossil fuel and GHG emissions. Therefore, the project would not conflict with

Mr. Ramon Gonzalez Page 12 June 6, 2023

an applicable plan, policy, or regulation adopted for the purpose of reducing the emission of GHGs, and impacts would be less than significant.

If you have any questions about the results of this analysis, please contact me at jfleming@reconenvironmental.com or (619) 308-9333 extension 177.

Sincerely,

Homine Jessich

Jessica Fleming Air Quality Specialist

JLF:jg

5.0 Certification

The following is a list of preparers, persons, and organizations involved with the GHG analysis.

RECON Environmental, Inc.

Jessica Fleming, County-approved Air Quality Consultant Jennifer Gutierrez, Production Specialist Frank McDermott, GIS Manager

6.0 References Cited

California Air Pollution Control Officers Association (CAPCOA)

2022 California Emissions Estimator Model (CalEEMod), Version 2022.1.

California Air Resources Board (CARB)

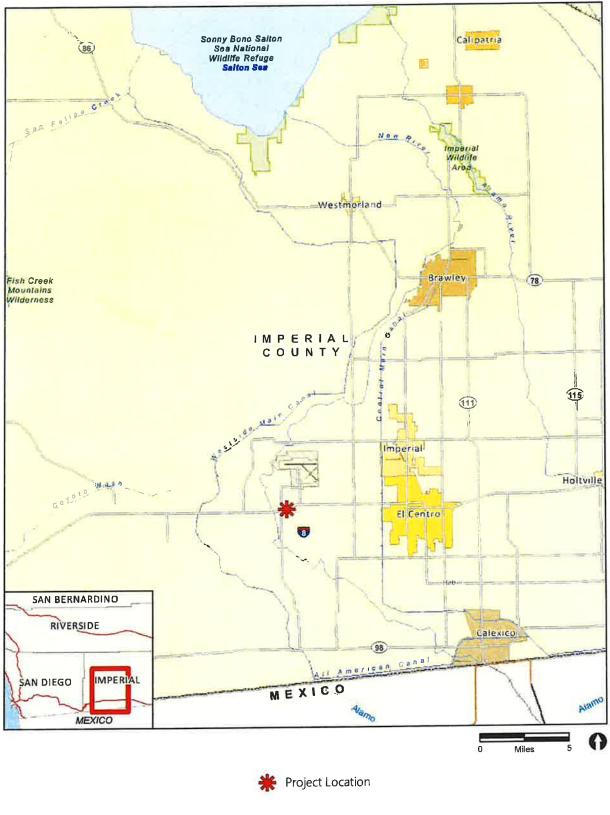
- 2007 California Greenhouse Gas Inventory Summary by Economic Sector. Last updated November 19.
- 2008 Climate Change Scoping Plan: A Framework for Change. http://www.arb.ca.gov/cc/scopingplan/document/adopted_scoping_plan.pdf. December.
- 2017a The 2017 Climate Change Scoping Plan Update, The Proposed Strategy for Achieving California's 2030 Greenhouse Gas Target. January 20.
- 2017b EMFAC2017 Emissions Database Inventory Model.
- 2022a Greenhouse Gas Inventory Data—2000 to 2020 (last updated October 26). https://ww2.arb.ca.gov/ghginventory-data.
- 2022b 2022 Scoping Plan for Achieving Carbon Neutrality, November 16. Accessed February 1, 2023 at https://ww2.arb.ca.gov/sites/default/files/2022-12/2022-sp.pdf.

Mr. Ramon Gonzalez Page 13 June 6, 2023

Imperial County

- 2015 County of Imperial General Plan, Renewable Energy and Transmission Element. October 6.
- 2021 Imperial County Regional Climate Action Plan. Prepared by Ascent Environmental for the Southern California Association of Governments and Imperial County Transportation Commission. June.

Imperial County Air Pollution Control District (ICAPCD)


2017 CEQA Air Quality Handbook, Guidelines for the Implementation of the California Environmental Quality Act of 1970. December.

South Coast Air Quality Management District (SCAQMD)

2009 Greenhouse Gas CEQA Significance Threshold Stakeholder Working Group 14. November 19.

EEC ORIGINAL PKG

140

 RECON

 M:\/0856\10324\common_gis\/MXD\fig1 mxd
 03/08/2023

 bma

FIGURE 1 Regional Location

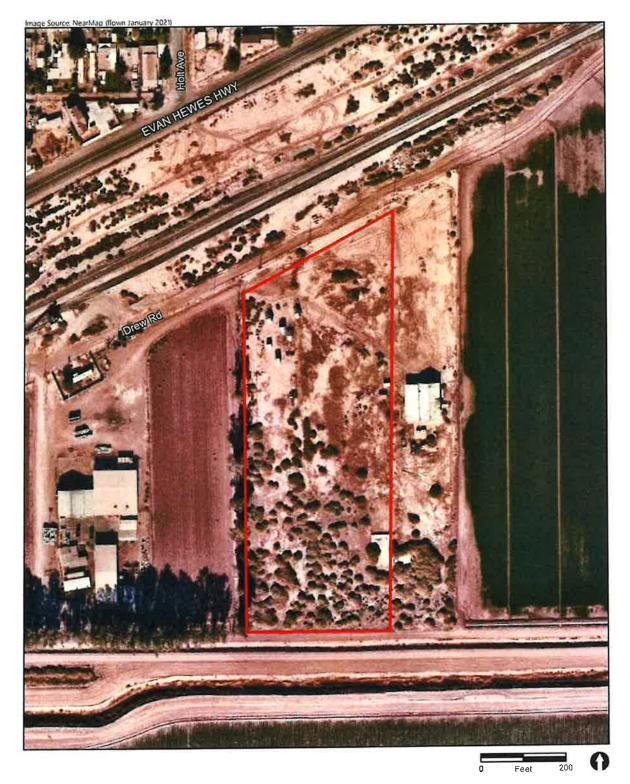


FIGURE 2 Project Location on Aerial Photograph

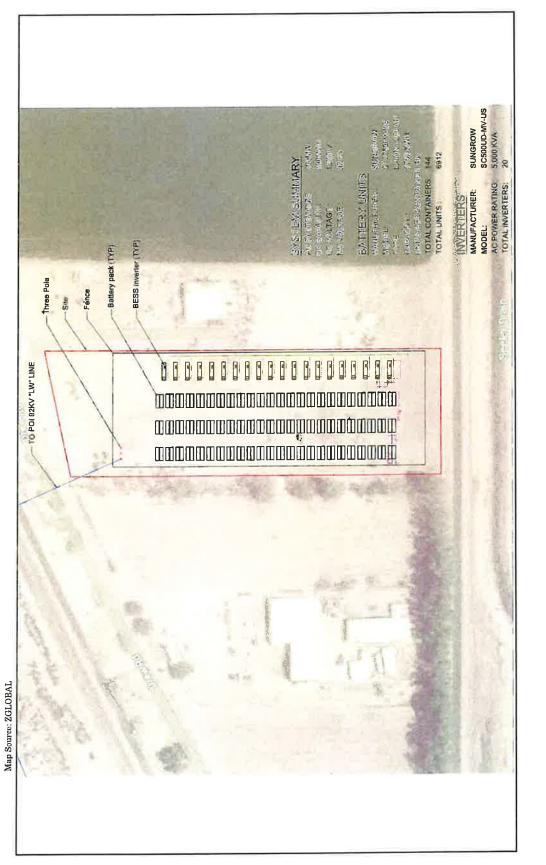


FIGURE 3 Site Plan

> RECON MUOBS6/10324/64/99 all 06/05/23 from

ATTACHMENT 1 CalEEMod Output Files

8

Alba Peaker Detailed Report

Table of Contents

- 1. Basic Project Information
- 1.1. Basic Project Information
- 1.2. Land Use Types
- 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
- 2.1. Construction Emissions Compared Against Thresholds
- 2.2. Construction Emissions by Year, Unmitigated
- 2.4. Operations Emissions Compared Against Thresholds
- 2.5. Operations Emissions by Sector, Unmitigated

- 3. Construction Emissions Details
 3. Cading (2024) Unmitigated
 6. Grading Construction (2024) Unmitigated
 8. Building Construction (2024) Unmitigated
 8. Building Construction (2024) Unmitigated

3.9. Building Construction (2024) - Unmittigated

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

4.3. Area Emissions by Source

4.3.2. Unmitigated

4.4. Water Emissions by Land Use

4.4.2. Unmitigated

4.5. Waste Emissions by Land Use

G.5.2. Unmitigated

Refrigerant Emissions by Land Use A.6.1. Unmitigated A.7.1. Unmitigated A.7.1. Unmitigated

- 4.8. Stationary Emissions By Equipment Type
- 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
- 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
- 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
- 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
- 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
- 5.1. Construction Schedule
- 5.2. Off-Road Equipment
- TT-5.2.1. Unmitigated
- Construction Vehicles

- 3.1. Unmitigated . Vehicles .4.1. Construction Vehicle Control Strategies
- Architectural Coatings

5.6. Dust Mitigation

- 5.6.1. Construction Earthmoving Activities
- 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
- 5.9.1. Unmitigated
- 5.10. Operational Area Sources
- 5.10.1. Hearths
- 5.10.1.1. Unmitigated
- 5.10.2. Architectural Coatings
- 5.10.3. Landscape Equipment
- 1. Operational Energy Consumption
- 2.11.1. Unmitigated 2. Operational Water and Wastewater Consumption 5.12.1. Unmitigated
- 3. Operational Waste Generation

5.13.1. Unmitigated

- 5.14. Operational Refrigeration and Air Conditioning Equipment
- 5.14.1. Unmitigated
- 5.15. Operational Off-Road Equipment
- 5.15.1. Unmitigated
- 5.16. Stationary Sources
- 5.16.1. Emergency Generators and Fire Pumps
- 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
- 5.18.1. Land Use Change
- 5.18.1.1. Unmitigated .18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated G.18.2. Sequestration 5.18.2.1. Unmitigated

- 6. Cumate Risk Detailed Report

- 6.1. Climate Risk Summary
- 6.2. Initial Climate Risk Scores
- 6.3. Adjusted Climate Risk Scores
- 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
- 7.1. CalEnviroScreen 4.0 Scores
- 7.2. Healthy Places Index Scores
- 7.3. Overall Health & Equity Scores
- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard
- 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field		Value
Project Name		Alba Peaker
Construction Start Date		1/1/2024
Operational Year		2024
Lead Agency		Imeprial County
Land Use Scale		Project/site
Analysis Level for Defaults		County
Windspeed (m/s)		3.30
Precipitation (days)		4.80
Location		32.791194308087086, -115.68507278016418
County		Imperial
City		Unincorporated
Air District		Imperial County APCD
Air Basin		Salton Sea
TAPT		5605
EON		19
Electric Utility		Imperial Irrigation District
Gardtility		Southern California Gas
Appersion		2022.1.1.13
1. ELand Use Types		
Land Use Subtype Size	Unit Lot Acreage	Building Area (sq tt) Landscape Area (sq Special Landscape Population Description Area (sq tt)

7/43

G

l 1 00'0 00'0 48,260 7.10 1000sqft 48.3 General Light Industry

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected 2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

	CO2e	1	5,057	I	6,232	Ĭ	1,156	1	191	1	t	1	
	œ	t	8.77	Ì	0.23	I	0.77	1	0.13	1	Ę	1	
	N2O	t	0.19	1	0.20	1	0.04	1	0.01	Ĩ	Ĩ	t	
	CH4	Į	0.17	1	0.24	ī	0.04	I	0.01	1	ť	I	
	CO2T	ĩ	4,987	1	6,165	Ĩ.	1,143	t	189	1	I	l	
	NBCO2	t	4,987	I	6,165	I	1,143	I	189	Ĩ.	I	Î	
	BCO2	I	I	I	ĩ	Ĩ	1	I	1	1	I	l	
annual)	PM2.5T	ĩ	33.8	1	34.2	1	7.10	ſ	1.30	I	Ĭ	I	
GHGs (lb/day for daily, MT/yr for annual)	PM2 5D	1	33.5	1	33.5	1	7.00	Ĺ	1.28	ĩ	Ĩ	Ī	
or daily, I	PM2.5E	Ĩ	0.29	1	0.68	I	0.10	L	0.02	1	1	ţ	8/43
(lb/day fc	PM10T	I	333	1	333	1	69.7	ſ	12.7	I	150	Yes	
	PM10D	1	333	ł	333	I	69.6	Î	12.7	Ĺ	I	I	
ual) and	PM10E	I	0.32	1	0.74	I	0.11	ţ.	0.02	I	1	I	
r for ann	S02	1	0.03	t	0.05	1	0.01	ţ	< 0.005	Ĺ	Ì	1	
illy, ton/y	00	I	20.8	Ļ	28.7	ï	5.15	Ĩ	0.94	I	550	Ň	
ay for da	NOX	I	9.54	1	20.2	1	3.14	ľ	0.57	t	100	No	
Criteria Pollutants (lb/day for daily, ton/yr for annual) and	ROG	1	1.73	1	2.98	1	0.49	Ĩ	0.09	I	75.0	No	
Polluta	TOG	Ì.	2.02	1	3.58	l	0.57	I	0.10	1	1	ļ	
Criteria	Un/Mil.	Daily, Summer (Max)	Unmit.	Daily, Winter (Max)	Unmit.	Average Daily (Max)	Ē	PR	Ş	Exercise W (Decercise)	Ind Britt	G	

I	1	I
I	1	1
Ĺ	ł	Í
I	Ĵ	1
ſ	1	1
I	Ĩ	ĩ
I	1	I
1	1	I
Î.	ì	Ĩ
t	1	1
I,	150	Ñ
ľ	I	Ĩ
L	1	1
ţ	<u>1</u>	Ĩ
ľ	550	٥N
I	75.0 100	No No No
Ĺ	75.0	No
8 8		1
Exceeds — (Average Daily)	Threshi d	Unmit.

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/dav for daily, ton/vr for annual) and GHGs (lb/dav for daily. MT/vr for annual)

			ay tor da	IIY, ton/yi	Criteria Pollutants (ID/day for Gally, ton/yr for annual) and		E	TOHOT IOI	ualiy, M						CHA	OCN		0000
	106	.9 202	NOX	9	202	PINIUE		IOLMH		עכ.2MH		2002	NBCUZ	071	CH4	NZU	r	07ce
Daily - Summer (Max)	Т	Ĩ	I	T	I.	I	1	1	1	1	1	T	1	1	1	1	1	1
2024	2.02	1.73	9.54	20.8	0,03	0.32	333	333	0.29	33.5	33.8	I	4,987	4,987	0.17	0.19	8.77	5,057
Daily - Winter (Max)	1	I	Î	1	I	1	1	ī	t	I	í	I	Ĩ	Î	I	I	Î	I
2024	3.58	2.98	20.2	28.7	0.05	0.74	333	333	0.68	33.5	34.2	1	6,165	6,165	0.24	0.20	0.23	6,232
Average Daily	Ē	t	ſ	I.	ſ	Ĺ	1	I	i	1	Ĩ	1	1	ù.	1	1	1	J
2024	0.57	0.49	3.14	5.15	0.01	0.11	69.6	69.7	0.10	7.00	7.10	I	1,143	1,143	0.04	0.04	0.77	1,156
Armpal	Î	ľ	I	ľ	ľ	ľ	E	1	ĩ	1	1	1	1	ĺ	I	1	J	1
2084	0.10	60.0	0.57	0.94	< 0.005	0.02	12.7	12.7	0,02	1.28	1.30	Ĩ	189	189	0.01	0.01	0.13	191
	beratio	ns Em	issions	Compa	Ired Ag	ainst Th	2.400 Derations Emissions Compared Against Thresholds	st		8								
beria	Pollutar	nts (Ib/d	ay for da	illy, ton/y	Criteria Pollutants (Ib/day for daily, ton/yr for annual) and	ual) and	GHGs (Ib/day for daily, MT/yr for annual)	b/day for	- daily, M	T/yr for	annual)							
UnAnt	TOG	ROG	NOX	CO	S02	PM10E	PM10D	PM10T	PM2.5E	PM2 5D	PM2 5T	BCO2	NBCO2	CO2T	CH4	NZO	œ	CO2e
Surder	T		1	1	1	1	1	1	1	I	1	I	t	1	ſ	I	<u>í</u>	1

6/6/2023
Report,
Detailed
Peaker I
Alba

.63 < 0.005 0.04 0.58 0.61 0.04 0.09 0.12 0.00 2,381 2,381 0.18 0.02 12.7 2,403		.47 < 0.005 0.03 0.58 0.61 0.03 0.09 0.12 0.00 2,368 2,368 0.18 0.02 12.6 2,390		.48 < 0.005 0.03 0.41 0.44 0.03 0.06 0.10 0.00 2,364 2,364 0.18 0.02 12.6 2,387		.27 <0.005 0.01 0.08 0.01 0.01 0.01 0.02 0.00 391 391 0.03 <0.005 2.09 395		20 150 150 - 551	Vo No I I No I I No I I I I I I		50 150 150 - 551		y Sector, Unmitigated	t, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)			
0.04 0.58 0.61	I	0.03 0.58 0.61	1	0.03 0.41 0.44		0.01 0.08 0.08	I I I	1	I N	1 1 1 1	150	 	nmitigated			E E E	
0.45 2.63	1 1	0.44 0.47	1	0.44 1.48	1 1 1	0.08 0.27	1 1 1	137 550	No	1 1 1	137 550	No	2. Soperations Emissions by Sector, Unmitigated	Criteria Pollutants (Ib/day for daily, ton/yr for annual) and	2	1	
[.] Unmit. 0.43 1.60	Daily, Winter (Max)	Unmit. 0.06 1.25	Average — — — Daily (Max)	Unmlt. 0.24 1.42	Annual — — — — (Max)	Unmit. 0.04 0.26	Exceeds — — — — — — — — — — — — — — — — — — —	Threshol — 137 d	Unmit. – No	Exceeds — — — (Average Daily)	Threshol 137 d		2. Soperations	Cri <mark>ter</mark> ia Pollutants (20-		<

Herewary0.620.630.630.60 <t< th=""><th>Area</th><th>0.37</th><th>1.56</th><th>0.02</th><th>2.10</th><th>< 0.005</th><th>< 0.005</th><th>1</th><th>< 0,005</th><th>< 0.005</th><th>1</th><th>< 0.005</th><th>1</th><th>8.63</th><th>8.63</th><th>< 0.005</th><th>< 0.005</th><th>1</th><th>8.66</th></t<>	Area	0.37	1.56	0.02	2.10	< 0.005	< 0.005	1	< 0,005	< 0.005	1	< 0.005	1	8.63	8.63	< 0.005	< 0.005	1	8.66
Image Image <th< th=""><th></th><th>0.05</th><th>0.02</th><th>0.42</th><th>0.35</th><th></th><th></th><th>I</th><th></th><th>0.03</th><th>I</th><th>0.03</th><th>1</th><th>2,336</th><th>2,336</th><th>0.18</th><th>0.02</th><th>1</th><th>2,345</th></th<>		0.05	0.02	0.42	0.35			I		0.03	I	0.03	1	2,336	2,336	0.18	0.02	1	2,345
	Water	I	1	I	Î	1	I	Ĩ	1	I	1	1	00.0	0.00	0.00	0.00	0.00	1	0.00
1 1 <th>Waste</th> <th>1</th> <th>I</th> <th>1</th> <th>Ĩ</th> <th>1</th> <th>1</th> <th>Ĩ</th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th>0.00</th> <th>0.00</th> <th>0.00</th> <th>0.00</th> <th>0.00</th> <th></th> <th>0.00</th>	Waste	1	I	1	Ĩ	1	1	Ĩ	1	1	1	1	0.00	0.00	0.00	0.00	0.00		0.00
043 150 045 253 6005 045 056 051 051 053 <th>Refrig.</th> <th>1</th> <th>Î</th> <th>1</th> <th>I</th> <th>1</th> <th>1</th> <th>I</th> <th>1</th> <th>I</th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th>.1</th> <th>1</th> <th>1</th> <th>12.6</th> <th>12.6</th>	Refrig.	1	Î	1	I	1	1	I	1	I	1	1	1	1	.1	1	1	12.6	12.6
		0.43	1.60	0.45	2.63			0,58			0.09	0.12	0.00	2,381	2,381	0.18	0.02	12.7	2,403
011 012 012 011 0102 011 0102 011 0103 0104 0104 0105 0106<	Daily, Winter (Max)	1	Ì		Î	I	1	10		1	I	1	1	1	1	I		1	I
	Mobile	0.01	0.01	0.02	0.11	< 0.005		0.58		< 0.005	0.09	0.09	1	31.6	31.6	< 0.005	< 0.005	< 0,005	32.1
036 042 035 < 4005 033 - 033 - 2.336 0.18 0.02 -	Area	1	1.22	1	1	ï	1		I		I	1	1	I	1	1	ĩ	Ι	1
	Energy	0.05	0.02	0.42	0.35	< 0.005	0.03	1	0.03	0.03	ł	0.03	1	2,336	2,336	0.18	0.02	1	2,345
	Water	1	1	1	t	1	1	1	l	1	1	1	0.00	0.00	0.00	0.00	0.00	1	0.00
	Waste	1	I	1	ľ	I	1	1	l	1	1	I	0.00	0.00	00.00	00.0	0.00	I	0.00
0.06 1.25 0.44 0.47 (.0.05 0.38 0.61 0.13 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.02 12.6 1	Refrig.	1	1	1	1	1	1	1	1	1	ſ		1	1	1	1	1	12.6	12.6
$ \begin{array}{ $	Total	0.06	1.25	0.44	0.47	< 0.005	0.03	0.58	0.61	0.03	0.09	0.12	0.00	2,368	2,368	0.18	0.02	12.6	2,390
0.01 0.01 0.01 $c.0.06$ $c.0.06$ $c.0.06$ 0.41 0.06 0.06 $c.0.06$ $c.0.06$ $c.0.06$ 0.04 0.01 0.00 $c.0.06$ $c.0.06$ 0.04 0.01 0.00 $c.0.06$ $c.0.06$ 0.00 <th< td=""><td>Average Daily</td><td>I</td><td>1</td><td>1</td><td>1</td><td>ł</td><td>1</td><td>1</td><td>1</td><td>I</td><td>1</td><td>ĩ</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>I</td><td>1</td></th<>	Average Daily	I	1	1	1	ł	1	1	1	I	1	ĩ	1	1	1	1	1	I	1
0.18 1.39 0.01 1.03 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.00	Mobile	0.01	0.01	0.01	0.10	< 0.005	< 0.005	0.41	0.41	< 0.005	0.06	0.06	1	23.9	23.9	< 0.005	< 0.005	0.04	24.3
0.05 0.22 0.35 < 0.005 0.03 -1 0.03 -1 0.03 -1 0.03 -1 0.03 0.03 0.18 0.03 0.03 -1	Areal	0.18	1.39	0.01	1.03	< 0.005	< 0.005	1	< 0.005	< 0.005	I	< 0.005	ſ	4.26	4.26	< 0.005	< 0.005	Ĭ	4.27
	Energy	0.05	0.02	0.42	0.35	< 0.005	0.03	1	0.03	0.03	1	0.03	1	2,336	2,336	0.18	0.02	ī	2,345
	Water	I	1	1	1	Ţ	1	1	.	Í	1	1	0.00	0.00	0.00	0.00	00.0	ï	0.00
126 0.24 1.42 0.44 1.48 <0.03	Rew	Î	1	I	1	I	!	1	1	Ĩ	1	1	00.0	0.00	0.00	00.0	0.00	ĩ	0.00
0.24 1.42 0.44 1.48 < 0.005 0.03 0.44 0.03 0.06 0.10 0.364 2.364 0.18 0.02 12.6	Refer	1	1	1	1	1	1	1	1	Ĩ	1	1	1	1	1	1	<u> </u>	12.6	12.6
<t< td=""><td>Totat</td><td>0.24</td><td>1.42</td><td>0.44</td><td>1.48</td><td>< 0.005</td><td>0.03</td><td>0.41</td><td>0.44</td><td>0.03</td><td>0.06</td><td>0.10</td><td>0.00</td><td>2,364</td><td>2,364</td><td>0.18</td><td>0.02</td><td>12.6</td><td>2,387</td></t<>	Totat	0.24	1.42	0.44	1.48	< 0.005	0.03	0.41	0.44	0.03	0.06	0.10	0.00	2,364	2,364	0.18	0.02	12.6	2,387
< 0.005	Anadal	1	1	1	1		1	1		1	I	1	í	ſ	1	1		1	I
0.03 0.25 < 0.005	Mobile	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005	0.08	0.08	< 0.005	0.01	0.01	1	3.96	3.96	< 0.005	< 0.005	0.01	4.02
0.01 < 0.005 0.08 0.06 < 0.005 0.01 - 0.01 0.01 - 0.01 - 387 0.03 < 0.005 -	Arpa	0.03	0.25	< 0.005	-	< 0.005	< 0.005	1	< 0.005	< 0,005	1	< 0.005	ĩ	0.70	0.70	< 0.005	< 0.005	1	0.71
	Guana	0.01	< 0.005	0.08	0.06	< 0.005	0.01	l	0.01	0.01	1	0.01	1	387	387	0.03	< 0.005	ï	388

_	-	-	
0.00	00.0	2.08	395
1	I	2.08	2.09
00.0	00.0	I	< 0.005
00.0	00.0	Ĩ	0.03
0.00	0.00	Ļ	391
0.00	0.00	ţ	391
0.00	00.0	Ē	0.00
I	1	Ę	0.02
I	j	Ē	0.01
1	1	I.	0.01
1)	I	0.08
Ì	Ì	l	0.08
	1		
Ĩ	1	J.	< 0.005
	ì		
ļ	I	Ţ	0.08
I	ł	Î	0.26
I	1	I	0.04
Water	Waste	Refrig.	Total

3. Construction Emissions Details

3.1. Grading (2024) - Unmitigated

	2e				2,958		8		en en
	CO2e	1	Ľ	I	2,9	Ţ	0.00	ſ	113
	œ	ļ	ī,	Ī	Ĵ	ï	0.00	Ĩ	ť,
	N20	1	ſ	1	0.02	1	0.00	1	< 0.005
	CH4	t	l	1	0,12	1	0.00	I	< 0.005
2	CO2T	I	Į	Ĩ	2,948	1	0.00	ī	113
	NBC02	ī	ſ	I	2,948	1	0.00	1	113
	BCO2	1	l	1		1	I	I	Ī
(Ienunal)	PM2.5T	ţ	I	Ī	0.49	0.06	0.00	I	0.02
MT/yr for	PM2.5D	Ĩ	ľ	1		0.06	0.00	I	Ĩ
or daily, I	PM2 5E	t	ſ	1	0.49	1	0.00	1	0.02
GHGs (lb/day for daily, MT/yr for annual)	PM10T	Î	Ĩ	Ì	0.53	0.53	0.00	1	0.02
	PM10D	ſ	I	1	I	0.53	0.00	ļ	Î
ual) and	PM10E	ţ	t	1	0,53	I	0,00	1	0.02
r for ann	S02	Ĺ	I	Ĩ	0.03	1	0.00	1	< 0.005
illy, ton/y	8	I	t	1	12.1	I	0.00)	0.47
ay for da	NOX	E	ļ	l	13.2	1	0.00	T	0.51
nts (Ib/di	ROG	Î.	Ĭ	1	1.42	I	0.00	I	0.05
Criteria Pollutants (lb/day for daily, ton/yr for annual) and	TOG	ţ	I _	1	ld 1.70 ent		0.00	l	PKG
Criteria	Location	Onsite	Daily, Summer (Max)	Daily, Winter (Max)	Off-Road 1.70 Equipment	Material Moment	B R	Average	

QDM CMM CMMQD0 <t< th=""><th>Dust From Material Movement</th><th>1</th><th>1</th><th>1</th><th>1</th><th>1</th><th>1</th><th>0.02</th><th>0.02</th><th>1</th><th>< 0.005</th><th>< 0.005</th><th>1</th><th>1</th><th>1</th><th>I</th><th>1</th><th>1</th><th>1</th></t<>	Dust From Material Movement	1	1	1	1	1	1	0.02	0.02	1	< 0.005	< 0.005	1	1	1	I	1	1	1
$ \begin{array}{ $		0.00	0.00	0.00	0.00	0.00	0.00			0.00		0.00	1	0.00	0.00			0.00	0.00
α <th>Annual</th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th>I</th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th>I</th> <th>1</th> <th>Ĭ</th> <th></th> <th>1</th> <th>1</th> <th>1</th>	Annual	1	1	1	1	1	I	1	1	1	1	1	I	1	Ĭ		1	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Off-Road Equipment	0.01	0.01	0.09	0.08	< 0.005	< 0.005	1	< 0,005	< 0,005	1	< 0.005	I	18.7	18.7	< 0.005	< 0.005	1	18.8
0.00 0.00 <th< td=""><td>Dust From Material Movemen;</td><td>1</td><td>1</td><td></td><td>1</td><td>1</td><td>1</td><td>< 0.005</td><td>< 0,005</td><td>1</td><td>< 0.005</td><td>< 0.005</td><td>1</td><td>1</td><td>I</td><td>1</td><td>1</td><td>Ĩ</td><td>1</td></th<>	Dust From Material Movemen;	1	1		1	1	1	< 0.005	< 0,005	1	< 0.005	< 0.005	1	1	I	1	1	Ĩ	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00	0.00	0.00	0.00	0.00	00'0	0.00		0.00		0.00	1	0.00	0.00			0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Offsite	I	1	I	1	I	Ĩ	ł	1	Ĩ	1	I	1	I	1	I	1		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Daily, Summer (Max)	1	I	1	1	1	1	1	1	1	1	I	Î	l	1		1	1	1
0.65 0.28 7.73 0.00 0.00 0.00 292 282 0.00 294 29.4 -1 1.435 1.435 0.07 0.05 0.07 0.05 0.01 0.00 <	Daily, Winter (Max)	l	1	I	Í		I	Ĺ	1	1	1	1	1	1	1	1	1	1	1
0.000.	Worker	0.65	0.55	0.88	7.73	00.0	0.00	292	292	0.00	29.4	29.4	l	1,435	1,435	0.07	0.05	0.17	1,453
0.00 0.00 <th< td=""><td>Vehilder</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>1</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></th<>	Vehilder	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
- -	Hadding	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
0.03 0.02 0.03 0.38 0.00 1.12 1.13 1.13 1.13 59.2 59.2 60.005 60.005 0.11 0.00 <t< td=""><td>Avenue</td><td>l</td><td>Ī</td><td>1</td><td>1</td><td>I</td><td>. 1</td><td>ı</td><td></td><td>1</td><td>ĩ</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>I</td><td>1</td><td>1</td></t<>	Avenue	l	Ī	1	1	I	. 1	ı		1	ĩ	1	1	1	1	1	I	1	1
0.00 0.00 <th< td=""><td>Warer</td><td>0.03</td><td>0.02</td><td>0.03</td><td>0.38</td><td>0.00</td><td>00.0</td><td>11.2</td><td>11.2</td><td>0.00</td><td>1.13</td><td>1.13</td><td>1</td><td>59.2</td><td>59.2</td><td>< 0.005</td><td>< 0.005</td><td>0.11</td><td>60.0</td></th<>	Warer	0.03	0.02	0.03	0.38	0.00	00.0	11.2	11.2	0.00	1.13	1.13	1	59.2	59.2	< 0.005	< 0.005	0.11	60.0
0.00 0.00 <th< td=""><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>1</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></th<>		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
- - <td>DualHa</td> <td>0.00</td> <td>1</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	Dual Ha	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
< 0.005 < 0.01 0.07 0.00 0.00 2.04 0.00 0.21 0.21 9.80 9.80 < 0.005 < 0.005 0.02 0.00	Annual	1	ł	1	1	I	I	I	Ĩ	F	1	1	1	1	1	1	1	1	1
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Weiter	< 0.005	< 0.005	0.01	0.07	0.00	0.00	2.04	2.04	0.00	0.21	0.21	1	9.80	9.80	< 0.005	< 0.005	0.02	9.93
	Vender	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	00.0	0.00	0.00	0.00	0.00	0.00

0.00	
0.00	
0.00	
0.00	
0.00	
0.00	
I	
00.0	
0.00	
0.00	
0.00	
0.00	
00.0	
0.00	
0.00	
0.00	!
0.00	
0.00	:
Hauling	1

3.3. Building Construction (2024) - Unmitigated

AZO 0.02 0.000 0.00
--

Alba Peaker Detailed Report, 6/6/2023

Daily, Winter (Max)	I	1	I	Ì	I	I	I	I	Ĩ.	E	Ľ	i	ŗ.	1	i. I	I	I.	Ĕ
Worker	0.65	0.55	0.88	7.73	0.00	0.00	292	292		29,4	29.4	ĩ	1,435	1,435		0.05	0.17	1,453
Vendor	0.04	0.02	0.96	0.36	0.01	0.01	40.9	40.9	0.01	4.13	4.14	Ĩ	863	863	0.01	0.12	0.06	668
Hauling	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00		0.00	0.00	1	0.00	0.00		0.00	0.00	0.00
Average Daily	I	Ĩ	ľ	Ĩ	I	I.	Ê	I	Ĩ.	Ĺ	ţ.	Į.				Ĩ	E	I
Worker	0.03	0.03	0.03	0.40	0.00	0.00	12.0	12.0	0.00	1.21	1.21	1	63.4	63.4	< 0.005	< 0.005	0.11	64.3
Vendor	< 0.005	< 0.005	0.04	0.01	< 0.005	< 0.005	1.68	1.68	< 0.005	0.17	0.17	T	35.5			< 0.005	0.04	37.0
Hauling	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Annual	1	Î	1	I	I	1	1	Î	1	1	I	1	1	Į	I	I	1	1
Worker	0.01	< 0.005	0.01	0.07	0.00	0.00	2.19	2.19	0.00	0.22	0.22	Ĩ	10.5	10.5	< 0.005	< 0.005	0.02	10.6
Vendar	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	0.31	0.31	< 0.005	0.03	0.03	1	5.87	5.87	< 0.005	< 0.005	0.01	6.12
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
3 F B.	, notion	Conetri	Intion /	3 5. Building Construction (2024) - I Inmitirated	l Inmitic	hoten												

3.5. Building Construction (2024) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

	CO2e	1	1	I	1,722	0.00
	Ľ	1	Î.	ĩ	I	0.00
	N2O	1	ľ	1	0.01	00.0
Ì	CH4	I	Ĩ	Ĩ	0.07	00.0
		T	ľ	ï	1,716	0.00
	NBCO2 CO2T	I	ı		1,716	0.00
			Ē	1	1	1
(ipniii)	PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2	l	ī		0.20	0.00
vy iu a	M2.5D	ť	1			0.00
nany, w	M2.5E	Ĩ	ĩ	, T	0.20	0.00
uay iui	M10T	ĩ	I		0.22 (0.00
an inde vinvidey ini valify, ivi i yi i val an ini dai	M10D F	, I	1	1	I	0.00
- 124	PM10E P		ì	Т	0.22 -	0.00
allina	SO2 P			1	0.02 0	0.00
ni iki in	co S		1		5.59 0	0.00
u uaiiy,	NOX C		1		5.92 5	0.00
(invided)	ROG N		1	ı	0.84 5	0.00
SILIPINI		1	1	t		
Utiletia Pullularits (ibruay iui ualiy, witry) iui attituaty artu	Location TOG	Onente	Daily		Other 1.01	Fig

Daily	1	1	I	1	1	I	1		1	1	ĵ.	11	I	1	1	1	1	ı
Off-Road 0.01 Equipment		0.01	0.08	0.08	< 0.005	< 0.005	1	< 0.005	< 0.005	1	< 0.005	1	23.5	23.5	< 0.005	< 0.005	I	23.6
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Annual	I	1	I	I	Í	í	I	I	I	1	I	1	1	Ì	I.	I	1	1
Off-Road <	< 0.005	< 0,005	0.01	0.01	< 0.005	< 0.005	L	< 0.005	< 0.005	r	< 0.005	1	3.89	3.89	< 0.005	< 0.005	t	3.90
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	I	ŀ	1	I	I	Ţ	1	1	1	1	1	1	1	1	1	1	1	1
Daily, Summer (Max)	I		1	Ĩ	l	l	Ĺ	1	1	t	1	ï	1	1	1	1		1
Dally, Winter (Max)	1	1		I	1	1	I.	1	1	1	1	1		1	Ĩ	I	1	1
Worker	0.65	0.55	0.88	7.73	0.00	0.00	292	292	0.00	29.4	29.4	ï	1,435	1,435	0.07	0.05	0.17	1,453
Vendor	0.04	0.02	0.96	0.36	0.01	0.01	40.9	40.9	0.01	4.13	4.14	1	863	863	0.01	0.12	0.06	668
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	1	1	1	1	1	I	ł	1	1	r	1	1	-	I	1	1	1	L
Monter	0.01	0.01	0.01	0.13	0.00	0.00	4.00	4.00	0.00	0.40	0.40	1	21.1	21.1	< 0.005	< 0.005	0.04	21.4
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	0.56	0.56	< 0.005	0.06	0.06	1	11.8	11.8	< 0.005	< 0.005	0.01	12.3
Burgen	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	T	00.0	0.00	00.0	0.00	0.00	00.0
Anolal	1	1	1	1	1	1	ĵ	1	1	1	Î	1	I	ĩ	ľ	I.	1	1
Warker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	0.73	0.73	0.00	0.07	0.07	1	3.50	3.50	< 0.005	< 0.005	0.01	3.55
Appendix	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.10	0.10	< 0.005	0.01	0.01	1	1.96	1.96	< 0.005	< 0.005	< 0.005	2.04
Haung	0.00	0.00	00.0	0.00	0.00	00.0	0.00	0.00	00.0	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2024) - Unmitigated

Criteria I	Pollutan	ts (Ib/da	y for dail	ly, ton/yr	Criteria Pollutants (lb/day for daily, ton/yr for annual) and		3HGs (Ib	GHGs (lb/day for daily, MT/yr for annual)	daily, M	T/yr for a	innual)							
Location	TOG	ROG	NOX	CO	S02	PM10E	PM10D	PM10T	PM2.5E	PM2 5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	œ	CO2e
Onsite	1	Ĩ	T	1	1	T	1		1	1	1	1	1	1	1	Ĭ	1	1
Daily, Summer (Max)	t.	Ĭ	l,	Ĺ	Ľ	1	1	1	1	ī	1	1		1	1	1	T	1
Daily, Winter (Max)	1	Ĩ	1	1	I	1	1	,	1	,	Ĩ	i	Ĩ	Ĩ	1	ĩ	I	ī
Off-Road 2.90 Equipment	2.90 t	2.41	18.4	20.6	0.04	0.73	1	0.73	0.67	ų	0.67	1	3,867	3,867	0.16	0.03	1	3,880
Onsite truck	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	t	0'00	0.00	0.00	0.00	0.00	0.00
Average Dally	ł	1	Ĩ	1	I	1	I	ĩ	t	1	Ĭ	î.	ī	Ĩ	r	I	I	t
Off-Road 0.24 Equipment	0.24 It	0.20	1.51	1.69	< 0.005	0.06	ſ	0.06	0.05	I.	0.05	t	318	318	0.01	< 0.005	1	319
Onsite truck	0,00	00.0	0.00	00.0	0.00	00.0	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	00.0	0.00	0.00
Annual	Ĩ	ľ	Ê	I	1	I	1	1	Ì	1	1	1	1	ĩ	1	t	I	1
Off-Road 0.04 Equipment	0.04 11	0.04	0.28	0.31	< 0.005	0.01	1	0.01	0.01	T	0.01	ì	52.6	52.6	< 0.005	< 0.005	1	52.8
C Control	00'0	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	Ĩ	0.00	0.00	0.00	0.00	0.00	0.00
Res (1	1	T	I	1	1	1	1	I	I	I	Ĩ	I	I.	Ĩ	I	Ū	1
Sumer	t	Ę	1	Ĩ	I	1	I	I	1	1	1	ł	1	1	I	ſ	L	L
]	Ĩ	1	ī	t	1	ſ	I.	l.	Ĩ.	1	1	Ì	1	1	Ì	1	1
6									17 / 43									

Worker	0.65	0.55	0.88	7.73	00.0	0.00	292	292	0.00	29,4	29.4	1	1,435	1,435	0.07	0.05	0.17	1,453
Vendor	0.04	0.02	0.96	0.36	0.01	0.01	40.9	40.9	0.01	4.13	4.14	ſ	863	863	0.01	0.12	0.06	839
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ľ,	0.00	0.00	0.00	0.00	0.00	00.0
Average Daily	1	I	1	I	I		Ĭ	1	I	Ĩ	1	1	I	1	Ĩ	ì	1	1
Worker	0.06	0.05	0.07	0.80	0.00	0.00	24.0	24.0	0.00	2.41	2.41	I	127	127		< 0.005	0.23	129
Vendor	< 0.005	< 0.005	0.08	0.03	< 0.005	< 0.005	3.36	3.36	< 0.005	0.34	0.34	1	70.9	70.9		0.01	0.08	74.0
Hauling	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	I	0.00	0.00	0.00	0.00	0.00	0.00
	1	ĩ	1	Ţ	Ĩ	1	1	ĩ	1	T	t	1	Î	1		t	1	1
Warker	0.01	0.01	0.01	0.15	0.00		4.38	4.38	0.00	0.44	0.44	l	21.0	21.0		< 0.005	0.04	21.3
Vendor	< 0.005	< 0.005	0.01	0.01	< 0.005		0.61		< 0.005	0.06	0.06	t	11.7	11.7		< 0.005	0.01	12.2
Hauling	Hauling 0.00	00.0	0.00	0.00	0.00 0.00	0.00	0.00		0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
3.9. Bu	iilding (Constru	lction (2024) -	3.9. Building Construction (2024) - Unmitigated	gated		а.										

	ROG NG	Z	X	8	SO2	PM10E	PM10D PM10T		PM2.5E PM2.5D	PM2.5D	PM2.5T	BC02	NBCO2	C02T	CH4	N2O	æ	CO2e
	1	1) I	Ì		1	1	1	1	1	1	1	1	1	1	1	1	1
		I I I	1	1	1	1	1100	I	1	T	1	1	1	1	1	1)	ļ
Offersad 1.14 0.96 7.91 6.69 0.02 0.31 – Equipment	7.91 6.69 0.02 0.31	6.69 0.02 0.31	0.02 0.31	0.31		÷.	1	0.31	0.28	1	0.28	Í	2,424	2,424	0.10	0.02	I.	2,432
0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00	0.00		ö	0.00	0.00	00.0	0.00	0.00	L	0.00	0.00	0.0	0.00	0.00	0.00
	L C L	E E	I. L	I.		1		t	1	1	1	1	1	1	1	1	1	Ĩ
Ort-Road 1.14 0.96 7.91 6.69 0.02 0.31	7.91 6.69 0.02 0.31	6.69 0.02 0.31	0.02 0.31	0.31		1	w.	0.31	0.28	ĩ	0.28	Î	2,424	2,424	0.10	0.02	1	2,432

Onsite truck	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	ì	0.00	0.00	0.00	00.0	0.00	0.00
Average Daily	1	1	1	<u> </u>	ł	I	1	1	l	1	1	1	1	1]		1	1
Off-Road 0.04 Equipment	0.04 it	0.04	0.30	0.26	< 0,005	0.01	1	0.01	0.01	L	0.01	1	93.0	93.0	< 0.005	< 0.005	I	93.3
Onsite truck	00.0	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	00'0	0.00	0.00	00.0
Annual	1	Î	1	I	1	ľ	T	1	I	Ē	1	I	Ĩ	1	1	Î	T	I
Off-Road 0.01 Equipment	0.01	0.01	0.06	0.05	< 0.005	< 0.005	I	< 0.005	< 0.005	I	< 0.005	1	15.4	15.4	< 0.005	< 0.005	I.	15,4
Onsite truck	0.00	0.00	00.0	00.0	0.00	00.0	0.00	00.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	00.0
Offsite	1	1	1	<u> </u>	1	1	1	1	1	1	1	1	1	1	I	1	1	1
Daily, Summer (Max)	1	I	T	_1	Ì	L	1	Ĩ		1	1	1	1	1	1	1	1	1
Worker	0.84	0.75	0.75	13.7	0.00	0.00	292	292	0.00	29.4	29.4	. 1	1,700	1,700	0.06	0.05	6.37	1,724
Vendor	0.04	0.03	0.88	0.37	0.01	0.01	40.9	40.9	0.01	4.13	4.14	ſ	863	863	0.01	0.12	2.40	901
Hauling	0.00	0.00	00.00	00.00	00'0	0.00	0.00	0.00	0.00	0.00	0.00	1	0.00	00.0	0.00	0.00	0.00	0.00
Winter Winter	1	1	I.	1	1	1	1	1	1	1	I	1	1	1	1	1	I	1
Worker	0.65	0.55	0.88	7.73	0.00	0.00	292	292	0.00	29.4	29.4	1	1,435	1,435	0.07	0.05	0.17	1,453
Velop	0.04	0.02	0.96	0.36	0.01	0.01	40.9	40.9	0.01	4.13	4.14	F	863	863	0.01	0.12	0.06	866
Had	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	I	0.00	0.00	0.00	0.00	0.00	0.00
Ave Barba	1	1	1	1	.1	1	1	1	1	1	1	1	1	1	1	1	1	Î
Worker	0.03	0.02	0.03	0.38	0.00	0.00	11.2	11.2	0.00	1.13	1.13	I	59.2	59.2	< 0.005	< 0.005	0.11	60.0
Vendor	< 0.005	< 0.005	0.04	0.01	< 0.005	< 0.005	1.57	1.57	< 0,005	0.16	0.16	ĩ	33.1	33.1	< 0.005	< 0.005	0.04	34.5
DUNET	0.00	0.00	0.00	0.00	00.0	00.0	0.00	00.0	0.00	0.00	0.00	1	0.00	0.00	0.00	00.00	0.00	0.00
G		1	1	I	1	1	I	_	1	1	1	ļ	ł	1	1	ł	1	l

3	2	0
6.6	5.72	0.0
0.02	0.01	0.00
< 0.005	< 0.005	0.00
< 0.005	< 0.005	0.00
9.80	5.48	0.00
9.80	5.48	0.00
I	1	1
0.21	0.03	0.00
0.21	0.03	0.00
0.00	< 0.005	00.0
2.04	0.29	0.0
2.04	0.29	0.00
0.00	< 0.005	0.00
0.00	< 0.005	0.00
0.07	< 0.005	00.0
0.01	0.01	0.00
< 0.005	< 0.005	00'0
< 0.005	< 0.005	0.00
Worker	Vendor	Hauling

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

CILIEITA	Lountari	(ph/na)	Utileria Poliularits (ib/uay ior ually, torry) for animuary and	y, www.				GITUS (ID/UAY IDI UAIIY, INI I / JI I / JI AI II / JI I / JI AI II / JI / J	ualiy, Ivi							2		
Land Use	TOG	BOG	XON	CO	S02	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2 0	C02T	CH4	N2O	œ	CO2e
Daily, Summer (Max)	1	1	1	1	ĺ	1	1	Ī	1	1	1	1	1	1		1	1	I
General Light Industry	0.01	0.01	0.02	0.18	< 0.005	< 0.005	0.58	0.58	< 0.005	0.09	60.0	I	36.1	36.1	< 0.005	< 0.005	0.14	36.7
Total	0.01	0.01	0.02	0.18	< 0.005	< 0.005	0.58	0.58	< 0.005	0.09	0.09	1	36.1	36.1	< 0.005	< 0.005	0.14	36.7
Wind Wind	í.	1	Ĩ	1	1	Ĩ	3	, 1	1	1	ĩ	1		1	I	1	Î	I
General Light and	0.01	0.01	0.02	0.11	< 0.005	< 0.005	0.58	0.58	< 0.005	0.09	0.09	T	31.6	31.6	< 0.005	< 0.005	< 0.005	32.1
R	0.01	0.01	0.02	0.11	< 0.005	< 0.005	0.58	0.58	< 0.005	0.09	0.09	I	31.6	31.6	< 0.005	< 0.005	< 0.005	32.1
AF	1	1	1	T	1	I	1	1	1	1	1	Ĩ	ĩ	ĩ	Ĩ	I	I	Ĩ
Genery Indetry	< 0.005	< 0.005	< 0.005	0.02	< 0.005	< 0.005	0.08	0.08	< 0,005	0.01	0.01	Ĩ	3.96	3.96	< 0.005	< 0.005	0.01	4.02
PKG	< 0,005	< 0.005	< 0.005	0.02	< 0.005	< 0.005	0.08	0.08	< 0.005	0.01	0.01	1	3.96	3.96	< 0.005	< 0.005	0.01	4.02

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily. MT/yr for annual)

	CO2e	I	- 1,842	- 1,842	N) D	- 1,842	1,842	I	305	- 305			R CO2e	
	N2O	I.	0.02	0.02	r I	0.02	0.02	i i	< 0.005	< 0.005			N20	
	CH4	I	0.13	0.13	I,	0.13	0.13	Ĩ	0.02	0.02			CH4	
	2 CO2T	Ì	1,834	1,834	Î.	1,834	1,834	1	304	304			2 CO2T	
	NBCO2	I	1,834	1,834	ſ	1,834	1,834	1	304	304			2 NBCO2	
al)	5T BCO2	I	I	1	ľ	1	ł	Ť	I	Ì		Ial)	5T BCO2	
Tor annu.	5D PM2.5T	Ĺ	Ĩ	1	ĥ	1	I	Ŭ,	I	1		for annu	. 5D PM2.5T	
y, MINY	.5E PM2.5D	t	1	I	L	1	l	I	1	1		GHGs (lb/day for daily, MT/yr for annual)	2.5E PM2.5D	
IN TOP Dall	IOT PM2.5E	L	ļ s	1	<u>I</u>	l	I	Ĭ	Ĩ	1		ay for da	10T PM2.5E	
es (Ib/da	10D PM10T	Ĩ	Ĩ	1	I	1	1	I	Ĩ	1		IGs (Ib/di	PM10D PM10T	
and GH	PM10E PM10D	L	1	I	L	1	1	ľ	I	Î			PM10E PN	
r annual)		I.	1	Ţ	1	I	1		I	l	e - Unmiti	r annual	SO2 PN	
ton/yr tol	0 SO2	I	1	1	l	1		1	l	1	and Use	ton/yr fo	CO CO	
Criteria Pollutants (Ib/day tor daily, ton/yr tor annual) and GHGS (Ib/day tor daily, MI /yr tor annual)	NOX	1	ĩ	Ę Ē	i I	1	1	1	r I	I	4. 📆 Natural Gas Emissions By Land Use - Unmitigated	Creetia Pollutants (Ib/day for daily, ton/yr for annual) and (NOX	
s (Ib/day	ROG	I	1	I.		1	1	1			as Emiss	ts (Ib/day	ROG	
Pollutant	TOG	I	1	ť	l	ł		I	I	I	latural Gi	Pollutan	TOG	
Criteria	Land Use	Daily, Summer (Max)	General Light Industry	Total	Daily, Winter (Max)	General Light Industry	Total	Annual	General Light	P R		Criteria	Use	<

Daily, Summer (Max)	1	ï	I	I	L	I	ť	Į.	ſ	Ē	ſ	L	Ĺ	I	ĩ	Ĭ	I	I
General Light Industry	0.05	0.02	0.42	0.35	< 0.005	0.03	I	0.03	0.03	I	0.03	1	502	502	0.04	< 0.005	1	504
Total	0.05	0.02	0.42	0.35	< 0.005 0.03	0.03	1	0.03	0.03	1	0.03	1	502	502	0.04	< 0.005	ľ	504
Daily, Winter (Max)	I,	Ï,	t	t	Ĩ	L	ſ	I	I	Ĩ.	I.	t,	Ĺ	ţ	t	Ĩ	ſ	I
General Light Industry	0.05	0.02	0.42	0.35	< 0.005	0.03	1	0.03	0.03	I	0.03	1	502	502	0.04	< 0.005	1	504
Total	· 0.05	0.02	0.42	0.35	< 0.005 · 0.03	·0.03	1	0.03	0.03	1	0.03	I	502	502	0.04	< 0.005	I	504
Annual	I	ľ	Ĩ	I	I	I	l	Ē	L	l	Ĕ	Ę	Ē	Ĕ	I.	Ĺ	Ĩ	I
General 0.01 Light Industry	0.01	< 0.005	0.08	0.06	< 0.005	0.01	I	0.01	0.01	Ĺ	0.01	i.	83.2	83.2	0.01	< 0.005	Ĩ	83.4
Total	0.01	< 0.005	0.08	0.06	< 0.005	0.01	T	0.01	0.01	I	0.01	I	83.2	83.2	0.01	< 0.005	ĩ	83.4
4.3. Ar	ea Em	4.3. Area Emissions by Source	by So	ance														

4.3.4. Unmitigated

I 1 œ 1 1 N20 1 1 CH4 1 1 CO2T 1 1 NBC02 ſ 1 PM2.5E PM2.5D PM2.5T BCO2 I 1 Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual) l 1 I 1 I 1 PM10D PM10T l 1 Í. ł l 1 S02 I 1 8 l I NOX 1 1 ROG 1.03 1 TOG 1 R Source

Architect ural Coatings	1	0.18	1	1	1	1	1		1				1			1		
Landsca pe Equipme nt	0.37	0.34	0.02	2.10	< 0.005	< 0.005	ľ	< 0.005	< 0.005		< 0.005	1	8.63	8.63	< 0.005	< 0.005		8.66
Total	0.37	1.56	0.02	2.10	< 0.005	< 0.005	ľ	< 0.005 <	< 0.005		< 0.005	1	8.63 6	8.63	< 0.005	< 0.005 -	Î	8.66
Daily, Winter (Max)	1	1	1	1	1	1	1	-	1		1	1	Ĩ	I	1	1	•]	1
Consum er Products		1.03	1	1	1	1	1		1	1	Î		1	ì	1	1	Î	1
Architect ural Coatings	I	0.18	Ĩ	ſ	Ĩ.	I					Ĩ	1		Ĩ	1		Ĩ	ľ
Total	1	1.22	1	1	1	ĩ	1	1	1		ĭ		i		1	1	1	1
Annual	Ĵ	1	1	1		1	1	1	1	1	j	1	1	1	1	1		1
Consum er Products	Ê	0.19	İ.	I.	t.	l	1	1	Ĩ	1	1	1	1	1	1	1	1	I
Architect	1	0.03	1	I	1	1	1	1	I	1	1	Î	Ī	Ĩ	Ĩ	I	ľ	I
Lanca 0.03	0.03	0.03	< 0.005	0.19	< 0.005	< 0.005	1	< 0.005	< 0.005		< 0.005	1	0.70	0.70	< 0.005	< 0.005	1	0.71
G	0.03	0.25	< 0.005	0.19	< 0.005	< 0.005	1	< 0.005	< 0.005	I	< 0.005	ĩ	0.70	0.70	< 0.005	< 0.005	ſ	0.71
NAL I	ater En	nission	s by La	Z 4.≩Water Emissions by Land Use														

4.44. Unmitigated

Criteria	Pollutai	Criteria Pollutants (lb/day for daily, ton/yr for annual) and	y for da	ily, ton/yı	r for annı		GHGs (II	GHGs (lb/day for daily, MT/yr for annual)	daily, M	T/yr for a	innual)							
Land Use	106	ROG	XON	8	so2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2 (со2т	CH4	N2O	œ	CO2e
Daily, Summer (Max)	E	Ĩ	I	I	Ĩ	I	I	Ĩ	1	i.	ľ	t	ī	f	ſ	I	1	1
General Light Industry	1	ĩ	1	1	ĩ	I	1	Ĩ	1	1	Ĩ	0.00	0.00	00.00	0.00	0.00	ī	00.00
Total	I.	I	Í	I	ľ	ţ	t	1	T	1	1	0.00	0.00	0.00	0.00	0.00	Ĩ	0.00
Daily, Winter (Max)	t	I	Î	I	Ĩ	I	ſ	Ĩ	I	1	Í	Ĩ	r T	с Г	I	Ì.	Ĩ	I
General Light Industry	1)	Ì	I	Ĵ	Ĩ	1	1	1	1	Ĩ	0.00	00.0	00.0	0.00	0.00	Ĩ	0.00
Total	Î	ſ	I	I	ţ	Ĩ	I	Į.		ľ	1	0.00	0.00	0.00	0.00	00.0	1	0.00
Annal	Ĩ	I	I	I	t	ï	L	ī	Ĩ	I)	Î	Ĩ	Ĕ	I	Ĩ	t)	I	l
General Light Industry	ĩ	t	I	I	I	I	1	I	Î	I	I	00.0	00.0	00.0	0.00	00.0	ī	0.00
Total	1	1	1	1	T	I	1	1	1	3	1	0.00	0.00	0.00	0.00	0.00	1	0.00
	4.53. Unmitigated	4.50 Vaste Emissions by Land Use	L yd sr	and Us	Q													
C. La	a Polluta	Criteria Pollutants (Ib/day for daily, ton/yr for annual) and Law TOG ROG NOX CO SO2 PM10E	ay for da	aily, ton/y	/r for ann so2	Nual) and		GHGs (lb/day for daily, MT/yr for annual) PM10D PM10T PM2.5E PM2.5D PM2.5T	r daily, M PM2.5E	IT/yr for a	annual) PM2.5T	BCO2	NBC02	CO2T	CH4	N2O	œ	CO2e
A B B C)_	Ĵ.	I	Ĩ	Ĩ	1	I	1	1	Ì	f	t	Ĩ	t	I)	È	I	1

6/6/2023
Report,
Detailed
Peaker
Alba

0.00	0.00					0.00	0.00
T.	1	1	1	Ĩ	Ĩ	1	1
0.00	0.00	Ì	0.00	00.0	l	0.00	0.00
0.00	00'0	1	0.00	0.00	1	0.00	0.00
0.00	0.00	I	0.00	0.00	1	0.00	0.00
0.00	00.0	ī	0.00	0.00	1	0.0	0.00
0.00	0.00	1	0.00	0.00	ļ	0.00	0.00
1	I	1	1	Ĩ	Ĩ	1	I
1	Ï	1	1	1	I	1	I
1	I	1	1	1	1	1	É
1	1	I	1	I	Ĵ	1	ť
1	I	1	1	l	1	1	Ľ
1	1	1	I	Ţ	1	ţ	i Q
1	Ĩ		Ĩ				- and Us
	1		Ĺ				ns bv L
1	I	1					
Ĩ	Ĩ		t				era
1	1	1	Ľ	1	1	I,	efria
General — Light Industry	Total	Daily, Winter (Max)	General Light Industry	Total	Annual	General — Light Industry	Total 4.6. R

4.6.1. Unmitigated

Ē
ua
E
9
riteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)
5
É
Σ
<u>></u>
ai ai
Ľ
9
a
卪
E
ŝ
Ŧ
Ū
g
ส
a)
ň
U
L S
9
۲ ک
- G
÷.
- ii
с р
5
Υ
da
q
0
nt
lta
릣
4
<u>a</u> .
er e
÷E

1	()				
	CO2e	ĩ	12.6	12.6	I
	œ	I	12.6	12.6	1
2	N20	ļ	I	Ĩ	L
	CH4	1	1	I	<u>I</u>
	CO2T	1	1	Į	1
	PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4	1	1	1	1
	BCO2	1	I	I	1
annual	PM2.5T	1	1	1	1
GHGs (lb/day for daily, MT/yr for annual)	PM2.5D	Ï	Ĩ	1	ĵ
or daily, h	PM2 5E	1	t	1	I
Ib/day fc	PM10T	1	ţ	Ĩ	Ĩ.
		ì	Ĺ	1	1
ual) and	PM10E	1	ſ	ļ.	I
for ann	S02	U	I	1	I
ly, ton/y	00	T	Ĩ	1	I.
iy for dai	XON	i.	1	1	1
its (Ib/da	ROG	ĺ.	Î	T	I
Criteria Pollutants (Ib/day for daily, ton/yr for annual) and	TOG	t	1	I	L
Criteria	LanJ Use	Summer		A	ARA

6/6/2023
Report,
Detailed
Peaker
Alba

General – Light Industru	Ť	1	1	ī	I	Ĺ	Ĩ	T	T	ſ.	I	I	I	1	Ê	I	12.6	12.6
È.	ĩ	ī	I	I	1	1	Ĩ	I	1	Ĩ	1	1	Į	1	1	ĩ	12.6	12.6
ار ص	ï	Ĩ	1	1	1)	1	J	1	Ĩ	1	Ĵ	1]	ĵ	1	1	ij
ta at	40	T	1	I	j.	1	1	1	1	I	1	1	Ĩ	1	1	1	2.08	2.08
1	ī	ł	1	I	Î	I	Ĩ	l	I	ï	I	1	Ĩ	ţ	t	ĩ	2.08	2.08
Offr	oad l	Emissi	ions By	Equipr	4.7. Offroad Emissions By Equipment Type	be												

4.7.1. Unmitigated

	CO2e	1	1	1	Ĩ	Î	Ĩ		
4	α. Ω	I	1	T	I	I	1		
18	N20	1	1	1	1	l	1		
2	CH4	1		1	I	Ĩ	1		
1	COZT	ĩ	Ĩ.	Ĩ	I	1	1		
ł	NBCO2 CO2T	t	T	I	I	1	1		
	BCO2	1	1	Ļ	Ĩ	Ĩ	1		
annual)	PM2.5T	I	I	ī.	1	I	1		5)
GHGs (lb/day for daily, MT/yr for annual)	PM10D PM10T PM2.5E PM2.5D PM2.5T	. 1	1	L	Ţ	1	1		
r daily, h	PM2.5E	1	I	i,	I	I	I		
Ib/day fc	PM10T	1	I	1	1	I	I		
	PM10D	1	1	ľ,	Ĩ	I	t		
ual) and	PM10E	, i	Ì	Ĩ	4	1	Ĩ	Type	
r for ann	S02	1	l,	ſ.	1	1	Ľ,	ipment	
Criteria Pollutants (lb/day for daily, ton/yr for annual) and	co	1	ľ	ţ	1	t	Ē	4. Stationary Emissions By Equipment Type	
iy for da	NOX	1	I	Ì	Ĵ	1	I	sions I	
its (Ib/da	ROG	1	I	I	Ţ	I	Ľ	ry Emis	ited
Pollutar	TOG	I	į	Ĩ	ĵ.	1	Ē,	ational	Jnmitiga
Criteria	Equipme TOG nt Type	Daily, Summer (Max)	Total	Wind Wind	Toal	Amthal	GIN	4. SI	4.84. Unmitigated

	2e							
	C02e	Ţ	ł	1	I	Ĩ	Ĩ	
	œ	Î	1	1	Ĩ	t	Ĩ	
	N2O	t	1	1	I	I	1	
	CH4	I	ļ	J	Î	Ĩ	1	
	CO2T	Ĕ	1	1	ï	I	1	
	NBCO2 CO2T	I	1	1	I	ţ	1	
~	PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2	1	1	J	l	I	Ĩ	
annual	PM2.5T	ť	I	1	I,	I	I	
IT/yr for	PM2.5D	t	1	1	E	Į	I	
r daily, N	PM2.5E	Ê	Ĵ.	Ĭ	I	I	Ĩ	
GHGs (lb/day for daily, MT/yr for annual)	PM10T	Ĩ	1	l	I	I	ſ	
GHGs (PM10D	. I	Ţ	j.	I	Į.	ł	
ual) and	PM10E	Ĩ	Ì	Ì.	I	Ì	Ĩ	
for ann	S02	Т	1	1	I.	I	I	
ly, ton/y	00	1	1	1	I	Î	Ĭ	
ly for dai	NOX	T	ï	1	I.	I	I	
Criteria Pollutants (lb/day for daily, ton/yr for annual) and (ROG	ſ	I	1	I	I	1	
Polluta	TOG	ĴĨ	Ĭ	1	Ĩ.	ĩ	Ĩ	
Criteria	Equipme TOG nt Type	Daily, Summer (Max)	Total	Daily, Winter (Max)	Total	Annual	Total	

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/dav for daily, ton/yr for annual) and GHGs (lb/dav for daily. MT/yr for annual)

li							
	C02e	I	1	1	I	l	I
	œ	. 1	t	Ţ.	Ļ	ł	I
	N20	Ĭ.	1	1	l	ī	J
	CH4	1	1	l,	1	Ĩ	1
	CO2T	1	T,	I,	Ĩ	Ĩ	Ĩ
	NBC02	ì	1	ĩ	ī	1	l
	BC02	1	I)	I.	1	1	1
annual	PM2.5T	I	Ę	I	ĩ	Ĩ	Î
Criteria Pollutants (ib/day tor daily, ton/yr for annual) and Grics (ib/day for daily, ivi r/yr for annual)	PM2.5D	ĩ	t	1	I	1	1
daliy, IV	PM2 5E	1	I	f	1	l	1
D/day to	PM10D PM10T	1	I	Ĩ	ĩ	Ĩ	1
I) SOLD	PM10D	I	ſ	ĩ	1	1	1
Jal) and	PM10E	I	t	1	1	1	Ę
TOL ANNU	S02	J	Î	ī	0	I	L
IN, TON/YF	00	I	I	I)	1	t
y tor dai	NOX	1	I	1	1	ł	Ī
Its (ID/da	ROG	1	Ĩ	ī	1	1	1
Pollutar	TOG	1	I	1	1	I	Į
Criteria	Equipme TOG nl Type	Sumer	DR	Geo		Annual	To Bo

27/43

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

	Ļ
-	
-	
Ť	I
ē	I
c	l
G	
-	I
ō	I
42	I
5	l
<	ł
(MT/)	
2	1
	Į
>	ł
1	I
0	l
0	Į
F	Ī
ų	I
>	I
jan i	l
TO	l
1	l
-	i
~	l
ഗ	I
(7)	I
Ť	
<u></u>	I
O	
	I
ž	l
3	
10	I
-	۱
<u>co</u>	
2	I
F	l
Le la	l
(U	l
	l
5	l
h	I
\geq	l
E	I
ō	I
, ton/yr for annual) and GHGs (lb/day for daily, MT/yr fo	I
5	ĺ
=	ĺ
3	I
σ	I
5	I
<u>0</u>	I
s (lb/day for daily, ton/yr for annual)	l
(m)	Ī
ñ	l
4	I
9	l
-	l
5	Í
a	ĺ
Ŧ	ĺ
2	l
0	ĺ
പ്	l
	ĺ
<u>n</u>	l
	ĺ
Ę	ĺ
Ξ.	ĺ
C	ĺ
Criteria Pollut	

			I		I	
20 R	1				I	
PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4 N2O		1			ı ı	
СО2Т	I		1	Ĭ		
NBCO2	I	1	1	I	Ĩ	1
BCO2	Į.	1	1	Į	I	1
PM2.5T	l.	1	I	Ĩ	I	ĭ
PM2.5D	I	I.	1	I	I	I
PM2 5E	1	I	1	Į	I	ł
PM10T	1	ì	Î.	Ĩ	I	ĩ
PM10D	I	t	1	I	I	1
PM10E	1	Į	1	ļ	ļ	1
S02	I	1	T	Ĩ	1	ĩ
00	ſ	1	1	ľ	1	1
Vegetatio TOG ROG NOx n	. 1	j.	t	Î	Ĭ	Ī
ROG	Ĩ	1	1	Ī	Ĩ	1
io TOG	Daily, — Summer (Max)	ļ	I	ţ	1	ļ
Vegetat n	Daily, Summe (Max)	Total	Daily, Winter (Max)	Total	Annual	Total

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

_
BCO2
PM2 5T
PM2.5D
PM2.5E
SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 N
PM10D
PM10E
S02
XON
BOG NOX CO
TOG
Land TOG

	CO2e	I	Ĩ	ī	I	1	1	
	æ	I	I	I	1	I	I	
	N2O	1	t	1	I	Ĩ	Î	
	CI-I4	Ĩ	I	1	1	1	Į.	
	C02T	T	I	1	1	1	L	
	NBCO2 CO2T	T	1	1	1	Ļ	Ĩ	
	BCO2	Ĩ	ī	ĩ	Ĩ	Ú	1	
1000110	PM2.5T	ť	1	1	1	ľ	Ĩ	
2	PM2.5D	1	1	1	I	ŕ	I	
dunn i	PM2.5E	I	Ì	I	t	I	1	28/43
I non line and in with with a mining of	PM10T PM2.5E PM2.5D PM2.5T BCO2	1	1	1	Ţ	I	1	
	PM10D	1	1	1	Ĩ	Ĩ	I	
	PM10E	Ľ	1	I	t	I	1	
	S02	I.	1	1	I,	l	1	
y, will y	00	I.	I	ï	Î	ĩ	Ĭ	
y 101 441	XON	Ĩ	1	1	I	1	1	
official official (inder to daily, of the difficial did	ROG	T	1	I	I	Î	ì	
	TOG	e Î	1	1	Ĩ	I	1	
	Use	Sumer	R	A LAN	Total	Amai	G	

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Criteria Pollutants (lb/day for daily, ton/vr for annual) and GHGs (lb/day for daily. MT/vr for annual)

Criteria Pollutants (Ib/day for daily, ton/yr for annual) and	Species	Daily, Summer (Max)	Avoided	Subtotal	Sequest ered	Subtotal	Remove d	Subtotal	Ĩ	Daily, Winter (Max)	Avoided	Subtotal	Sequest ered	Subtotal		Subiotal	A	Annual	Avoided	Suggistal
Pollutan	TOG	i	Ι	ļ	I	1	I	I	Ţ	l	I	Ι	ĭ	I	Ĩ	Ū.	I	Ĩ	I	1
Its (Ib/d	ROG	1	I	Î	Î	È	Ĩ	Ē	Ĩ	1	1	ĺ,	I	I	t	ľ,	I	Į	I	j.
ay tor d	NOX	1	ţ	I	I	I	I	I	1	Ţ	ł	Ì	Î	l	t	Ĩ.	Ì	1	1	1
aily, ton/	8	I		ī	I	T.	t	l	I	I	1	t	ţ	I	ţ	ţ	E	I	I	Ĵ.
yr tor ar	S02	1	Ĺ	ţ	Ī	Ĩ	Ĩ	Ĩ	Ĕ	I	j	I	I	1	I	1	I,	ţ	Ĩ	1
nual) ar	PM10E	I	t	ľ	1	I	f	1	ſ	I	ļ	l	Ĩ	ſ	I	I	Ĭ,	١	1)
	E PM10D	Ĩ	Ĩ	I	Ĩ	1	t	1	I	1	1	I	f,	1	I	J		l	I	Ĩ
(Ib/day	D PM10T	Į	1	ţ	1	ļ	I	I	Ì	Î	Ì	1	I	1	l	l	1	ţ	I	I
GHGS (Ib/day for daily, M1/yr for annual)	F PM2.5E	Ī	t	ľ	I	1	I	1	l	Į	1	1	I	1	Ĩ	J	I	Ĩ	Ī	I
MI/yr to	E PM2.5D	I	Ĩ	l	Ĩ	1	I	I	Ĩ	L	1	1	I,	1	1	1	l		Ë	Î
r annual) PM2.5T	ſ	1	I	l)	I	l	Ţ	ţ	Ĩ	Í	Ì	1	1	1	1	1	t	I.	1
	BCO2	Ì	1	ľ	τ	1	t	1	1	I	I	1	I.	Į	Ì.	Ĩ	1	1	Î	Ĩ,
	NBCO2	I	1	I	Ĩ	1		Ĵ.	I	Ĕ	1	I	1	1	1	1	1	I	I	ļ
	CO2T	ſ	1	Į	1	1	ļ	l	1	l	Ĭ	Ì	1	l	3	Ì	1	t	Ţ	E
	CH4	1	1	I	1	a	1	1	1	Ľ,	1	į	1	į	Ĩ	I	ĩ	I	I	Ē
	N20	1	j.	Ĺ	Ĕ	1	Î	1	1	I	1	1	1	1	I	ţ	1	ļ	ļ	È
114	œ	I	l	1	l.	3	1	1	J	I	I	Ĩ)j	I	1	l	1	I	I	I
	CO2e	I	1	1	L	1	1	1	1	1	1	1	1	Į	I	Ĩ	1	ĩ	I	1

29 / 43

1	1	Ē	1	ľ	
Ì	1	I	t	I	
ł	Ţ	Ļ	Ļ	I	
Ì	I	I	I	ľ	
1	1	I	1	I	
I	1	l	1		
Ĩ	T	I.	I	Ĩ	
J	1	l	1	1	
ļ	1	I	ł	ł,	
I	ũ	1	1	1	
1	1	I	1	1	
1	I	Ĺ	Ì	Ĩ	
1)	I	1	1	
I	1	Ţ	t	Ţ	
Ì	I	Ĩ	1	Î	
		1			
1	ļ	l	Į	I	Data
î	Ĩ	I	1	1	ctivity
Sequest	Subtotal	Remove d	Subtotal	Ĩ,	5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Grading	Grading	1/1/2024	1/18/2024	5.00	14.0	I
Pile Installation	Building Construction	1/19/2024	2/8/2024	5.00	15.0	1
Fence Installation	Building Construction	2/9/2024	2/15/2024	5.00	5.00	Ĩ
Electrical Installation	Building Construction	2/16/2024	3/28/2024	5.00	30.0	Ĩ
Container Installation	Building Construction	3/29/2024	4/17/2024	5.00	14.0	1

5.2. Off-Road Equipment

5.2.1 Unmitigated

Number per Day	2.00	1.00 8.00		1.00 8.00	.00	
Engine Lier	Average 2.	Average 1.	Average 1	Average 1	Average 1	
Equipment Type	Tractors/Loaders/Backh Diesel	Dumpers/Tenders Diesel	Scrapers Diesel	Rollers Diesel	Off-Highway Trucks Diesel	

30 / 43

Average3.008.0083.0Average1.008.0046.0Average1.008.00376Average1.008.00370Average1.008.00370Average1.008.008.00Average1.008.00370Average2.008.00370Average1.008.00370Average3.008.00376Average1.008.00376Average <th>3.00 8.00 1.00 8.00</th> <th>3.00 8.00 1.00 8.00</th>	3.00 8.00 1.00 8.00	3.00 8.00 1.00 8.00
1.00 1.00 1.00 6.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 6.00 1.00 1.00 1.00 1.00	1.00 1.10 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 2.00 5.00 1.00 1.00 1.00	1.00 1.00 3.00 5.00 1.00 1.00 1.00	1.00 1.00 3.00 5.00 1.00 1.00 1.00
1.00 8.00 2.00 8.00 1.00 8.00 3.00 8.00 5.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	1.00 8.00 2.00 8.00 1.00 8.00 3.00 8.00 5.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	1.00 8.00 2.00 8.00 1.00 8.00 3.00 8.00 5.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00
2.00 8.00 1.00 8.00 3.00 8.00 6.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	2.00 8.00 1.00 8.00 3.00 8.00 6.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	2.00 8.00 1.00 8.00 3.00 8.00 6.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00
1.00 8.00 3.00 8.00 6.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	1.00 8.00 3.00 8.00 6.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	1.00 8.00 3.00 8.00 6.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00
3.00 8.00 6.00 8.00 5.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	3.00 8.00 6.00 8.00 5.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	3.00 8.00 6.00 8.00 5.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00
6.00 8.00 5.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	6.00 8.00 5.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	6.00 8.00 5.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00
5.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	5.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	5.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00
1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00
1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00	1.00 8.00 1.00 8.00 1.00 8.00 1.00 8.00
1.00 8.00 1.00 8.00 1.00 8.00	1.00 8.00 1.00 8.00 1.00 8.00	1.00 8.00 1.00 8.00 1.00 8.00
1.00 8.00 1.00 8.00	1.00 8.00 8.00	1.00 8.00 8.00
1.00 8.00	1.00 8.00	1.00 8.00

LDA,LDT1,LDT2 танм,танн Vehicle Mix ННDT ННDT Ĩ Ĩ Miles per Trip 20.0 20.0 20.0 1 1 I 31/43 One-Way Trips per Day 0.00 1 00 1 1 Ē Onsite truck Trip Type Hauling Worker Vendor Ĵ 1 Phone Name Grading Grading Grading Grading C

LDA,LDT1,LDT2	ННДТ,МНДТ	ННDT	ННDT	1	LDA,LDT1,LDT2	HHDT,MHDT	ННDT	ННDT	1	LDA,LDT1,LDT2	ННDT,МНDT	HHDT	ННDT	I	LDA,LDT1,LDT2	ннот,мнот	ннот	ННDT					
20.0	20.0	20.0	I	I	20.0	20.0	20.0	ţ	Ĩ	20.0	20.0	20.0	Ē	I	20.0	20.0	20.0	I					
100	14.0	0.00	Ĩ	I	100	14.0	0.00	Ĩ	Ĩ	100	14.0	0.00	Ĺ	Ĩ	100	14.0	0.00	1					
Worker	Vendor	Hauling	Onsite truck	ī	Worker	Vendor	Hauling	Onsite truck	1	Worker	Vendor	Hauling	Onsite truck	I	Worker	Vendor	Hauling	Onsite truck			cle Control Strategies	egies activated by user.	atings
Pile Installation	Pile Installation	Pile Installation	Pile Installation	Fence Installation	Electricat Installation	Electrical Installation	Electrical Installation	Electrical Installation	Electrical Installation	Container Installation	5.4 Vehicles	OF	5. Construction Vehicle Control Strategies	Nonzapplicable. No control strategies activated by user.	5.55 Architectural Co								

32/43

Residential Interior Area Coated Residential Exterior Area Coated Non-Residential Interior Area (sq ft) (sq ft)

Phase Name

Parking Area Coated (sq ft)

Non-Residential Exterior Area Coated (sq ft)

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Grading	ľ	ſ	14.0	0.00	ſ

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	Other	50%	50%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
General Light Industry	0.00	0%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (Ib/MWh)

fear control c	2020 0.00 457 0.03 5.30 perational Mobile Sources 5.30 Unnitigated	Lanz Use Type Trips/Weekday Trips/Saturday Trips/Sunday Trips/Year VMT/Weekday VMT/Saturda
		VMT/Saturday
N2O	< 0.005	VMT/Sunday VMT/Year
		fear

33 / 43

10,317

00.0

0.00

39.6

516

0.00

0.00

1.98

General Light Industry

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	d (sq ft) Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	72,390	24,130	1

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	dayiyr	180
5.11. Operational Energy Consumption		

S

5.11.1. Unmitigated

Electricity (kWh/yr) and C	Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)	d Natural Gas (kBTU/yr)			
Land Use	Electricity (kWh/yr)	C02	CH4	N2O	Natural Gas (kBTU/yr)
General Light Industry	1,465,870	457	0.0330	0.0040	1,567,707
5. 2. Operational Wa	5.2. Operational Water and Wastewater Consumption	insumption			
5. 🔁 1. Unmitigated					
F					
Land Use		Indoor Water (gal/year)		Outdoor Water (gal/year)	
Geograf Light Industry		0.00		0.00	

34 / 43

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWht/year)
General Light Industry	0.00	1

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
General Light Industry	Other commercial A/C R-410A and heat pumps	R-410A	2,088	0.30	4.00	4.00	18.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
5.16. Stationary Sources	ources					
5.18.1. Emergency G	5. 8.1. Emergency Generators and Fire Pumps	sdı				
DR						
Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
5. 182. Process Boilers	ß					
Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)		Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
PKG	-					

7

5.17. User Defined	
Equipment Type	
I	
5.18. Vegetation	
5.18.1. Land Use Change	
5.18.1.1. Unmitigated	
Vegetation Land Use Type Vegetation Soil Type Initial Acres	cres
5.18.1. Biomass Cover Type	
5.18.1.1. Unmitigated	
Biomass Cover Type Final Acres Final Acres	
5.18.2. Sequestration	
5.182.1. Unmitigated	
Tree type Bectricity Saved (kWh/year) Natural (Natural Gas Saved (btu/year)
620limate Risk Detailed Report	
6. Climate Risk Summary	
Cal-Adapt midcentury 2040-2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.	r Pathway (RCP) 8.5 which assumes GHG
Climate Hazard Result for Project Location Unit	
36/43	

			AIK	Alba Peaker Detailed Report, 6/6/2023
Temperature and Extreme Heat	27.6		annual days of extreme heat	ime heat
Extreme Precipitation	0.00		annual days with pre	annual days with precipitation above 20 mm
Sea Level Rise	0.00		meters of inundation depth	r depth
Wildfire	0.00		annual hectares burned	hed
Temperature and Extreme Heat data a historical data (32 climate model ensei	Temperature and Extreme Heat data are for grid cell in which your project are loc historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average	cated. The projection is based on th under RCP 8.5). Each grid cell is t	Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.	m/minimum temperatures from observed by 3.7 mi.
Extreme Precipitation data are for the day or heavy rain if received over a pe.	Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about % day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 miles of a second second conditions are from Barke et al. (2017) as report to a second productions are from Barke et al. (2017) as report	The threshold of 20 mm is equivale meters (km) by 6 km, or 3.7 miles (cientings are from Badde at al 700	int to about % an inch of rain, which would t mi) by 3.7 mí. 17) as renorted in Cal-Adant (2040–2059 a	Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ½ an inch of rain, which would be light to moderate raimal if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mil.
Sea Level ruse data are for the grid ck increments of sea level rise coupled w different assumptions about expected	sea Level rise data are for the grid cell in which your project are located. The pro- increments of sea level rise coupled with extreme storm events. Users may selec different assumptions about expected rainfall and temperature are: Warmer/drier	opediates are non-reache et al. (20 ct from four model simulations to vie - (HadGEM2-ES), Cooler/wetter (Cl	certever rise data are for the grunder in which your projections are not reacted and on the projections are reacted with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different systems to view the range in potential inundation depth for the grid cell. The four simulations make different systems to view the range in potential inundation depth for the grid cell. The four simulations make different systems to view the range in potential inundation depth for the grid cell. The four simulations make different systems to view the range of extended rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (HadGEM2), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (HadGEM2), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (HadGEM2), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (HadGEM2), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (HadGEM2), Average conditions (CanESM2), Average conditions (CanESM2), Range of different are: Warmer/drier (CanESM2), Average conditions (CanESM2), Range of different are: Warmer/drier (CanESM2), Range of are: Warmer/drier (Range of	sea Level rise data are for the grid cell in which you project are rocated. The projections are not readed and the second second are rocated and an active and an arrivation and arrivations make increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature
possibilities (MIROC5). Each grid cell WIIdfire data are for the grid cell in whi	possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 fee Wildfire data are for the grid cell in which your project are located. The projection	leet (ft) by 164 ft. ions are from UC Davis, as reported i	n Cal-Adapt (2040–2059 average under RC	possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft. Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate,
vegetation, population density, and lar different assumptions about expected possibilities (MIROC5). Each grid cell	vegeration, population density, and large (> 4-00 ha) fire mistory. Users may select nom rou mo different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-E possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.	t from four model simulations to vic r (HadGEM2-ES), Cooler/wetter (Ci (mi) by 3.7 mi.	w the range in potential winding procedures NRM-CM5), Average conditions (CanESM2	vegeration, population density, and large (> 400 na) inte history. Usets may select from four model simulations to view the range in potential within a protective similar and temperatures. The host simulations about expected rainfall and temperatures (WIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.
6.2. Initial Climate Kisk Scores	scores			
Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	F	0	o	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	NIA
wildfire	N/A	N/A	N/A	N/A
Flooding	NIA	N/A	N/A	N/A
Dreaght	0	O	0	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Ai Quality Degradation	N/A	N/A	N/A	N/A
IN				the second of the second
Thesensitivity score reflects the exter-	There nsitivity score reflects the extent to which a project would be adversely af	ffected by exposure to a climate ha	zard. Exposure is rated on a scale of 1 to o	affected by exposure to a climate hazard. Exposure is fated on a scale of 1 to 0, with a scole of 0 representing the greatest
exposure.		100 W (00) 70 March 100		

exposure. The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

~
<u>e</u> y.
<u>N</u>
50
\sim
-
6/6/2
$\overline{\mathbf{a}}$
J.

sport
0
ā
5
~
Ľ.
-
õ.
Φ
Ω
*
<u>س</u>
ല
<u></u>
ຶ
-
8
œ.
_
Ω.
ğ
~
4

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	-	F	F	2
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	NA	N/A	N/A
Wildfire	N/A	NA	N/A	N/A
Floading	N/A	NA	NA	N/A
Drought			1	2
Snowpack Reduction	N/A	N/A	NA	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt. The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7. The second seco

- 4-4-ł

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.	tion burden compared to other census tracts in the state.
Indirator	Result for Project Census Tract
Exposure Indicators	1
AGene	58.3
AQUAN	38.1
AG-DPM	5.72
Drowing Water	68.6
Lead Risk Housing	41.2
36	38 / 43

Result for Project Census Tract	s Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.	14.4 2.20 78.0 96.2 7.35 90.6 83.9 5.49 64.5 51.4 90.5 81.2 90.5 81.2 91.4 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.3 81.4 81.5 <t< th=""><th>Toxic Releases Traffic Effect Indicators Effect Indicators Clean Up Sites Groundwater Haz Waste Facilities/Generators Impaired Water Bodies Solid Waste Solid Waste Solid Waste Sensitive Population Impaire Population Sensitive Population Astma Cardio-vascular Lagustic Cardio-vascular Cardio-vascular Cardio-vascular Cardio-vascular Cardio-vascular Cardio-vascular Linguistic Fouration Linguistic Poverty Undimployment Inguistic Poverty Undimployment Inguistic Poverty Cardio-vascure Indox Scores</th></t<>	Toxic Releases Traffic Effect Indicators Effect Indicators Clean Up Sites Groundwater Haz Waste Facilities/Generators Impaired Water Bodies Solid Waste Solid Waste Solid Waste Sensitive Population Impaire Population Sensitive Population Astma Cardio-vascular Lagustic Cardio-vascular Cardio-vascular Cardio-vascular Cardio-vascular Cardio-vascular Cardio-vascular Linguistic Fouration Linguistic Poverty Undimployment Inguistic Poverty Undimployment Inguistic Poverty Cardio-vascure Indox Scores
ť		20.96753497	
20.96753497			
20.96753497		->->>	
Ĩ		20.96753497	
		Ĩ	
Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.			
s Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.		ę	SELICICA DUCIES
os Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.			es Index Scores
es Index Scores es Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.	ss Index Scores		
es Index Scores es Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.	ss Index Scores		
es Index Scores es Index score is 100. A high score (i.e., greater than 50) reflects healthler community conditions compared to other census tracts in the state.	ss Index Scores	96.6	
96.6 es Index Scores es Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.	es Index Scores	81.2	
81.2 96.6 s Index Scores s Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.	stra 81.2 81.2 96.6 96.6 Scores		
81.2 96.6 so Index Scores context (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.	81.2 96.6 S Index Scores	90.5	
90.5 81.2 96.6 96.6 s Index Scores 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.	90.5 81.2 96.6 S Index Scores	51.4	
51.4 90.5 81.2 96.6 96.6 si Index Score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.	51.4 90.5 81.2 96.6	64.5	
64.5 51.4 90.5 81.2 96.6 96.6 s6.6 s6.6	64.5 51.4 90.5 81.2 96.6	ŀ	
64.5 51.4 90.5 81.2 96.6 96.6 s6.6 s6.6 s6.6 s6.6 s6.6 s6.6	51.4 51.4 90.5 81.2 96.6 96.6		
cators 64.5 51.4 90.5 81.2 96.6 96.6 s Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.	ators 64.5 51.4 90.5 81.2 96.6 96.6	5.49	
cators cators 64.5 51.4 90.5 81.2 96.6 96.6 so Index Score (i.e., greater than 50) reflects healthler community conditions compared to other census fracts in the state.	ators 5.49 64.5 51.4 90.5 81.2 96.6	83.9	
83.9 5.49 cators – – 64.5 51.4 90.5 81.2 96.6 96.6 so Index Score (i.e., greater than 50) reflects healther community conditions compared to other census tracts in the state.	ators 5.49 5.49 64.5 51.4 90.5 81.2 96.6	90.6	
90.6 83.9 5.49 5.49 64.5 51.4 90.5 81.2 96.6 96.6 so Index Score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census fracts in the state.	ators 5.49 5.49 6.4.5 6.4.5 8.1.2 90.5 90.5 90.5 90.5	Ľ	
90.6 83.9 5.49 64.5 61.4 90.5 81.2 96.6 es Index Scores (i.e., greater than 50) reflects heatther community conditions compared to other census tracts in the state.	ators 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.14 5.14 90.5 81.2 90.5 81.2 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5	80.0	
80.0 90.6 83.9 5.49 6.4.5 51.4 90.5 81.2 96.6 es Index Scores (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.	ators 5.49 5.49 5.43 5.14 90.5 81.2 90.5 90.5 90.5 90.5 91.2 90.5 90.5 90.5 90.5 90.5 90.5 90.5 90.5	G.69	
90.5 80.0 90.6 83.9 5.49 5.45 51.4 90.5 81.2 96.6 96.6 91.2 greater than 50) reflects healthier community conditions compared to other census tracts in the state.	90.5 80.0 5.49 5.49 5.14 81.2 90.5 81.2 96.6 81.2 96.6	2.2.2	81019 8
99.5 80.0 90.6 83.9 5.49 5.49 6.4.5 81.2 96.5 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2	89.5 80.0 90.6 83.3 5.49 51.4 90.5 81.2 96.6 81.2 96.6	7.35	rators
rations 7.35 80.0 80.0 80.6 81.3 61.4 61.5 61.4 90.5 81.2 96.8 81.2 96.8 81.2 96.8 81.2 96.8 81.2 96.8 81.2 96.8 81.2 96.8 81.2 96.8 81.2 96.8 81.2 96.8 81.2 96.5 81.2 96.5 81.2 96.5 81.2 96.5 81.2 96.5 81.2 96.5 81.2 81.2 81.2 85.49 86.5 87.49 87.5 87	ators 7.35 99.5 80.0 90.6 90.6 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49	95.2	
95.2 rations 7.35 90.5 80.0 80.0 83.9 5.49 5.49 5.40 81.5 64.5 51.4 90.5 81.2 91.2 96.6 81.2 96.8 83.10 dex score (i.e., greater than 50) reflects healthlier community conditions compared to other census fracts in the state	ators 7.35 89.5 80.0 90.6 81.4 61.4 81.2 81.2 96.6 95.6 95.6	78.0	
78.0 95.2 54.0 90.6 90.6 90.6 90.6 90.6 91.7 90.6 92.8 90.6 93.9 5.49 5.40 5.49 5.40 5.49 5.41 90.5 83.9 5.49 5.40 5.49 5.41 90.5 81.2 91.4 90.5 91.2 91.2 91.2 91.2 91.5 91.5 91.6 81.2 91.6 91.8 11.2 91.8 91.6	78.0 95.2 98.5 80.0 83.9 90.6 84.5 5.49 5.49 5.49 5.49 5.49 5.49 5.43 5.49 5.43 5.43 5.43 5.43 5.43 5.43 5.43 5.43	ſ	
rators 7.35 5.2 5.35 8.0.0 9.5 9.0.5 5.49 5.49 5.49 5.49 5.14 9.0.5 5.0.5 5.14 9.0.5 5	ators 2.35 99.5 90.6 81.2 90.5 81.2 90.5 81.2 96.6 90.5 81.2 96.6	2.20	
2.20 78.0 95.2 90.5 80.0 90.6 81.3 5.49 5.40 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.55 5.54 5.55 5.54 5.55 5.54 5.55 5.54 5.55 5.54 5.55 5.54 5.55	2.20 78.0 95.2 90.5 90.6 83.3 64.5 64.5 64.5 64.5 81.2 81.2 96.6 81.2 96.6 81.2	14.4	
14.4 2.20 78.0 95.2 95.2 95.2 95.3 90.6 64.5 61.4 90.5 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6 81.1 96.6 81.1 96.6 81.1 96.6 81.1 96.6 81.1 96.6 81.1 96.6 81.1 96.6 81.1 96.6 81.1 <t< td=""><td>14.4 2.20 35.2 35.2 96.5 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6</td><td></td><td></td></t<>	14.4 2.20 35.2 35.2 96.5 81.2 96.6 81.2 96.6 81.2 96.6 81.2 96.6		

39 / 43

Education – Bachelor's or higher 24.36085461 High school errollment 100 Preschool errollment 39.0608555 Preschool errollment 39.0608555 Transportation 39.0608555 Muto Access 40.90850764 Auto Access 40.90850764 Auto Access 78.6603362 Auto Access 78.69473887 Auto Access 8.533299115 Access 8.533299115 Per Access 8.533299115 Auto Access 12.52406005 Tre caropy 12.5240605 Housing 12.5240605 Access 12.5240605 Access 12.5240605	
ar's or higher hool enrollment bol enrollment ortation cress commuting commuting cress commuting cress commuting cress commuting cress commuting cress commuting cress commuting cress commuting cress commuting cress commuting cress commuting cress commuting cress commuting cress commuting cress commuting cress commuting cress commuting cress commuting cress c	
hool enrollment bol enrollment bol enrollment britation creas commuting consectod commuting consectod it households ti households ti households creas consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting consectod connuting connut	
ool enrollment ortation ccess ccess cress ormuting cress thouseholds it households it vailability cress cress cress fensity narket access nopy g	
orfation cress commuting commuting commuting thouseholds thouseholds availability cress fensity fensity market access anopy g	
cess commuting or households availability cress cress cress family famil	
commuting thouseholds art households orhood artity coess density market access inopy whership	
t households orhood availability ccess ccess farket access inopy g	
rt households orhood orhood favailability ccess density narket access nopy g	
orhood I availability ccess ccess density market access morpy g	
rood vallability ss ss stry fket access py nership	
vailability tss tst tst tket access tket access teship	
iss Isity rket access ppy Tership	
rsity rket access py nership	
rket access ppy hership	
py Tership	
hership	
Housing habitability 56.46092647	
Lorring homeowner severe housing cost burden	
Lowing renter severe housing cost burden	
Unadwided housing 38.58591043	
Hally Outcomes	
Inside adults 40.25407417	
Arabits	
Astrona ER Admissions 6.4	
Him Blood Pressure	

40/43

Cancer (excluding skin)	0.0
Asthma	0.0
Coronary Heart Disease	0.0
Chronic Obstructive Pulmonary Disease	0.0
Diagnosed Diabetes	0.0
Life Expectancy at Birth	22.5
Cognitively Disabled	41.3
Physically Disabled	20.3
Heart Attack ER Admissions	5.9
Mental Health Not Good	0.0
Chranic Kidney Disease	0.0
Obesity	0.0
Pedestrian Injuries	59.8
Physical Health Not Good	0.0
Stroke	0.0
Health Risk Behaviors	1
Binge Drinking	0.0
Current Smoker	0.0
Notte sure Time for Physical Activity	0.0
Climate Change Exposures	
Wildfire Risk	0.0
SL Mundation Area	0.0
Chithen	26.6
	44.5
Endershing	14.8
Foreign-born	56.7
Outsoor Workers	4.7
G	41/43

41/43

Climate Change Adaptive Capacity	1
Impervious Surface Cover	87.7
Traffic Density	18.5
Traffic Access	23.0
Other Indices	1
Hardship	75.1
Other Decision Support	E
2016 Vating	0'0

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	80.0
Healthy Places Index Score for Project Location (b)	20.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7. Thealth & Equity Measures

No Contraction Measures selected.

Hen & Equity Evaluation Scorecard not completed. 7. Health & Equity Custom Measures

No Health & Equity Custom Measures created. 8 2 Ser Changes to Default Data

6/6/2023
Report,
Detailed
Peaker [
Alba I

Screen	Justification
Land Use	Approximately 48,260 square feet inverters and BESS containers 7.1 acre project site
Construction: Construction Phases	Construction equipment and schedule provided by construction team
Construction: Off-Road Equipment	Construction equipment provided by construction team Bobcat modeled as tractor/loader/backhoe Water truck (off-highway truck) and generator (construction office) added to each phase Forklift added to electrical phase for cables/conduit deliveries
Construction: Trips and VMT	50 workers per day (100 one-way trips) Maximum of 7 deliveries per day (14 one-way trips) All trip lengths increased to 20 miles
Construction: On-Road Fugitive Dust	All roads used to access project site are paved. ICAPCD recommends modeling 90 percent paved roads during construction activities.
Operations: Vehicle Data	Unmanned/remote facility. 1 round trip (0.041 trips/ksf) modeled to account for any routine maintenance. Trip length increased to 20 miles.
Operations: Road Dust	Used same paved road % as construction workers
Operations: Water and Waste Water	Unmanned facility, no water use
Operations: Solid Waste	Unmanned facility, no solid waste

LINSCOTT LAW & GREENSPAN

engineers

TECHNICAL APPENDICES

ALBA PEAKER Imperial County, California June 12, 2023

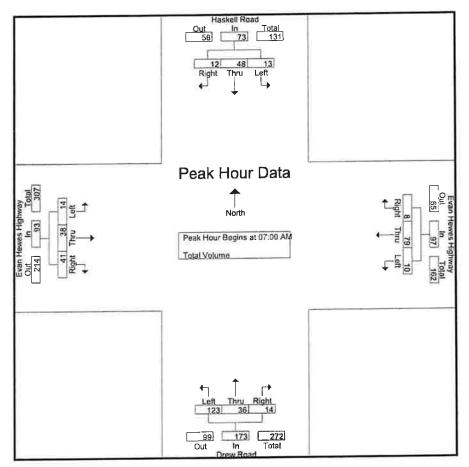
LLG Ref. 3-23-3740

Linscott, Law & Greenspan, Engineers 4542 Ruffner Street Suite 100 San Diego, CA 92111 858.300.8800 T 858.300.8810 F www.ilgengineers.com EECORIGINAL PKG

APPENDIX A

INTERSECTION COUNT SHEETS

LINSCOTT, LAW & GREENSPAN, engineers



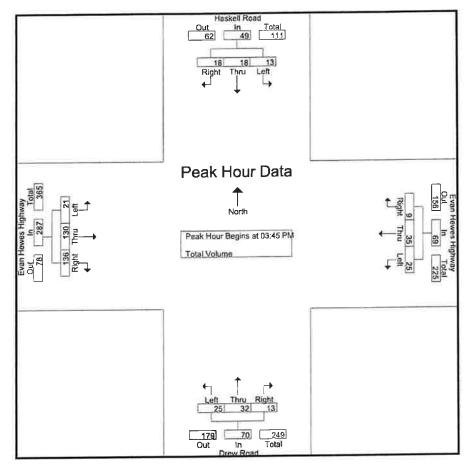
County of Imperial N/S: Drew Road / Haskell Road E/W: Evan Hewes Highway Weather: Clear File Name : 01_CIM_DREW_EVAN HEWES_AM Site Code : 05723502 Start Date : 5/18/2023 Page No : 1

						(Groups	Printed-	Total Vo	olume							
			ell Road	- 1	Eva	an Hew	es High			Drev	v Road		Eva		ves Higl tbound	hway	
Start Time	Left	Thru	1	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right		Int. Total
06:00 AM	0	4	3	7	2	12	0	14	17	1	1	19	1	12	11	24	64
06:15 AM	1	3	2	6	4	18	0	22	25	4	4	33	0	9	17	26	87
06:30 AM	0	10	1	11	3	25	1	29	29	2	4	35	0	6	10	16	91
06:45 AM	0	7	0	7	3	11	0	14	17	1	3	21	0	8	12	20	62
Total	1	24	6	31	12	66	1	79	88	8	12	108	1	35	50	86	304
07:00 AM	3	3	4	10	2	8	2	12	15	5	4	24	4	8	9	21	67
07:15 AM	3	9	3	15	1	15	1	17	26	6	3	35	1	11	11	23	90
07:30 AM	ő	23	2	25	5	31	2	38	49	15	5	69	3	9	7	19	151
07:45 AM	7	13	3	23	2	25	3	30	33	10	2	45	6	10	14	30	128
Total	13	48	12	73	10	79	8	97	123	36	14	173	14	38	41	93	436
Grand Total	14	72	18	104	22	145	9	176	211	44	26	281	15	73	91	179	740
Apprch %	13.5	69.2	17.3		12.5	82.4	5.1		75.1	15.7	9.3		8.4	40.8	50.8		
Total %	1.9	9.7	2,4	14.1	3	19.6	1.2	23.8	28.5	5,9	3.5	38	2	9.9	12.3	24.2	

			ll Road		Ev		es Higl bound	nway			v Road		Εv	East	ves High tbound	_	
Start Time	Left			App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Tota
eak Hour Ana	lysis Fr	om 06:0	DO AM L	0 07:45 A	M - Pea	k 1 of 1	1										
eak Hour for E														-			Č 07
07:00 AM	3	3	4	10	2	8	2	12	15	5	4	24	4	8	9	21	67
07:15 AM	3	9	à	15	1	15	1	17	26	6	3	35	1	11	1 1	23	90
07:30 AM	0	23	2	25	5	31	2	38	49	15	5	69	3	9	7	19	151
	U		- -		2	C277 (1111		30	33	10	2	45	6	10	14	30	128
07:45 AM	7	13	3	23	2	25	3		the second s		-						
Total Volume	13	48	12	73	10	79	8	97	123	36	14	173	14	38	41	93	436
% App. Total	17.8	65.8	16.4		10.3	81.4	8.2		71.1	20.8	B.1		15.1	40.9	44.1		
PHF	.464	.522	.750	.730	.500	.637	.667	.638	.628	.600	.700	.627	.583	.864	.732	.775	.722

County of Imperial N/S: Drew Road / Haskell Road E/W: Evan Hewes Highway Weather: Clear File Name : 01_CIM_DREW_EVAN HEWES_AM Site Code : 05723502 Start Date : 5/18/2023 Page No : 2

Peak Hour Analysis From 06:00 AM to 07:45 AM - Peak 1 of 1


Peak Hour for	Each A	oproact	1 Begins	al.												
	07:00 AM				07.00 AN	1			07:00 AM	1			07:00 AN	4		
+0 mins.	2	2	A	10	2	8	2	12	15	5	4	24	4	8	9	21
	3	2	7	15	1	15	-	17	26	6	3	35	1	11	11	23
+15 mins.	3	9	3		<u> </u>					15	5	69	3	0	7	19
+30 mins.	0	23	2	25	5	31	2	38	49		3		5	40		30
+45 mins.	7	13	3	23	2	25	3	30	33	10	2	45	6	10	14	
Total Volume	13	48	12	73	10	79	8	97	123	36	14	173	14	38	41	93
% App. Total	17.8	65.8	16.4		10.3	81.4	8.2		71.1	20.8	8.1		15.1	40.9	44.1	
				.730	.500	.637	.667	.638	.628	.600	.700	.627	.583	.864	.732	.775
PHF	.464	.522	.750	./ 30	-000	.037	.007	.000	JULU							

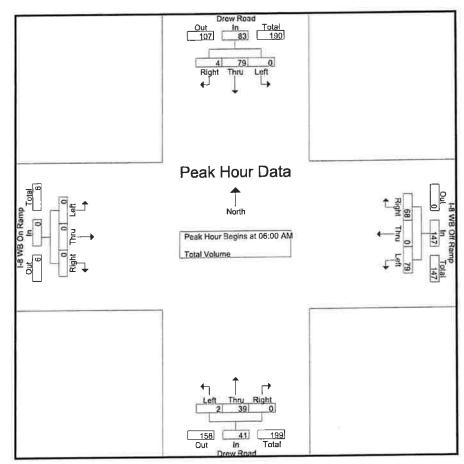
County of Imperial N/S: Drew Road / Haskell Road E/W: Evan Hewes Highway Weather: Clear File Name : 01_CIM_DREW_EVAN HEWES_PM Site Code : 05723502 Start Date : 5/18/2023 Page No : 1

						8	Groups	Printed-	Total Vo	olume							6
			ell Road		Eva		es Higi bound	hway			w Road hbound		Eva		/es Hig bound	nway	
Start Time	Left	Thru			Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru			Int. Total
03:00 PM	1	4	2	7	3	11	1	15	11	6	3	20	5	22	27	54	96
03:15 PM	4	11	8	23	8	12	5	25	18	13	5	36	9	35	37	81	165
03:30 PM	3	3	4	10	2	2	1	5	7	7	2	16	1	10	6	17	48
03:45 PM	4	3	4	11	4	6	3	13	7	6	3	16	8	21	27	56	96
Total	12	21	18	51	17	31	10	58	43	32	13	88	23	88	97	208	405
04:00 PM	1	5	3	9	5	7	0	12	4	9	2	15	4	34	45	83	119
04:15 PM	2	5	3	10	7	10	1	18	6	6	2	14	4	36	33	73	115
04:30 PM	6	5	8	19	9	12	5	26	8	11	6	25	5	39	31	75	145
04:45 PM	4	4	3	11	3	11	1	15	4	4	1	9	1	12	4	17	52
Total	13	19	17	49	24	40	7	71	22	30	11	63	14	121	113	248	431
Grand Total	25 25	40 40	35 35	100	41 31.8	71 55	17 13.2	129	65 43	62 41.1	24 15.9	151	37 8.1	209 45.8	210 46.1	456	836
Apprch % Total %	25	40	4.2	12	4.9	8.5	2	15.4	7.8	7.4	2.9	18.1	4.4	25	25.1	54.5	

			ll Road		Ev		es Higł	way			v Road		Eva		ves High bound		
Start Time	Left			App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Ana	lysis Fr	om 03:0	0 PM t	o 04:45 P	M - Pea	ik 1 of 1											
Peak Hour for E	Entire In	tersect	on Beg	ins at 03:	45 PM								_			50	
03:45 PM	4	3	4	11	4	6	3	13	7	6	3	16	8	21	27	56	96
04:00 PM	1	5	3	9	5	7	0	12	4	9	2	15	4	34	45	83	119
04:15 PM	2	5	3	10	7	10	1	18	6	6	2	14	4	36	33	73	115
04:30 PM	6	5	8	19	9	12	5	26	8	11	6	25	5	39	31	75	145
Total Volume	13	18	18	49	25	35	9	69	25	32	13	70	21	130	136	287	475
% App. Total	26.5	36.7	36.7		36.2	50.7	13		35.7	45.7	18.6		7.3	45.3	47.4		
PHF	.542	.900	.563	.645	.694	.729	.450	.663	.781	.727	.542	.700	.656	.833	.756	.864	.819

County of Imperial N/S: Drew Road / Haskell Road E/W: Evan Hewes Highway Weather: Clear File Name : 01_CIM_DREW_EVAN HEWES_PM Site Code : 05723502 Start Date : 5/18/2023 Page No : 2

Peak Hour Analysis From 03:00 PM to 04:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:


CON HOUR ICA	03:15 PM				04.00 PM	4			03 00 PN	4			03 45 PM	4		
+0 mins.	4	11	8	23	5	. 7	0	12	11	6	3	20	8	21	27	56
+15 mins.	3	3	4	10	7	10	1	18	18	13	5	36	4	34	45	83
+30 mins.	4	3	4	11	9	12	5	26	7	7	2	16	4	36	33	73
+45 mins.	1	5	3	9	3	11	1	15	7	6	3	16	5	39	31	75
Total Volume	12	22	19	53	24	40	7	71	43	32	13	88	21	130	136	287
% App. Total	22.6	41.5	35.8		33.8	56.3	9.9		48.9	36.4	14.8		7.3	45.3	47.4	
PHF	.750	.500	.594	.576	.667	.833	.350	.683	.597	.615	.650	.611	.656	.833	.756	.864

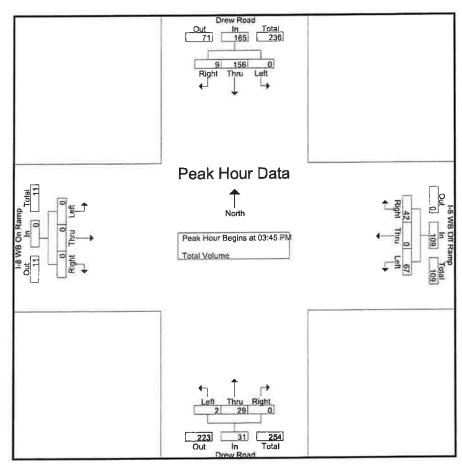
County of Imperial N/S: Drew Road E/W: I-8 Westbound Ramps Weather: Clear File Name : 02_CIM_DREW_8 WB_AM Site Code : 05723502 Start Date : 5/18/2023 Page No : 1

							Groups	Printed-	Total V	olume							1
			v Road		ļ	-8 WB	Off Rar tbound			Drev	v Road		ŀ		On Rar	np	
Start Time	Left	Thru			Left	Thru		App. Tetal	Left			App. Total	Left	Thru	Right	App. Total	
06:00 AM	0	20	1	21	20	0	13	33	1	9	0	10	0	0	0	0	64
06:15 AM	Ō	15	0	15	19	0	14	33	1	13	0	14	0	0	0	0	62
06:30 AM	0	25	1	26	21	0	25	46	0	10	0	10	0	0	0	0	82
06:45 AM	0	19	2	21	19	0	16	35	0	7	0	7	0	0	0	0	63
Total	0	79	4	83	79	0	68	147	2	39	0	41	0	0	0	0	271
07:00 AM	0	15	1	16	7	0	14	21	0	8	0	В	0	0	0	0	45
07:15 AM	ň	21	1	22	6	Ō	20	26	0	7	0	7	0	0	0	0	55
07:30 AM	ŏ	27	1	28	5	0	47	52	1	15	0	16	0	0	0	0	96
07:45 AM	Ő	24	0	24	6	0	36	42	0	7	0	7	0	0	0	0	73
Total	0	87	3	90	24	0	117	141	1	37	0	38	0	0	0	0	269
Grand Total	0	166	7	173	103	0	185	288	3	76	0	79	0	0	0	0	540
Apprch %	0	96	4		35.8	ŏ	64.2		3.8	96.2	0		0	0	0		
Total %	ŏ	30.7	1.3	32	19,1	Ő	34.3	53.3	0.6	14.1	0	14.6	0	0	0	0	1

			Road		1	-8 WB West	Off Rar	пр			v Road		1	East	On Ran bound		
Start Time	Left		and the second se	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Anal	ysis Fr	om 06:0	O AM t	0 07:45 A	M - Pea	k 1 of 1											
Peak Hour for E	intire In	tersecti	on Beg	ins at 06:	00 AM									•	•	0	64
06:00 AM	0	20	1	21	20	0	13	33	1	9	0	10	0	0	0	0	
06:15 AM	Ō	15	0	15	19	0	14	33	1	13	0	14	0	0	0	0	62
06:30 AM	õ	25	1	26	21	n.	25	46	0	10	0	10	0	0	0	0	82
	0	19	2	21	19	ñ	16	35	0	7	0	7	0	0	0	0	63
06:45 AM	0		-		and the second s	0	68	147	2	39	0	41	0	0	0	0	271
Total Volume	0	79	4	83	79	U		147	2		, v		ő	ő	ň	-	100010
% App. Total	0	95.2	4.8		53.7	0	46.3		4.9	95.1	0		0	0	0	000	000
PHE	.000	.790	.500	.798	.940	.000	.680	.799	.500	.750	.000	.732	.000	.000	.000	.000	.826

County of Imperial N/S: Drew Road E/W: I-8 Westbound Ramps Weather: Clear File Name : 02_CIM_DREW_8 WB_AM Site Code : 05723502 Start Date : 5/18/2023 Page No : 2

Peak Hour Analysis From 06:00 AM to 07:45 AM - Peak 1 of 1


eak Hour for	07:00 AM				06:00 AM				06:00 AN	٨			06 00 AN			
+0 mins.	ດ ເ	15	1	16	20	0	13	33	1	9	0	10	0	0	0	0
+15 mins.	0	21	÷	22	19	ő	14	33	1	13	0	14	0	0	0	0
+30 mins.	0	27	4	28	21	ň	25	46	Ō	10	Ō	10	0	0	0	0
+45 mins.	0	24	n	24	19	Ő	16	35	0	7	O	7	0	0	0	0
Total Volume	0	87	3	90	79	0	68	147	2	39	0	41	0	0	0	0
% App. Total	ő	96.7	3.3	50	53.7	õ	46.3		4.9	95.1	0		0	0	0	
PHF	.000	.806	.750	.804	.940	.000	.680	.799	.500	.750	.000	.732	.000	.000	.000	.000

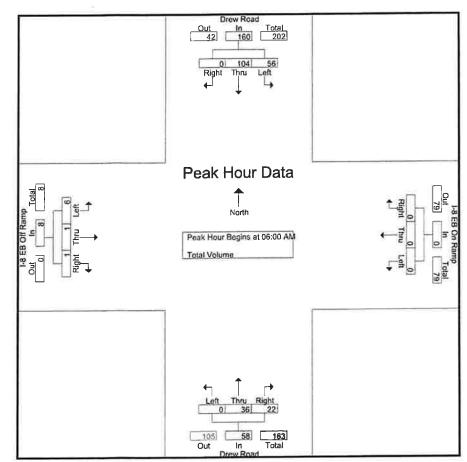
County of Imperial N/S: Drew Road E/W: I-8 Westbound Ramps Weather: Clear File Name : 02_CIM_DREW_8 WB_PM Site Code : 05723502 Start Date : 5/18/2023 Page No : 1

							Groups	Printed- T	otal Vo	lume	_						
		Drev	v Road		ŀ		Off Rar				v Road		ŀ		On Rar	np	
		Sout	hbound			Wes	tbound			North	bound				bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right		Int. Total
03:00 PM	0	34	5	39	9	1	10	20	0	8	0	8	0	0	0	0	67
03:15 PM	ō	30	4	34	15	0	16	31	0	10	0	10	0	0	0	0	75
03:30 PM	ō	29	6	35	9	1	12	22	0	7	0	7	0	0	0	0	64
03:45 PM	Ō	35	1	36	14	0	10	24	0	7	0	7	0	0	0	0	67
Total	0	128	16	144	47	2	48	97	0	32	0	32	0	0	0	0	273
04:00 PM	0	46	3	49	16	n	9	25	0	5	0	5	0	0	0	0	79
04:15 PM	ő	48	2	50	14	ñ	9	23	1	7	0	8	0	0	0	0	81
04:30 PM	0	27	2	30	23	ň	14	37	1	10	0	11	0	0	0	0	78
04:45 PM	ő	26	3	29	15	0	9	24	0	10	0	10	0	0	0	0	63
Total	0	147	11	158	68	0	41	109	2	32	0	34	0	0	0	0	301
Grand Total	0	275	27	302	115	2	89	206	2	64	0	66	0	0	0	0	574
Apprch %	0	91.1	8.9	502	55.8	1	43.2	200	3	97	Ō		0	0	0		
Total %	ŏ	47.9	4.7	52.6	20	0.3	15.5	35.9	0.3	11.1	0	11.5	0	0	0	0	

			v Road		ŀ		Off Ran	np			/ Road				On Ran bound	ηp	
Start Time	Left	Thru		App. Total	Left		Right	App, Total	Left	Thru	Right	App. Total	Left	Thru	Right	Ann Total	Int. Total
Peak Hour Ana	lysis Fr	om 03:0	00 PM t	o 04:45 P	M - Pea	k1 of 1											
Peak Hour for E	ntire Ir	tersect	ion Beg	ins at 03:	45 PM												
03:45 PM	0	35	1	36	14	0	10	24	0	7	0	7	0	0	0	0	67
04:00 PM	õ	46	3	49	16	0	9	25	0	5	0	5	0	0	0	0	79
04:15 PM	ő	48	2	50	14	ñ	9	23	1	7	0	8	0	0	0	0	81
04:30 PM	0	27	3	30	23	0	14	37		10	0	11	0	0	0	0	78
	0		9	165	67	0	42	109	2	29	0	31	0	0	0	0	305
Total Volume		156	-	105		0	38.5	100	6.5	93.5	ň	÷.	n	n	0		
% App. Total	0	94.5	5.5		61.5	U				and the state of t	000	705	.000	.000	.000	.000	.941
PHF	.000	.813	.750	.825	.728	.000	.750	.736	.500	.725	.000	.705	.000	.000	.000	.000	

County of Imperial N/S: Drew Road E/W: I-8 Westbound Ramps Weather: Clear File Name : 02_CIM_DREW_8 WB_PM Site Code : 05723502 Start Date : 5/18/2023 Page No : 2

Peak Hour Analysis From 03:00 PM to 04:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:


reak nour for		and the second second second	rocgine		03:45 PM				04:00 PM	4			03 00 PM			
10 mina	03 30 PM	29	e	35	14	0	10	24	0.0011	5	0	5	0	0	0	0
+0 mins.	U		0			Š	10		, i	7	0	0	0	ň	0	0
+15 mins.	0	35	1	36	16	0	9	25	1		U	0	0		Š	~
+30 mins.	0	46	3	49	14	0	9	23	1	10	0	11	U	0	U	U
+45 mins.	0	48	2	50	23	0	14	37	0	10	0	10	0	0	0	0
Total Volume	0	158	12	170	67	0	42	109	2	32	0	34	0	0	0	0
% App. Total	0	92.9	7.1		61.5	0	38.5		5.9	94.1	0		0	0	0	
PHF	.000	.823	.500	.850	.728	.000	.750	.736	.500	.800	.000	.773	.000	.000	.000	.000

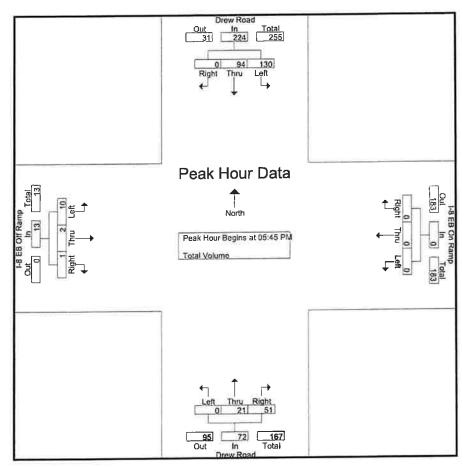
County of Imperial N/S: Drew Road E/W: I-8 Eastbound Ramps Weather: Clear File Name : 03_CIM_DREW_8 EB_AM Site Code : 05723502 Start Date : 5/18/2023 Page No : 1

			v Road		ŀ		On Ran tbound	np			v Road			East	Off Ram bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Tota
06:00 AM	15	27	0	42	0	0	0	0	0	10	6	16	0	0	0	0	58
06:15 AM	12	22	õ	34	0	0	0	0	0	12	2	14	2	0	0	2	50
06:30 AM	16	31	Ō	47	0	0	0	0	0	10	7	17	1	0	1	2	66
06:45 AM	13	24	Ō	37	0	0	0	0	0	4	7	11	3	1	0	4	52
Total	56	104	0	160	0	0	0	0	0	36	22	58	6	1	1	8	226
07:00 AM	9	14	0	23	0	0	0	0	0	З	4	7	5	0	1	6	36
07:15 AM	22	5	Ő	27	ő	ō	ō	ō	0	5	6	11	2	0	1	3	41
07:30 AM	18	12	õ	30	ő	Ō	ō	Ō	0	9	10	19	6	0	1	7	56
07:45 AM	19	13	Ő	32	Ő	0	0	0	0	7	6	13	2	0	0	2	47
Total	68	44	0	112	0	0	0	0	0	24	26	50	15	0	3	18	180
Grand Total	124	148	0	272	0	0	0	o	0	60	48	108	21	1	4	26	406
Apprch %	45.6	54.4	ŏ		ő	õ	õ		0	55.6	44.4		80.8	3.8	15.4		
Total %	30.5	36.5	ŏ	67	ő	õ	ō	0	0	14.8	11.8	26.6	5.2	0,2	1	6.4	

			Road				Dn Ram bound	ıp			Road				Off Ram bound	р	
Start Time	Left			App. Tolal	Left			App. Tatal	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Tota
Peak Hour Anal	ysis Fre	om 06:0	O AM t	0 07:45 A	M - Pea	k 1 of 1	V-To-										
Peak Hour for E															-		
06:00 AM	15	27	0	42	0	0	0	0	0	10	6	16	0	0	0	0	58
06:15 AM	12	22	0	34	0	0	0	0	0	12	2	14	2	0	0	2	50
06:30 AM	16	31	n.	47	0	0	0	0	0	10	7	17	1	0	1 _	2	66
06:45 AM	13	24	0	37	0	0	0	0	0	4	7	11	3	1	0	4	52
Total Volume	56	104	n	160	0	0	D	0	0	36	22	58	6	1	1	8	226
% App. Total	35	65	ň	100	ň	ñ	ő	-	Ō	62.1	37.9		75	12.5	12.5		
PHF	.875	.839	.000	.851	-000	.000	.000	.000	.000	.750	.786	.853	.500	.250	.250	.500	.856

County of Imperial N/S: Drew Road E/W: I-8 Eastbound Ramps Weather: Clear File Name : 03_CIM_DREW_8 EB_AM Site Code : 05723502 Start Date : 5/18/2023 Page No : 2

Peak Hour Analysis From 06:00 AM to 07:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:


Cak HOUT IO	06:00 AM		Dugine		06 00 AM				06:00 AA	4			06 45 AN			
+0 mins.	15	27	0	42	0	0	0	0	0	10	6	16	3	1	0	4
+15 mins.	12	22	0	34	Ó	0	0	0	0	12	2	14	5	0	1	6
+30 mins.	16	31	0	47	0	0	0	0	0	10	7	17	2	0	1	3
+45 mins.	13	24	0	37	0	0	0	0	0	4	7	11	6	0	1	7
Total Volume	56	104	0	160	0	0	0	0	0	36	22	58	16	1	3	20
% App. Total	35	65	٥		0	0	0		۵	62.1	37.9	_	80	5	15	
PHF	.875	.839	.000	.851	.000	.000	.000	.000	.000	.750	.786	.853	.667	.250	.750	.714

County of Imperial N/S: Drew Road E/W: I-8 Eastbound Ramps Weather: Clear File Name : 03_CIM_DREW_8 EB_PM Site Code : 05723502 Start Date : 5/18/2023 Page No : 1

							Groups	Printed-	Total Vo								
		Drew	Road		ŀ	-8 EB (On Ran	np		Drev	v Road		1		Off Ran	np	
-		South	nbound			West	bound			North	bound				bound		
Start Time	Left	Thru	Right		Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
05:00 PM	33	11	0	44	0	0	0	0	0	7	15	22	1	0	1	2	68
05:15 PM	22	23	ō	45	Ō	0	0	0	0	7	10	17	3	0	1	4	66
05:30 PM	20	16	ō	36	Ō	Ō	0	0	0	5	11	16	2	0	0	2	54
05:45 PM	32	21	õ	53	0	0	0	0	0	4	12	16	3	0	0	3	72
Total	107	71	0	178	0	0	0	0	0	23	48	71	9	0	2	11	260
06:00 PM	43	20	0	63	0	0	0	0	0	4	14	18	2	0	1	3	84
06:15 PM	39	24	õ	63	ō	ŏ	ō	0	0	2	5	7	5	1	0	6	76
06:30 PM	16	29	ŏ	45	ŏ	ŏ	ō	ō	Ō	11	20	31	0	1	0	1	77
06:45 PM	18	24	Ő	42	Ő	0	0	0	0	9	9	18	3	0	1	4	64
Total	116	97	0	213	0	Ö	0	0	0	26	48	74	10	2	2	14	301
Grand Total	223	168	0	391	0	D	0	ol	0	49	96	145	19	2	4	25	561
Apprch %	57	43	ő	501	õ	õ	õ	_	ō	33.8	66.2		76	8	16		
Total %	39.8	29.9	0	69.7	ŏ	Ő	Ő	o	ō	8.7	17.1	25.8	3.4	0.4	0.7	4.5	

			Road			-	On Ran tbound	np			v Road			East	Off Ram bound		
Start Time	Left			App. Total	Left	Thru	Right	App Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Anal	lysis Fre	om 05:0	0 PM to	06:45 P	M - Pea	k 1 of 1	1										
Peak Hour for E	intire In	tersecti	on Begi	ns at 05:4	45 PM									-			70
05:45 PM	32	21	Ō	53	0	0	0	0	0	4	12	16	3	0	0	3	72
06:00 PM	43	20	Ō	63	0	0	0	0	0	4	14	18	2	0	1	3	84
06:15 PM	39	24	ň	63	0	Ō	0	0	0	2	5	7	5	1	0	6	76
06:30 PM	16	29	ő	45	Ő	0	0	0	0	11	20	31	0	1	0	1	77
Total Volume	130	94	0	224	0	0	0	0	0	21	51	72	10	2	1	13	309
	58	42	ŏ	224	ň	ň	ŏ	Ű	ō	29.2	70.8		76.9	15.4	7.7		
% App. Total PHF	.756	.810	.000	.889	.000	.000	.000	.000	.000	.477	.638	.581	.500	.500	.250	.542	.920

County of Imperial N/S: Drew Road E/W: I-8 Eastbound Ramps Weather: Clear File Name : 03_CIM_DREW_8 EB_PM Site Code : 05723502 Start Date : 5/18/2023 Page No : 2

Peak Hour Analysis From 05:00 PM to 06:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

and a second sec				_								07 00 04			
05 45 PM				05 00 PM				06.00 PM	6			05 30 PW			
32	21	0	53	0	0	0	0	0	4	14	18	2	0	0	2
	20	0	63	0	0	0	0	0	2	5	7	3	0	0	3
		ñ		Ō	0	0	0	0	11	20	31	2	0	1	3
		õ		Ō	0	0	0	0	9	9	18	5	1	0	6
		0		0	D	0	0	0	26	48	74	12	1	1	14
		ň		Ő	ō	Ō		0	35.1	64.9		85.7	7.1	7.1	
		000	889	000	000	000	.000	.000	.591	.600	.597	.600	.250	.250	.583
	05.45 PM 32 43 39 16 130 58 .756	05.45 PM 32 21 43 20 39 24 16 29 130 94 58 42	0545 PM 32 21 0 43 20 0 39 24 0 16 29 0 130 94 0 58 42 0	32 21 0 53 43 20 0 63 39 24 0 63 16 29 0 45 130 94 0 224 58 42 0 24	05 45 PM 05 00 PM 32 21 0 53 0 43 20 0 63 0 39 24 0 63 0 16 29 0 45 0 130 94 0 224 0 58 42 0 0 0	05:45 PM 05:00 PM 32 21 0 53 0 0 43 20 0 63 0 0 39 24 0 63 0 0 16 29 0 45 0 0 130 94 0 224 0 0 58 42 0 0 0 0	05 45 PM 05 00 PM 32 21 0 53 0 0 0 43 20 0 63 0 0 0 39 24 0 63 0 0 0 16 29 0 45 0 0 0 130 94 0 224 0 0 0 58 42 0 0 0 0 0	05 45 PM 05 00 PM 32 21 0 53 0 0 0 0 43 20 0 63 0 0 0 0 39 24 0 63 0 0 0 0 16 29 0 45 0 0 0 0 130 94 0 224 0 0 0 0 58 42 0 0 0 0 0 0	05 45 PM 05 00 PM 06:00 PM 06:00 PM 06:00 PM 32 21 0 53 0 0 0 0 0 43 20 0 63 0	05 45 PM 05 00 PM 06:00 PM 32 21 0 53 0 0 0 0 4 43 20 0 63 0 0 0 0 2 4 39 24 0 63 0 0 0 0 11 16 29 0 45 0 0 0 9 130 94 0 224 0 0 0 0 26 58 42 0 0 0 0 0 35.1	05 45 PM 05 00 PM 06:00 PM 32 21 0 53 0 0 0 0 4 14 43 20 0 63 0 0 0 0 2 5 39 24 0 63 0 0 0 0 11 20 16 29 0 45 0 0 0 0 9 9 130 94 0 224 0 0 0 0 0 35.1 64.9 58 42 0 0 0 0 0 0	05:45 PM 05:00 PM 06:00 PM 32 21 0 53 0 0 0 0 4 14 18 43 20 0 63 0 0 0 0 2 5 7 39 24 0 63 0 0 0 0 11 20 31 16 29 0 45 0 0 0 0 9 9 18 130 94 0 224 0 0 0 0 35.1 64.9 58 42 0 0 0 0 00	05 45 PM 05 00 PM 06:00 PM 05:00 PM	05 45 PM 05 00 PM 06 00 PM 06 00 PM 05 30 PM 32 21 0 53 0 0 0 0 4 14 18 2 0 43 20 0 63 0 0 0 0 2 5 7 3 0 39 24 0 63 0 0 0 0 11 20 31 2 0 16 29 0 45 0 0 0 0 9 9 18 5 1 130 94 0 224 0 0 0 0 26 48 74 12 1 58 42 0 0 0 0 504 504 504 71	05 45 PM 05 00 PM 06:00 PM 05 30 PM 05 30 PM 32 21 0 53 0 0 0 0 4 14 18 2 0 0 43 20 0 63 0 0 0 0 2 5 7 3 0 0 39 24 0 63 0 0 0 0 11 20 31 2 0 1 16 29 0 45 0 0 0 0 9 9 18 5 1 0 130 94 0 224 0 0 0 0 35.1 64.9 85.7 7.1 7.1 58 42 0 0 0 0 35.1 64.9 85.7 7.1 7.1

APPENDIX B

INTERSECTION PEAK HOUR ANALYSIS WORKSHEETS

LINSCOTT, LAW & GREENSPAN, engineers

Intersection Delay, s/veh	9.8											
Intersection LOS	A											
		-		-	ter contraction				1100	an	OOT	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR

Movement	COL	LDI	LUN	VIUL				- Million		and the second s	1000	
Lane Configurations		đ þ			4 î p			Ф			4	
Traffic Vol, veh/h	14	36	41	10	79	8	123	36	14	131	73	58
Future Vol, veh/h	14	36	41	10	79	8	123	36	14	131	73	58
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	15	39	45	11	86	9	134	39	15	142	79	63
Number of Lanes	0	2	0	0	2	0	0	1	0	0	1	0
Approach	EB	100	Ser.	WB		- 12 A	NB		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			2		
HCM Control Delay	8.8			9.1			9.7			10.5		
HCMLOS	A		100	Α			Α			8		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1
Vol Left, %	71%	44%	0%	20%	0%	50%
Vol Thru, %	21%	56%	31%	80%	83%	28%
Vol Right, %	8%	0%	69%	0%	17%	22%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	173	32	59	50	48	262
LT Vol	123	14	0	10	0	131
Through Vol	36	18	18	40	40	73
RT Vol	14	0	41	0	8	58
Lane Flow Rate	188	35	64	54	52	285
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.257	0.058	0.094	0.088	0.081	0.37
Departure Headway (Hd)	4.911	6.016	5.302	5.882	5.66	4.678
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	726	590	669	604	627	766
Service Time	2.973	3.803	3.088	3.667	3.445	2.733
HCM Lane V/C Ratio	0.259	0.059	0.096	0.089	0.083	0.372
HCM Control Delay	9.7	9.2	8.6	9.2	9	10.5
HCM Lane LOS	A	А	A	A	A	B
HCM 95th-tile Q	1	0.2	0.3	0.3	0.3	1.7

Synchro 11 Report Page 1

05/29/2023

Intersection 5.1

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					र्भ	7		- सी			Þ		
Traffic Vol, veh/h	0	0	0	79	0	68	2	39	0	0	79	4	
Future Vol, veh/h	0	0	0	79	0	68	2	39	0	0	79	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	15171	1	None	4	•	None	-		None		•	None	
Storage Length	-	-	-	-	-	0	-	-	-	-	-	-	
Veh in Median Storage,	# -		•	-	0	-	-	0	-		0	10 k-1	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	0	0	86	0	74	2	42	0	0	86	4	

Major/Minor	ALC: DE D	Minor1	1. 2.4	22.	Major1		M	ajor2	1.3.3	- I walk	1500	100	-
Conflicting Flow All		134	136	42	90	0	-	•	(#)	0			
Stage 1		46	46	-			-			1.00			
Stage 2		88	90	, -			-	-					
Critical Hdwy		6.42	6.52	6.22	4.12	- 8-							
Critical Hdwy Stg 1		5.42	5.52	-		14	-	-		(
Critical Hdwy Stg 2		5.42	5.52	•		-	-7-	1.0	1000	100			
Follow-up Hdwy		3.518	4.018	3.318	2.218		-	- 7	181	۲			
Pot Cap-1 Maneuver		860	755	1029	1505		0	0	- (2) -				
Stage 1		976	857	•	-	5	0	0	2041	2043			
Stage 2		935	820	1.	•		0	0		100			
Platoon blocked, %									1.91	1.53			
Mov Cap-1 Maneuver		859	0	1029	1505								
Mov Cap-2 Maneuver		859	0	-	-		122		800	14			
Stage 1		975	0					100	•				
Stage 2		935	0	-	-	-	2003						
1971 - 110 - ST													
Approach		WB			NB			SB			1.11		
HCM Control Delay, s		9.3	Tre		0.4			0					
HCM LOS		Α											
1991 1995 1995 1995		the sure	1.76										
Minor Lane/Major Mvmt	NBL	NBTWBLn IV	VBLn2	SBT	SBR	122.00	1.04		<u>.</u>			Les e	
Canacity (veh/h)	1505	- 859	1029	100 X.									

Capacity (veh/h)	1505	-	859	1029			and an		
HCM Lane V/C Ratio	0.001	-	0.1	0.072	3	-			
HCM Control Delay (s)	7.4	0	9.7	8.8					
HCM Lane LOS	А	Α	Α	A	-				
HCM 95th %tile Q(veh)	0	-	0.3	0.2	•				

EX AM 8:40 am 05/25/2023 EX AM

Synchro 11 Report Page 2

Intersection	STA.		See.	253	1.1.5			Year		- 17		AT PA			
Int Delay, s/veh	2.2														
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	1128-28	See.	
Lane Configurations		र्स	1					ţ,			ৰ্ন				
Traffic Vol. veh/h	6	1	1	0	0	0	0	38	22	56	104	0			

	U			•	•	•	~	00	and an				
Future Vol, veh/h	6	1	1	0	0	0	0	38	22	56	104	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	101		None	8 T (* 1	- 11	None			None	5	- 1 -	None	
Storage Length	-	-	0		-	-	-	-	-	•	-	-	
Veh in Median Storage,	# -	0			- 28		•	0		1.1.	0		
Grade, %	-	0	-	-	0	-	-	0	-	•	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	7	1	1	0	0	0	0	41	24	61	113	0	

Major/Minor	Minor2	1.50				N	lajor1	and the second		Major2			franse al	
Conflicting Flow All	288	300	113				-	0	0	65	0	0		
Stage 1	235	235	-				-	- 21						
Stage 2	53	65					-							
Critical Hdwy	6.42	6.52	6.22				I		-	4.12				
Critical Hdwy Stg 1	5.42	5.52	-				-		-	•	1	34		
Critical Hdwy Stg 2	5.42	5.52	-					1.90				1.0		
Follow-up Hdwy	3.518	4.018	3.318				-	•	-	2.218		357		
Pot Cap-1 Maneuver	702	612	940				0		- 77	1537		0		
Stage 1	804	710	-				0	•		-	3 6 8	0		
Stage 2	970	841	1				0				0 (M)	0		
Platoon blocked, %								(•):		-				
Mov Cap-1 Maneuver	673	0	940				31	•	2014	1537				
Mov Cap-2 Maneuver	673	0					•	P .,	•	-	16			
Stage 1	804	0										100		
Stage 2	929	0						5 4 00	-	0.	(.)	•		
A HARRY														2
Approach	EB	1					NB		210	SB			5 S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
HCM Control Delay, s	10.2				100		0			2.6				
HCM LOS	В													
X IN A RULE N	23.5				5.50	1.11	18							ter de la
Minor Lane/Major Mvr	nt	NBT	NBR	EBLNÍ	EBLn2	SBL	SBT	199	100	me.	يهجا الك			1000
Capacity (veh/h)	UTPT	-		673	940	1537	-							
HCM Lane V/C Ratio			-	0.011	0.001	0.04	-							
HCM Control Delay (s)			10.4	8.8	7.4	0					2413		
HCM Lane LOS		2	-	В	А	А	А							
HCM 95th %tile Q(veh	1)			0	0	0.1					-242.3			1.1

EX AM 8:40 am 05/25/2023 EX AM

Synchro 11 Report Page 3

Intersection	1245	
Intersection Delay, s/veh	9.7	
Intersection LOS	A	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SET	SBR
Lane Configurations		4Th			4Þ			4			4	
Traffic Vol, veh/h	21	130	136	25	35	9	25	32	13	111	49	62
Future Vol, veh/h	21	130	136	25	35	9	25	32	13	111	49	62
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	23	141	148	27	38	10	27	35	14	121	53	67
Number of Lanes	0	2	0	0	2	0	0	1	0	0	1	0
Approach	EB		1.313	WB			NB		a state of the sta	SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2	1.00	12.5	2			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			2		
HCM Control Delay	9.6			9			8.9			10.3		
HCM LOS	A			A			Α			В		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1
Vol Left, %	36%	24%	0%	59%	0%	50%
Vol Thru, %	46%	76%	32%	41%	66%	22%
Vol Right, %	19%	0%	68%	0%	34%	28%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	70	86	201	43	27	222
LT Vol	25	21	0	25	0	111
Through Vol	32	65	65	18	18	49
RT Vol	13	0	136	0	9	62
Lane Flow Rate	76	93	218	46	29	241
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.109	0.144	0.299	0.077	0.043	0.328
Departure Headway (Hd)	5.14	5.534	4.933	5.964	5.426	4.886
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	691	644	723	595	653	731
Service Time	3.219	3.303	2.702	3.753	3.214	2.947
HCM Lane V/C Ratio	0.11	0.144	0.302	0.077	0.044	0.33
HCM Control Delay	8.9	9.2	9.8	9.3	8.5	10.3
HCM Lane LOS	Α	Α	Α	A	A	B
HCM 95th-tile Q	0.4	0.5	1.3	0.2	0.1	1.4

Synchro 11 Report Page 1

Intersection		
Int Delay, s/veh	3.4	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					4	*		र्च			₽	-	
Traffic Vol, veh/h	0	0	0	67	0	42	2	29	0	0	156	9	
Future Vol, veh/h	0	0	0	67	0	42	2	29	0	0	156	9	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	919	57	None			None		•	None	1 . ·	-	None	
Storage Length	-	-	-	-		0	-	-	-	•		8 9)	
Veh in Median Storage,	# -		- U -	•	0		•	0			0		
Grade, %	-	0	-	-	0	-	-	0	-	-	0	040	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	0	0	73	0	46	2	32	0	0	170	10	

Major/Minor	101200	Minor1	- X - C		Major1		Ma	ajor2	1.5	120		
Conflicting Flow All		211	216	32	180	0	-	-		0		
Stage 1		36	36	-	•		-					
Stage 2		175	180		-	-	-	4	5 .			
Critical Hdwy		6.42	6.52	6.22	4.12	1.244			×.	•		
Critical Hdwy Stg 1		5.42	5.52			-	-	•	19			
Critical Hdwy Stg 2		5.42	5.52	•	1		-	•				
Follow-up Hdwy		3.518	4.018	3.318	2.218	100	-	-				
Pot Cap-1 Maneuver		777	682	1042	1396	•	0	0		1.		
Stage 1		986	865	.÷			0	0		-		
Stage 2		855	750				0	0				
Platoon blocked, %						-			16	•		
Mov Cap-1 Maneuver		776	0	1042	1396				•			
Mov Cap-2 Maneuver		776	0					5.5	•			
Stage 1		985	0									
Stage 2		855	0			•	-	167	*			
town in the second		1.1										12
Approach	1111	WB	STAT	100	NB			SB				
HCM Control Delay, s	1.01	9.5			0.5			0				
HCM LOS		A										
		Sec. 16										<u>v 5- 5-11</u>
Minor Lane/Major Mvmt	NBL	NBTWBLn1	WBLn2	SBT	SBR						우리 위신 사	
Capacity (veh/h)	1396	- 776	1042			-						
HCM Lane V/C Ratio	0.002	- 0.094	0.044									
HCM Control Delay (s)	7.6	0 10.1	8.6									
HCM Lane LOS	A	A B	Α									
HCM 95th %tile Q(veh)	0	- 0.3	0.1									

EX PM 8:40 am 05/25/2023 EX PM

Synchro 11 Report Page 2

HCM 2010 TWSC 3: I-8 EB Ramps & Drew Rd

Intersection				- 1 - A		3.4.3		201	150		1.27	1 <u>(631)</u> 6	1.5	1	1.10
Int Delay, s/veh	3.7														
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	3.44	The s	47.
Lane Configurations		र्स	7					₽			र्च			_	
Traffic Vol, veh/h	10	2	1	0	0	0	0	21	51	130	94	0			
Future Vol, veh/h	10	2	1	0	0	0	0	21	51	130	94	0			
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0			
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free			
RT Channelized			None		•	None	- I,	-	None	30.0	•	None			
Storage Length	-	-	0	-	-	-	-		1	۰.	•	١.			
Veh in Median Storag	ie, # -	0	-	Y -	10-	1.1.1.		0	11 - 1	-	0				
Grade, %	-	0	-	-	0	-	-	0	-		0				
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92			
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2			
Mvmt Flow	- 11	2	1	0	0	0	0	23	55	141	102	0			
Major/Minor	Minor2	(in the	181.7				Major1			Major2	12				
Conflicting Flow All	435	462	102				-	0	0	78	0	0			
Stage 1	384	384	1.1.2				•								
Stage 2	51	78	-				-			-					
Critical Hdwy	6.42	6.52	6.22				•			4.12					
Critical Hdwy Stg 1	5.42	5.52	-				-			-		-			
Critical Hdwy Stg 2	5.42	5.52	- 1						147	1	18	•			
	3 518	4 018	3 318				-		-	2.218		-			

ondour numy orga	01 HL	0.00									
Follow-up Hdwy	3.518	4.018	3.318	-	֥):	-	2.218	3.92	-		
Pot Cap-1 Maneuver	578	497	953	0			1520	1100	0		
Stage 1	688	611	-	0		1			0		
Stage 2	971	830	124	0	- 2011		-		0		
Platoon blocked, %					363						
Mov Cap-1 Maneuver	521	0	953		•	•	1520				
Mov Cap-2 Maneuver	521	0		320		•	•		2		4
Stage 1	688	0		191	-	- 18 C					
Stage 2	876	0	•	-	(#)	140					
THE R R R R R R R											

Approach	EB	100 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NB	SB	
HCM Control Delay, s	11.8		0	4.4	
HCM LOS	В				

And the second se						
Minor Lane/Major Mvmt	NBT	NBR	BLn1	EBLn2	SBL	SBT
Capacity (veh/h)	1. T	•	521	953	1520	1
HCM Lane V/C Ratio		-	0.025	0.001	0.093	
HCM Control Delay (s)	- 2 - 4	- 19 1 9	12.1	8.8	7.6	0
HCM Lane LOS	2	-	В	А	Α	Α
HCM 95th %tile Q(veh)	1.1.4		0.1	0	0.3	

EX PM 8:40 am 05/25/2023 EX PM

Synchro 11 Report Page 3

			 -		and a strength
Intersection		A DECEMPTOR OF A DECEMPTOR OF A DECEMPTOR	2	Hand States	Carl States
Intersection Delay, s/veh	9.9				
Intersection LOS	A				

										Collector and a second		-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		đ þ			đþ			4			4	
Traffic Vol, veh/h	14	37	42	10	81	8	125	37	14	134	74	59
Future Vol. veh/h	14	37	42	10	81	8	125	37	14	134	74	59
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	15	40	46	11	88	9	136	40	15	146	80	64
Number of Lanes	0	2	0	0	2	0	0	1.,	0	0	1	0
Approach	EB	27 C 1		WB	1		NB			SB	The second	
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			1			1.		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			2		
HCM Control Delay	8.9			9.2			9.8			10.6		
HCM LOS	Α			Α			Α			В		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1
Vol Left, %	71%	43%	0%	20%	0%	50%
Vol Thru, %	21%	57%	31%	80%	84%	28%
Vol Right, %	8%	0%	69%	0%	16%	22%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	176	33	61	51	49	267
LT Vol	125	14	0	10	0	134
Through Vol	37	19	19	41	41	74
RT Vol	14	0	42	0	8	59
Lane Flow Rate	191	35	66	55	53	290
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.262	0.059	0.097	0.09	0.083	0.379
Departure Headway (Hd)	4.932	6.042	5.331	5.907	5.69	4.696
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	723	588	665	601	624	760
Service Time	2.998	3,83	3.119	3.696	3.478	2.753
HCM Lane V/C Ratio	0.264	0.06	0.099	0.092	0.085	0.382
HCM Control Delay	9.8	9.2	8.7	9.3	9	10.6
HCM Lane LOS	A	A	Α	A	A	В
HCM 95th-tile Q	1	0.2	0.3	0.3	0.3	1.8

Synchro 11 Report Page 1

HCM 2010 TWSC 2: Drew Rd & I-8 WB Ramps

Intersection			and the		10		138			030	10.0	1.	
Int Delay, s/veh	5.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations						7		र्च			ţ,		
Traffic Vol, veh/h	0	0	0	81	0	69	2	40	0	0	81	4	
Future Vol, veh/h	0	0	0	81	0	69	2	40	0	0	81	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized		1.0	None			None	3.	-	None	< 14		None	
Storage Length	-	-	-	-		0	-	-	-	-	-	-	
Veh in Median Storage,	# -	-	100	1 -	0	•	-	0		112	0	1.1	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	0	0	88	0	75	2	43	0	0	88	4	
Major/Minor	22.12	-	No.	Ainor1	COM.	Ň	Aajor1	1900	N	Major2	22.0	1 Page	30
Conflicting Flow All	Concerning in the			137	139	43	92	0	-	-		0	-
Stage 1				47	47	10	J.						
Stage 2				90	92				-				
Critical Hdwy				6.42	6.52	6.22	4.12		-				

Staye I			TI TI										
Stage 2			90 92			20	-	•	() ,)	1.5			
Critical Hdwy		6.	42 6.52	6.22	4.12	and the	. •	- 6					
Critical Hdwy Stg 1		5.4	42 5.52		-	÷.,	-	-	1	12			
Critical Hdwy Stg 2		5.4	42 5.52				- 14 U	•	~	- 14-1			
Follow-up Hdwy		3.5	18 4.018	3.318			-	•		Net.			
Pot Cap-1 Maneuver			56 752		1503		0	0	1.12				
Stage 1		9	75 856			÷.	0	0	1	-			
Stage 2		9	34 819			1.1	0	0		1.4			
Platoon blocked, %						3 4 .)			::*)	•			
Mov Cap-1 Maneuver		8	55 0	1027	1503				1.0	- e			
Mov Cap-2 Maneuver		8	55 0			•	-	1.		*			
Stage 1		9	74 0		199	mark.		14	-				
Stage 2		9:	34 0		-		1941	-		-			
Approach		N.	IB		NB			SB					1
HCM Control Delay, s		9	.3		0.4			0					
HCM LOS			A										
			1.40										
Minor Lane/Major Mvmt	NBL	NBTWBL	n1WBLn2	SBT	SBR	2.3		184		the se	Watshi	-6565	2.2
Capacity (veh/h)	1503	- 8	55 1027		-								
HCM Lane V/C Ratio	0.001	- 0.10	03 0.073										
HCM Control Delay (s)	7.4	0 9	.7 8.8		1.12								
HCM Lane LOS	A	A	A A		¥								
HCM 95th %tile Q(veh)	0	- 0	.3 0.2	1.1	•								
Contraction of the second s													

Construction Year AM 8:40 am 05/25/2023 Construction Year AM

Synchro 11 Report Page 2

HCM 2010 TWSC 3: I-8 EB Ramps & Drew Rd

Intersection	anew.		12100	-		100		100	12.74		655	a state	1 August and	1023
Int Delay, s/veh	2,2													
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	figer di	Ulum.
Lane Configurations		÷.	7					1			र्स			
Traffic Vol, veh/h	6	1	1	0	0	0	0	39	22	57	106	0		
Future Vol, veh/h	6	1	1	0	0	Ó	0	39	22	57	106	0		
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0		
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free		
RT Channelized		103	None	1214		None	-	- 10 L	None	•	- M.	None		
Storage Length	-	-	0	-	-	-	-	-	-	-	-	-		
Veh in Median Storage	# -	0	-	-		1.1		0	-		0	•		
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-		
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92		
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2		
Mvmt Flow	7	1	1	0	0	0	0	42	24	62	115	0		
	Minor2		1000	121			Major1	102.5		Major2		2,76		
Conflicting Flow All	293	305	115				-	0	0	66	0	0		
Stage 1	239	239												
Stage 2	54	66	-				-	•	(m)	(#)	-			
Critical Hdwy	6.42	6.52	6.22				1.14	•	V 10+.	4.12				
Critical Hdwy Stg 1	5.42	5.52	-							•	•	-		
Critical Hdwy Stg 2	5.42	5.52					254		-					
Follow-up Hdwy		4.018					-	34	-	2.218	•			
Pot Cap-1 Maneuver	698	608	937				0		•	1536		0		
Stage 1	801	708	-				0	2	2 7 (-		0		
Stage 2	969	840	•				0		U - 2		1	0		
Platoon blocked, %								32	: * (
Mov Cap-1 Maneuver	668	0	937				1.1			1536				
Mov Cap-2 Maneuver	668	0					-			-	•	(ē		
Stage 1	801	0								- 3			1.1.1	
Stage 2	927	0						-			-	-		
	115										100		1.00	
Approach	EB		W. T		18 - MAR	E.S.	NB	di Di		SB		1	10	
HCM Control Delay, s	10.3		1000		1	2.2	0			2.6				
HCM LOS	В													
No. of the Party														
Minor Lane/Major Mvm	1	NBT	NBR	BLn1	EBLn2	SBL	SBT		- Jua	26.2	119.25			196
Capacity (veh/h)	17.19		- I -	668	937	1536						24		
HCM Lane V/C Ratio				0.011	0.001	0.04	-							
HCM Control Delay (s)				10.5	8.8	7.4	0							
HCM Lane LOS				В	Α	Α	Α							
HCM 95th %tile Q(veh)		124	-	0	0	0.1			1				ALC: NO	

Construction Year AM 8:40 am 05/25/2023 Construction Year AM

Synchro 11 Report Page 3

Intersection		
Intersection Delay, s/veh	9.8	
Intersection LOS	A	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Bet We are	412			4Þ			4			4	
Traffic Vol. veh/h	21	133	139	26	36	9	26	33	13	113	50	63
Future Vol. veh/h	21	133	139	26	36	9	26	33	13	113	50	63
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	23	145	151	28	39	10	28	36	14	123	54	68
Number of Lanes	0	2	0	0	2	0	0	1	0	0	1	0
Appreach	EB	0.0022		WB		a Unit	NB	12	2250 J	SB		3.11
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			2		
HCM Control Delay	9.7			9			8.9			10.5		
HCM LOS	A			A			Α			В		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1
Vol Left, %	36%	24%	0%	59%	0%	50%
Vol Thru, %	46%	76%	32%	41%	67%	22%
Vol Right, %	18%	0%	68%	0%	33%	28%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	72	88	206	44	27	226
LT Vol	26	21	0	26	0	113
Through Vol	33	67	67	18	18	50
RT Vol	13	0	139	0	9	63
Lane Flow Rate	78	95	223	48	29	246
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.112	0.147	0.307	0.08	0.045	0.335
Departure Headway (Hd)	5.173	5.554	4.955	5.995	5.46	4.911
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	686	641	719	593	649	727
Service Time	3.258	3.325	2.725	3.785	3.249	2.975
HCM Lane V/C Ratio	0.114	0.148	0.31	0.081	0.045	0.338
HCM Control Delay	8.9	9.3	9.9	9.3	8.5	10.5
HCM Lane LOS	A	A	A	Ā	A	В
HCM 95th-tile Q	0.4	0.5	1.3	0.3	0.1	1.5

Construction Year PM 8:40 am 05/25/2023 Construction Year PM

Synchro 11 Report Page 1

HCM 2010 TWSC 2: Drew Rd & I-8 WB Ramps

Intersection		Sec.	12.5	14	in in			15.00	1		1		day of s
Int Delay, s/veh	3,5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Service and the
Lane Configurations					र्स	1		र्स			Ę.		
Traffic Vol, veh/h	0	0	0	68	0	43	2	30	0	0	159	9	
Future Vol. veh/h	0	0	0	68	0	43	2	30	0	0	159	9	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	1.57	170	None			None	S	•	None		-	None	
Storage Length	-	-		-	-	0	-	-	-	-	-		
Veh in Median Storage,	# -	-	12.1	-	0	- 11	U	0		10.0	0	11.00	
Grade, %	-	0	-	-	0	-	-	0	-	-	0		
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	0	0	74	0	47	2	33	0	0	173	10	
Major/Minor	a nan	-	1.965	Vinor1	SET		Major1		1	hajor2	100	LATS T	100
Conflicting Flow All				215	220	33	183	0	-	-		0	
Stage 1				37	37				•	- X -		•	
Stage 2				178	183			•	-	-		-	
Critical Hdwy			S. 18	6.42	6.52	6.22	4.12	112		•	1		
Critical Hdwy Stg 1				5.42	5.52	-	•		-	-	•	-	
Critical Hdwy Stg 2				5.42	5.52	•	-		01 V.+(•			
Follow-up Hdwy					4.018	3.318			-			1576	
Pot Cap-1 Maneuver				773	678	1041	1392		0	0			
Stage 1				985	864		3	<u>ت</u>	0	0	-		
Stage 2				853	748	•			0	0	•		
Platoon blocked, %							1005	•					
Nov Cap-1 Maneuver				772	0	1041	1392	1.5.5				100	
Nov Cap-2 Maneuver				772	0				-			-	
Stage 1				984	0		1.1						
Stage 2				853	0			·•)					
			-	18/175			NB	-	1.16	SB	-		
Approach	-		-	WB 9.6	C min		0.5			0	-	-	
ICM Control Delay, s				9.0 A			0.0			U			10000
HCM LOS				A			1.103		Carl-				
Minor Lane/Major Mvmt		NBL	NBT	VBLn1	VBL n2	SBT	SBR		-	A MAR	-	100	X 2 HALEK
Capacity (veh/h)	-	1392	-	772	1041	-	-	-		1.5		1025	1 (T state)
HCM Lane V/C Ratio		0.002		0.096	0.045	-	2 2						
HCM Control Delay (s)		7.6	0	10.2	8.6						1.27		19.22
HCM Lane LOS		7.0 A	A	B	0.0 A								
HCM 95th %tile Q(veh)		0	-	0.3	0.1						1.1		tel y r
TOW SOUL WINE O(ALL)		0		0.5	0.1		100					a secol	

Construction Year PM 8:40 am 05/25/2023 Construction Year PM

Synchro 11 Report Page 2

Intersection				2	a second		1000	and the	-	1.0		
Int Delay, s/veh	3.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	*			_		Þ			÷.	
Traffic Vol, veh/h	10	2	1	0	0	0	0	21	52	133	96	0
Future Vol. veh/h	10	2	1	0	0	0	0	21	52	133	96	0
Conflicting Peds, #/hr	0	Ó	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized		515	None	61 J	1725	None	1	-	None	1000		None
Storage Length			0		-	-	-	-	-	-	-	-
Veh in Median Storage	e. # -	0	-	-		1.1	•	0	•		0	
Grade, %	-	0	_	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	11	2	1	0	0	0	0	23	57	145	104	0
the second se												
Major/Minor	Minor2						Major1		event	Viajor2		
Conflicting Flow All	446	474	104				-	0	0	80	0	0
Stage 1	394	394	100				-				-	- 55
Stage 2	52	80	-						-			-
Critical Hdwy	6.42	6.52	6.22				1.002			4.12		N. 14
Critical Hdwy Stg 1	5.42	5.52										-
Critical Hdwy Stg 2	5.42	5.52									•	- U
Follow-up Hdwy	3.518	4.018	3.318				-		-	2.218		-
Pot Cap-1 Maneuver	570	489	951				0		-	1518	11.0	0
Stage 1	681	605					0					0
Stage 2	970	828					0	•				0
Platoon blocked, %												
Mov Cap-1 Maneuver	512	0	951				1			1518	1.14	-
Mov Cap-2 Maneuver	512	0					-	-	-		~~	
		-										

Stage 1	681	0								
Stage 2	872	0			•	.		÷		
								- But		
Approach	EB	79 R.S	Na	julie I	Contraction of the	SB	12	-	No. 1	
HCM Control Delay, s	11.9		0	1.34	2.48	4.4				
HCM LOS	В									

Minor Lane/Major Mvmt	NBT	NBR	Bint	EBLn2	SBL	SBT
Capacity (veh/h)	-	-	512	951	1518	-
HCM Lane V/C Ratio	-	-	0.025	0.001	0.095	-
HCM Control Delay (s)		1	12.2	8.8	7.6	Ð
HCM Lane LOS	-		В	Α	A	Α
HCM 95th %tile Q(veh)	ENT 4	11	0.1	0	0.3	No.

Construction Year PM 8:40 am 05/25/2023 Construction Year PM

Synchro 11 Report Page 3

Intersection		
Intersection Delay, s/veh	9.9	
Intersection LOS	A	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	A REAL PROPERTY OF	đÞ.			412			4			\$	
Traffic Vol, veh/h	14	37	42	12	81	10	125	37	15	134	74	59
Future Vol, veh/h	14	37	42	12	81	10	125	37	15	134	74	59
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	15	40	46	13	88	11	136	40	16	146	80	64
Number of Lanes	0	2	0	0	2	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB	10 m - 10	1
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2		1997	2			1			1		100
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			2		
HCM Control Delay	8.9			9.2			9.8			10.7		
HCM LOS	Α			Α			Α			В		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1
Vol Left, %	71%	43%	0%	23%	0%	50%
Voi Thru, %	21%	57%	31%	77%	80%	28%
Vol Right, %	8%	0%	69%	0%	20%	22%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	177	33	61	53	51	267
LT Vol	125	14	0	12	0	134
Through Vol	37	19	19	41	41	74
RT Vol	15	0	42	0	10	59
Lane Flow Rate	192	35	66	57	55	290
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.264	0.059	0.098	0.094	0.086	0.38
Departure Headway (Hd)	4.943	6.05	5.339	5.926	5.669	4.711
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	721	586	664	599	626	760
Service Time	3.01	3.843	3.131	3.718	3.461	2.769
HCM Lane V/C Ratio	0.266	0.06	0.099	0.095	0.088	0.382
HCM Control Delay	9.8	9.2	8.7	9.3	9	10.7
HCM Lane LOS	A	A	Α	Á	Α	B
HCM 95th-tile Q	1.1	0.2	0.3	0.3	0.3	1.8

Construction Year + Proj AM 8:40 am 05/25/2023 Construction Year + Proj AM

Synchro 11 Report Page 1

HCM 2010 TWSC 2: Drew Rd & I-8 WB Ramps

Intersection	21				1,178	TUR		100	20-20-1 1	17	211		and the second	
nt Delay, s/veh	5.4													_
Novement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
ane Configurations					र्स	1		र्स			1			
Traffic Vol, veh/h	0	0	0	81	0	113	2	45	0	0	91	4	195	
Future Vol, veh/h	0	0	0	81	0	113	2	45	0	0	91	4		
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0		
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free		
RT Channelized			None		- 11	None		-	None		n ie	None		
Storage Length	-	-	-	-	-	0	-	•	-	-	-	-		
Veh in Median Storage,	# -	•			0	•	100	0	•		0			
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-		
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92		
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2		
Mvmt Flow	0	0	0	88	0	123	2	49	0	0	99	4		
Major/Minor	19	22002	1	Minor1	2		Major1		4	Major2				NEW PS
Conflicting Flow All				154	156	49	103	0	•		-	0		
Stage 1				53	53		1		e 15 •					
Stage 2				101	103			:•)	-	(*)		1.0		
Critical Hdwy				6.42	6.52	6.22	4.12							
Critical Hdwy Stg 1				5.42	5.52		÷		-	-				
Critical Hdwy Stg 2				5.42	5.52		1.0	-		-				
Follow-up Hdwy				3.518	4.018	3.318	2.218	-	-	-		2.5		
Pot Cap-1 Maneuver				838	736	1020	1489		0	0		1.1		
Stage 1				970	851				0	0	12			
Stage 2				923	810	1			0	0	/#	-		
Platoon blocked, %												6 %		
Nov Cap-1 Maneuver				837	0	1020	1489				26			
Nov Cap-2 Maneuver				837	0							2		
Stage 1				969	0				1		1.124			
Stage 2				923	0									
Giago z								192						12
Approach	201	1044		WB	-	100	NB		100	SB		125		
HCM Control Delay, s				9.3		100	0.3	1	1	0	1.25			
HCM LOS				A										
				251		208	1							
Minor Lane/Major Mvmt		NBL	NBTV	VBLn1	NBLn2	SBT	SBR	51	1845	1.1-				
Capacity (veh/h)		1489	-	837	1020	and the second			1.64	1	1	1.1	C. Profil	DATE
CM Lane V/C Ratio		0.001	-	0.105	0.12									
ICM Control Delay (s)		7.4	0	9.8	9	141.2						500		
ICM Lane LOS		A	A	A	A									
ION LONG LOO		Ô	11	0.4	0.4									

Construction Year + Proj AM 8:40 am 05/25/2023 Construction Year + Proj AM

Synchro 11 Report Page 2

Intersection		Sin 1	1.78			100	1946	1	Sec. 1	ALC: N	1112			
nt Delay, s/veh	2.6													
Vovement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	ISSNE WOLLS FILES	
ane Configurations		र्स	7					ĥ			ર્સ			
Traffic Vol, veh/h	11	1	1	0	0	0	0	39	22	67	106	0		
Future Vol, veh/h	11	1	1	0	0	0	0	39	22	67	106	0		
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0		
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free		
RT Channelized		197	None			None	1.1	1	None	-	- 74	None		
Storage Length	-	-	0	•	-	-	-	-	-	-	-	-		
Veh in Median Storage	.# -	0			-	101-	-	0		ALC: N	0	- () -		
Grade, %		0	-	-	0	-	-	0	-	-	0	-		
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92		
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2		
Mvmt Flow	12	1	1	0	0	0	0	42	24	73	115	0		
										1.2.0				
	Minor2		144	0.012	1.164		Major1			Major2	0			
Conflicting Flow All	315	327	115				-	0	0	66	0	0		
Stage 1	261	261												
Stage 2	54	66	-				5	5	-		2			
Critical Hdwy	6.42	6.52	6.22				35.5	•	-	4.12				
Critical Hdwy Stg 1	5.42	5.52	-				*	•	-	8				
Critical Hdwy Stg 2	5.42	5.52					1.4					100 E		
Follow-up Hdwy	3.518	4.018	3.318				•	5	-	2.218	3	-		
Pot Cap-1 Maneuver	678	591	937				0	1.5		1536	1	0		
Stage 1	783	692	-				0		-		:-	0		
Stage 2	969	840					0		61 ×	1.00		0		
Platoon blocked, %														
Mov Cap-1 Maneuver	643	0	937					•		1536				
Mov Cap-2 Maneuver	643	0						4	-					
Stage 1	783	0						-						
Stage 2	920	0								270	-	۲		
Approach	EB			1		1245	NB		1	SB				
HCM Control Delay, s	10.6						0		1.1	2.9				
HCM LOS	В													
						0.51	007			-	- total	_	CONTRACTOR OF THE OWNER	1.00
Minor Lane/Major Mvm	N	NBT	NBR	EBLn1		SBL	SBT	110		-				-
Capacity (veh/h)			-	643	937	1536	1.9			100				
HCM Lane V/C Ratio					0.001	0.047	-							
HCM Control Delay (s)		1	•	10.7	8.8	7.5	0							
HCM Lane LOS				В	Α	Α	Α							
HCM 95th %tile Q(veh)	in a		- 11 C	0.1	0	0.1								

Construction Year + Proj AM 8:40 am 05/25/2023 Construction Year + Proj AM

Synchro 11 Report Page 3

Intersection		
Intersection Delay, s/veh	9.9	
Intersection LOS	Α	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		đ þ			412			4			4	
Traffic Vol, veh/h	21	133	139	26	36	9	26	33	15	113	50	63
Future Vol, veh/h	21	133	139	26	36	9	26	33	15	113	50	63
Peak Hour Factor	0.92	0.92	0.92	0.92	0:92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	23	145	151	28	39	10	28	36	16	123	54	68
Number of Lanes	0	2	0	0	2	0	0	1	0	0	1	0
Approach	EB		25/11	WB	Succession of	000	NB	1 1 m	251	SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			2			2		
HCM Control Delay	9.8			9			8.9			10.5		
HCM LOS	A			Α			Α			В		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1
Vol Left. %	35%	24%	0%	59%	0%	50%
Vol Thru, %	45%	76%	32%	41%	67%	22%
Vol Right, %	20%	0%	68%	0%	33%	28%
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	74	88	206	44	27	226
LT Vol	26	21	0	26	0	113
Through Vol	33	67	67	18	18	50
RT Vol	15	0	139	0	9	63
Lane Flow Rate	80	95	223	48	29	246
Geometry Grp	2	7	7	7	7	2
Degree of Util (X)	0.115	0.147	0.308	0.08	0.045	0.335
Departure Headway (Hd)	5.16	5.56	4.961	6.001	5.466	4.916
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes
Сар	688	641	719	592	648	727
Service Time	3.245	3.33	2.731	3.792	3.256	2.98
HCM Lane V/C Ratio	0.116	0.148	0.31	0.081	0.045	0.338
HCM Control Delay	8.9	9.3	10	9.3	8.5	10.5
HCM Lane LOS	A	Α	Α	A	A	В
HCM 95th-tile Q	0.4	0.5	1.3	0.3	0.1	1.5

Construction Year + Proj PM 8:40 am 05/25/2023 Construction Year + Proj PM

Synchro 11 Report Page 1

HCM 2010 TWSC 2: Drew Rd & I-8 WB Ramps

Intersection				4.	ित्या	100	ing in		100				4-1-1-1		
int Delay, s/veh	3.2														
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	132 1	Saint	
Lane Configurations					ب اً	7		ર્સ			4				
Traffic Vol, veh/h	0	0	0	68	0	53	2	31	0	0	203	14			
Future Vol, veh/h	0	0	0	68	0	53	2	31	0	0	203	14			
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0			
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free			
RT Channelized	1.1	01.04	None		-	None	1.20-	12	None		-	None			
Storage Length	-	-	-	-	-	0	-	-	-	•	-	-			
Veh in Median Storage,	# -	•		2.5	0			0	-	-	0	-			
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-			
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92			
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2			
Mymt Flow	0	0	0	74	0	58	2	34	0	0	221	15			
Major/Minor	1		1	Vinor1		370	Major1	- C.		Major2		lare a	493	1.00	
Conflicting Flow All				267	274	34	236	0	-	-	-	0			
Stage 1				38	38					· · · ·		100			
Stage 2				229	236	۹		-				1.5			
Critical Hdwy			100	6.42	6.52	6.22	4.12			•		2.10			
Critical Hdwy Stg 1				5.42	5.52				-	-		146			
Critical Hdwy Stg 2				5.42	5.52	10.			- 10	- 112					
Fallow-up Hdwy				3.518	4.018	3.318	2.218		-	-		•			
Pot Cap-1 Maneuver				722	633	1039	1331	•	0	0	1	1			
Stage 1				984	863		-		0	0	82	200			
Stage 2				809	710	-	100		0	0					
Platoon blocked, %															
Mov Cap-1 Maneuver				721	0	1039	1331	-		-	- 18				
Mov Cap-2 Maneuver				721	0	-	•			-		-			
Stage 1				982	0	10.00		14	•	1.4		- 11 -			
Stage 2				809	0		•	300		(*)					
the second															
Approach	SF ()	253		WB			NB		a state	SB				100	-
HCM Control Delay, s	1			9.8		0.20	0.5	5 - The sec		0					
HCM LOS				A											
6-71000.2%		1-1		M D	10						, n. c."	6-1 L.			
Minor Lane/Major Mvmt		NBL	NBTV	VBLn1	NBLn2	SBT	SBR				15				ή IL
Capacity (veh/h)		1331		721	1039		1 .	1							
HCM Lane V/C Ratio		0.002		0.103	0.055	-									
HCM Control Delay (s)		7.7	0	10.6	8.7	1. 4	-								
HCM Lane LOS		A	A	В	A										
HCM 95th %tile Q(veh)		0	-	0.3	0.2										

Construction Year + Proj PM 8:40 am 05/25/2023 Construction Year + Proj PM

Synchro 11 Report Page 2

HCM 2010 TWSC 3: I-8 EB Ramps & Drew Rd

Intersection		distant.	B.J.		Sec.	Chine Li				201		No.
Int Delay, s/veh	4.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		स्	1					Þ			र्भ	
Traffic Vol, veh/h	11	2	1	0	0	0	0	21	52	177	96	0
Future Vol. veh/h	11	2	1	0	0	0	0	21	52	177	96	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	110		None	•		None	200	- I -	None	•	•	None
Storage Length	-	-	0		-	-	-	-	-	-	-	
Veh in Median Storage	,# -	0	- 1	10.	-	- 11		0	•	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	12	2	1	0	0	0	0	23	57	192	104	0
Major/Minor 1	Vinor2		12.52	100	2. 2.8		Major1		AREA)	Major2		5.4H
Conflicting Flow All	540	568	104				-	0	0	80	0	0
Stage 1	488	488					-		626-		19	
Stage 2	52	80					-		-			
Critical Hdwy	6.42	6.52	6.22				1.4	•	-	4.12		
Critical Hdwy Stg 1	5.42	5.52	-				-	- 2		3	-	
Critical Hdwy Stg 2	5.42	5.52	-						1.14	-	-	-
Follow-up Hdwy	3.518	4.018	3.318				-		-	2.218	•	
Pot Cap-1 Maneuver	503	432	951				0		•	1518		0
Stage 1	617	550	-				0				-	0
Stage 2	970	828	-				0	1. 3	- 9		•	0
Platoon blocked, %								2	540			
Mov Cap-1 Maneuver	436	0	951							1518		1
Mov Cap-2 Maneuver	436	0								•	•	
Stage 1	617	0	-	1.11				1.1				•
Stage 2	840	0	-				8	4	-			0.
2 - Servinus				(Å.)						and the	14 C	
Approach	EB		Sec. 1	No. State		Sec. 1	NB			SB		
HCM Control Delay, s	13.2		1.1.1	- 12	110	100	0		DR.	5	- 18	
HCM LOS	В											
TANK AND	-		11									
Minor Lane/Major Mvm	1	NBT	NBR	EBLn1	EBLn2	SBL	SBT		12 2	122.1	(Contraction)	
Capacity (veh/h)				436	951	1518		t de la	2.0		1	100
HCM Lane V/C Ratio				0.032		0.127	-					
			10.		8.8		0					
			-	B	A	A	A					
				-	0	0.4	191.04					
HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)			99.	13.5	8.8 A	7.7 A	0 A	(5 * 9 (5*5)				250 250

Construction Year + Proj PM 8:40 am 05/25/2023 Construction Year + Proj PM

Synchro 11 Report Page 3

RECON

An Employee-Owned Company

June 7, 2023

Mr. Ramon Gonzalez Senior Project Coordinator Z Global 750 W. Main Street El Centro, CA 92243

Reference: Noise Analysis for the Alba Peaker BESS Project, Seeley, California (RECON Number 10324)

Dear Mr. Gonzalez:

The purpose of this report is to assess potential noise impacts from construction and operation of the Alba Peaker Battery Energy Storage Site (BESS) Project (project). Noise impacts were evaluated using standards established by Imperial County (County).

1.0 Project Description

The project site is located within the unincorporated community of Seeley in Imperial County, approximately 7.5 miles west of the city of El Centro and approximately one mile north of Interstate 8 (Figure 1). The project site is comprised of Assessor Parcel Number 051-420-042, totaling approximately 7.1 acres. The project is located to the east of Drew Road, south of West Evan Hewes Highway, and north of the Seeley Drain (Figure 2). Land uses surrounding the project site consist of active agricultural uses to the west and south, disturbed land and railroad tracks to the north, and an agricultural facility and fields to the east.

The project would construct and operate a 100-megawatt BESS facility that would connect to an existing 92-kilovolt gen-tie line (Figure 3). The BESS facility would include battery containers and storage sites, a control room, and associated facilities surrounded by fencing. The BESS would store energy generation from the electrical grid, and optimally discharge that energy back into the grid as firm, reliable generation and/or grid services.

2.0 Environmental Setting

2.1 Noise Terminology

Sound levels are described in units called the decibel (dB). Decibels are measured on a logarithmic scale that quantifies sound intensity in a manner similar to the Richter scale used for earthquake magnitudes. Thus, a doubling of the energy of a noise source, such as doubling of traffic volume, would increase the noise level by 3 dB; a halving of the energy would result in a 3 dB decrease. Additionally, in technical terms, sound levels are described as either a "sound power level" or a "sound pressure level," which while commonly confused, are two distinct characteristics of sound.

Both share the same unit of measure, the dB. However, sound power, expressed as L_{pw} , is the energy converted into sound by the source. The L_{pw} is used to estimate how far a noise will travel and to predict the sound levels at various distances from the source. As sound energy travels through the air, it creates a sound wave that exerts pressure on receivers such as an eardrum or microphone and is the sound pressure level. Noise measurement instruments only measure sound pressure, and noise level limits used in standards are generally sound pressure levels.

3111 Carnino del Rio North, Suite 600, San Diego, CA 92108-5726 | 619.308.9333 | reconenvironmental.com SAN DIEGO | OAKLAND | TUCSON EEC ORIGINAL PKG Mr. Ramon Gonzalez Page 2 June 7, 2023

The human ear is not equally sensitive to all frequencies within the sound spectrum. To accommodate this phenomenon, the A-scale, which approximates the frequency response of the average young ear when listening to most ordinary everyday sounds, was devised. When people make relative judgments of the loudness or annoyance of a sound, their judgments correlate well with the A-scale sound levels of those sounds. Therefore, the "A-weighted" noise scale is used for measurements and standards involving the human perception of noise. Noise levels using A-weighted measurements are designated with the notation dB(A).

The impact of noise is not a function of loudness alone. The time of day when noise occurs and the duration of the noise are also important. In addition, most noise that lasts for more than a few seconds is variable in its intensity. Consequently, a variety of noise descriptors has been developed. The noise descriptors used for this study are the one-hour equivalent noise level (L_{eq}) and the maximum equivalent noise level (L_{max}). The L_{max} is the maximum generated noise level while the L_{eq} is the average noise level over a specified period of time, typically one-hour. Sound from a small, localized source (approximating a "point" source) radiates uniformly outward as it travels away from the source in a spherical pattern, known as geometric spreading. The sound level decreases or drops off at a rate of 6 dB(A) for each doubling of the distance.

The propagation of noise is also affected by the intervening ground, known as ground absorption. A hard site (such as parking lots or smooth bodies of water) receives no additional ground attenuation, and the changes in noise levels with distance (drop-off rate) are simply the geometric spreading of the source. A soft site (such as soft dirt, grass, or scattered bushes and trees) receives an additional ground attenuation value of 1.5 dB(A) per doubling of distance. Thus, a point source over a soft site would attenuate at 7.5 dB(A) per doubling of distance.

Human perception of noise has no simple correlation with acoustical energy. A change in noise levels is generally perceived as follows: 3 dB(A) barely perceptible, 5 dB(A) readily perceptible, and 10 dB(A) perceived as a doubling or halving of noise (California Department of Transportation 2013).

2.2 Applicable Standards

The project site is designated as an Urban Area land use in the Imperial County General Plan. The Urban Area designation includes areas surrounding the following seven incorporated cities: Brawley, El Centro, Westmorland, Holtville, Calipatria, Imperial, and Calexico. It is anticipated that these areas will eventually be annexed or incorporated. The Seeley Urban Area, located west of the city of El Centro and south of the Naval Air Facility, is bounded on the west by the New River, on the north by El Centro Street, on the east by Bennett Road, and on the south by I-8. Noise generated by the project was evaluated using the standards established by the County.

2.2.1 Construction

County General Plan Noise Element Section IV.C.3 addresses noise generated by construction activities. It states:

- Construction noise, from a single piece of equipment or a combination of equipment, shall not exceed 75 dB L_{eq}, when averaged over an eight (8) hour period, and measured at the nearest sensitive receptor. This standard assumes a construction period, relative to an individual sensitive receptor of days or weeks. In cases of extended length construction times, the standard may be tightened so as not to exceed 75 dB L_{eq} when averaged over a one (1) hour period.
- Construction equipment operation shall be limited to the hours of 7 a.m. to 7 p.m., Monday through Friday, and 9 a.m. to 5 p.m. Saturday. No commercial construction operations are permitted on Sunday or holidays. In cases of a person constructing or modifying a residence for himself/herself, and if the work is not being performed as a business, construction equipment operations may be performed on

Mr. Ramon Gonzalez Page 3 June 7, 2023

Sundays and holidays between the hours of 9 a.m. and 5 p.m. Such non-commercial construction activities may be further restricted where disturbing, excessive, or offensive noise causes discomfort or annoyance to reasonable persons of normal sensitivity residing in an area.

Based on these standards, the applicable limit for project construction activities is 75 dB(A) L_{eq} at the nearest sensitive receptor.

2.2.2 Operation

The County General Plan Noise Element (Imperial County 2015) identifies property line noise level limits that apply to noise generation from one property to an adjacent property (excluding construction noise). As stated in the Noise Element, the property line noise level limits imply the existence of a sensitive receptor on the adjacent, or receiving, property. In the absence of a sensitive receptor, an exception or variance to the standards may be appropriate.

County Code of Ordinances Title 9, Division 7: Noise Abatement and Control, specifies noise level limits. Noise level limits are summarized in Table 1. Noise level limits do not apply to construction equipment.

Table 1 Imperial County Property Line Noise Limits									
Zone	Time	One-Hour Average Sound Level [dB(A) Leg]							
	7:00 a.m. to 10:00 p.m.	50							
Low-Density Residential Zones	10:00 p.m. to 7:00 a.m.	45							
	7:00 a.m. to 10:00 p.m.	55							
Medium to High-Density Residential Zones	10:00 p.m. to 7:00 a.m.	50							
	7:00 a.m. to 10:00 p.m.	60							
Commercial Zones	10:00 p.m. to 7:00 a.m.	55							
Manufacturing/Light Industrial/ Industrial Park Zones including agriculture	(anytime)	70							
General Industrial Zones	(anytime)	75							
SOURCE: Imperial County Noise Abatement and Con	ntrol Ordinance, Tit. 9, Div. 7, § 90)702.00(A).							

The project site and properties to the north, south, east, and west are zoned M-2 (Medium Industrial), and the property south of the Seeley Drain is zoned R-1 (Low Density Residential). It should be noted that the R-1 designated parcel consists mostly of active agricultural land with the single-family residence located approximately 2,500 feet from the project site. Other residentially zoned parcels (R-1 and R-4) are located approximately 500 feet north of the project site, north of the railroad tracks and West Evan Hewes Highway.

Mr. Ramon Gonzalez Page 4 June 7, 2023

3.0 Existing Conditions

Existing noise levels at the project site were measured on March 23, 2023, using one Larson-Davis LxT Sound Expert Sound Level Meter, serial number 3896. The following parameters were used:

Filter:	A-weighted
Response:	Slow
Time History Period:	5 seconds

The meter was calibrated before and after the measurements. Noise measurements were taken to obtain typical ambient noise levels at the project site and in the vicinity. The weather was mild and partly cloudy with a slight breeze. The measurement was located near the center of the project site. The meter was set five feet above the ground level. Noise levels were typical of a rural agricultural environment. The main source of noise was agricultural equipment to the west. Noise levels were measured for approximately one hour. The average measured noise level was 50.1 dB(A) Leq. The measurement location is shown on Figure 4, and detailed data is presented in Attachment 1.

4.0 Methodology

Noise level predictions and contour mapping for construction and on-site noise sources were developed using noise modeling software, SoundPlan Essential, version 4.1 (Navcon Engineering 2018). SoundPLAN calculates noise propagation based on the International Organization for Standardization method (ISO 9613-2 – Acoustics, Attenuation of Sound during Propagation Outdoors). The model calculates noise levels at selected receiver locations using input parameter estimates such as total noise generated by each noise source; distances between sources, barriers, and receivers; and shielding provided by intervening terrain, barriers, and structures. The model outputs can be developed as noise level contour maps or noise levels at specific receivers. In all cases, receivers were modeled at five feet above ground elevation, which represents the average height of the human ear.

4.1 Construction

Construction activities associated with the project would include grading and installation activity for the placement of the BESS storage containers and inverters. Project construction noise would be generated by diesel engine-driven construction equipment. Noise impacts from construction are a function of the noise generated by equipment, the location and sensitivity of nearby land uses, and the timing and duration of the noise-generating activities. Table 2 presents a list of noise generates the reported noise level during typical, standard equipment operation. The noise levels and duty cycles summarized in Table 2 are based on measurements and studies conducted by Federal Highway Administration and the Federal Transit Authority.

Mr. Ramon Gonzalez Page 5 June 7, 2023

	Table 2	
Typical Construct	ction Equipment Noise Levels Noise Level at 50 Feet	
Equipment	[dB(A) Leg]	Typical Duty Cycle
Auger Drill Rig	85	20%
Backhoe	80	40%
Blasting	94	1%
Chain Saw	85	20%
Clam Shovel	93	20%
Compactor (ground)	80	20%
	80	40%
Compressor (air) Concrete Mixer Truck	85	40%
Concrete Pump	82	20%
Concrete Pump Concrete Saw	90	20%
	85	20%
Crane (mobile or stationary)	85	40%
Dump Truck	84	40%
	85	40%
Excavator Front End Loader	80	40%
Generator (25 kilovolt amps or less)	70	50%
	82	50%
Generator (more than 25 kilovolt amps)	85	40%
Grader	90	10%
Hydra Break Ram	95	20%
Impact Pile Driver (diesel or drop)	84	20%
In situ Soil Sampling Rig	85	20%
Jackhammer	90	20%
Mounted Impact Hammer (hoe ram)	85	50%
Paver	85	50%
Pneumatic Tools	77	50%
Pumps	85	20%
Rock Drill	74	40%
Roller	85	40%
Scraper		40%
Tractor	84	40%
Vacuum Excavator (vac-truck)	85	20%
Vibratory Concrete Mixer	80	20%
Vibratory Pile Driver SOURCE: Federal Highway Administration 20	95	

The loudest construction activities would be those associated with grading. Construction noise levels were calculated assuming the simultaneous use of the following three pieces of construction equipment: a grader, a loader, and a water truck. Water truck noise levels were assumed to be equivalent to a dump truck. Although more construction equipment would be present on-site, not all would be used at the same time. Simultaneous use of this equipment would generate an average hourly noise level of 84.3 dB(A) L_{eq} at 50 feet, which is equivalent to a sound power level of 115.9 dB(A) L_{pw}. This noise level was modeled as an area source distributed over the footprint of the development area.

Mr. Ramon Gonzalez Page 6 June 7, 2023

4.2 Operation

Once construction is complete, the primary noise sources would be the inverters and the BESS containers. The project would include 20 Sungrow Model SC5000UD-MV-US inverters surrounded by 144 Sungrow Model ST2752UX-US BESS containers, each consisting of 48 battery units. It was assumed that noise levels generated by the inverters would be similar to Sungrow Model SG3600-UD-MV, which generate a sound power level of 92 dB(A) L_{pw} (TRC Companies, Inc. 2022). Manufacturer specifications for the BESS containers indicate that three facades of the containers generate a noise level of 54 dB(A) L_{eq} at five meters and one façade generates a noise level of 53 dB(A) L_{eq} at five meters (Assured Environmental 2022). The louder noise level, which equates to a sound power level of 76 dB(A) L_{pw} , was modeled. All inverters and BESS containers were modeled with a 100 percent usage factor.

5.0 Noise Impact Analysis

5.1 Construction

Noise associated with project construction would potentially result in short-term impacts to surrounding properties. As discussed in Section 1.0 above, land uses surrounding the project site consist of active agricultural uses to the west and south, disturbed land and railroad tracks to the north, and an agricultural facility and fields to the east. The nearest sensitive receptors are the residential uses located approximately 500 feet north of the project site, north of the railroad tracks and West Evan Hewes Highway. Construction noise levels were calculated based on the simultaneously use of a grader, loader, and water truck.

Noise levels were modeled at a series of 10 receivers located at the adjacent properties and the nearest residential uses. The results are summarized in Table 3. Modeled receiver locations and construction noise contours are shown on Figure 5. SoundPLAN data is contained in Attachment 2.

	Table 3 Construction Noise Levels	
Receiver	Zoning	Construction Noise Level [dB(A) Lea]
1	M-2 (Medium Industrial)	64
2	M-2 (Medium Industrial)	68
3	M-2 (Medium Industrial)	67
4	M-2 (Medium Industrial)	67
5	M-2 (Medium Industrial)	68
6	M-2 (Medium Industrial)	69
7	M-2 (Medium Industrial)	66
8	M-2 (Medium Industrial)	62
9	M-2 (Medium Industrial)	61
10	R-1 (Low Density Residential) R-4 (High Density Residential and Mobile Park/Subdivision)	54
$dB(A) L_{eq} =$	A-weighted decibels equivalent noise level.	

As shown in Table 3, construction noise levels are not anticipated to exceed the County's construction noise level limit of 75 dB(A) L_{eq} at the adjacent properties. Construction activities would only occur during the times allowable by the County Municipal Codes (7 a.m. to 7 p.m., Monday through Friday, and 9 a.m. to 5 p.m. Saturday). No construction activities that generate impulsive noise levels would be required. Although the existing nearby residences would be exposed to construction noise levels that could be heard above ambient conditions, the

Mr. Ramon Gonzalez Page 7 June 7, 2023

exposure would be temporary. Therefore, project construction would not exceed noise level limits established in the County's Municipal Code and would only occur during the daytime hours, and temporary increases in noise levels during construction would be less than significant.

5.2 Operation

The primary noise sources on-site would be the inverters and the BESS containers. Using the on-site noise source parameters discussed in Section 4.2, noise levels were modeled at a series of 10 receivers located at the adjacent properties and the nearest residential uses. Modeled receivers and operational noise contours are shown in Figure 6. Modeled data is included in Attachment 3. Future projected noise levels are summarized in Table 4.

	Table 4 Operational Noise Levels				
Receiver	Zoning	Applicable Limit Daytime/Nighttime [dB(A) Leg]	Operational Noise Lev [dB(A) Leg]		
1	M-2 (Medium Industrial)	70/70	50		
2	M-2 (Medium Industrial)	70/70	58		
3	M-2 (Medium Industrial)	70/70	55		
4	M-2 (Medium Industrial)	70/70	52		
5	M-2 (Medium Industrial)	70/70	52		
6	M-2 (Medium Industrial)	70/70	54		
7	M-2 (Medium Industrial)	70/70	49		
8	M-2 (Medium Industrial)	70/70	47		
9	M-2 (Medium Industrial)	70/70	47		
10	R-1 (Low Density Residential) R-4 (High Density Residential and Mobile Park/Subdivision)	50/45 55/50	39		

As shown in Table 4, operational noise levels would not exceed the County's most restrictive noise level limits. Therefore, project operation would not result in noise levels that exceed City or County standards, and operational noise impacts would be less than significant.

6.0 Conclusions

Based on the preceding analysis, the project is not anticipated to generate construction or operational noise levels that exceed the applicable noise limits. Impacts associated with the project would be less than significant.

If you have any questions about the results of this analysis, please contact me at jfleming@reconenvironmental.com or (619) 308-9333 extension 177.

Sincerely,

Jessich Stemine Jessica Fleming

Jessica Fleming Noise Specialist

JLF:sh

Mr. Ramon Gonzalez Page 8 June 7, 2023

7.0 Certification

The following is a list of preparers, persons, and organizations involved with the noise assessment.

RECON Environmental, Inc.

Jessica Fleming, County-approved Noise Consultant Stacey Higgins, Senior Production Specialist Benjamin Arp, GIS Specialist

8.0 References Cited

Assured Environmental

2022 Aspley BESS: Noise & Vibration Impact Assessment. Prepared for ACEnergy Pty Ltd. Project ID: 13614. July 21, 2022.

California Department of Transportation

2013 Technical Noise Supplement. November.

Federal Highway Administration (FHWA)

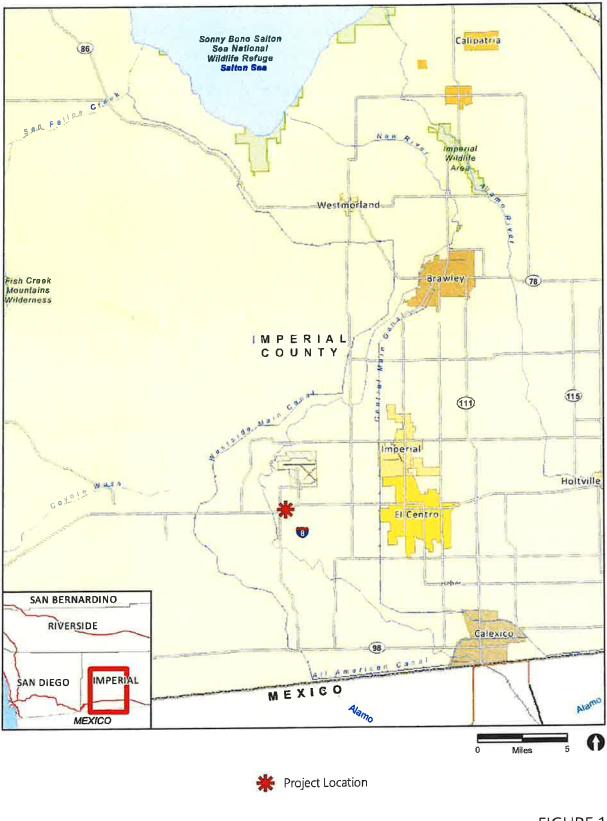
- 2006 Roadway Construction Noise Model User's Guide. FHWA-HEP-05-054, SOT-VNTSC-FHWA-05-01. Final Report. January.
- 2008 Roadway Construction Noise Mode, V1.1. Washington, DC.

Federal Transit Administration

2006 Transit Noise and Vibration Impact Assessment. Washington, DC. May.

Imperial, County of

2015 Imperial County General Plan Noise Element. Approved October 6.

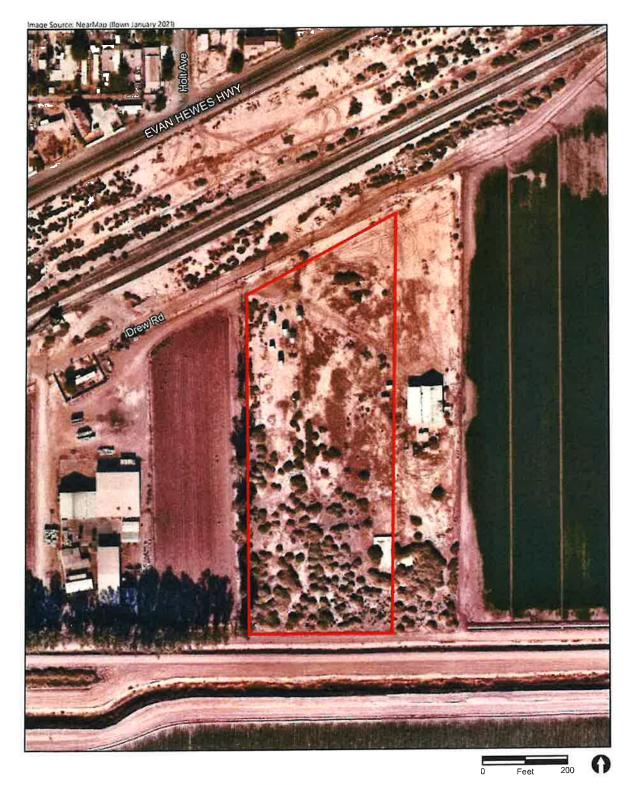

Navcon Engineering, Inc.

2018 SoundPLAN Essential version 4.1.

TRC Companies, Inc.

2022 Brookside Solar Project. Application for a Permit Pursuant to \$94-c of the New York State Executive Law for Construction of a Major Solar Electrical Generating Facility. Exhibit 7 Noise and Vibration. Matter No. 21-00917. Prepared for AES Clean Energy. February 2022.

RECON M:\/OB56\10324\cammon_gis\MXD\fig1.mxd 03/08/2023 bma FIGURE 1 Regional Location



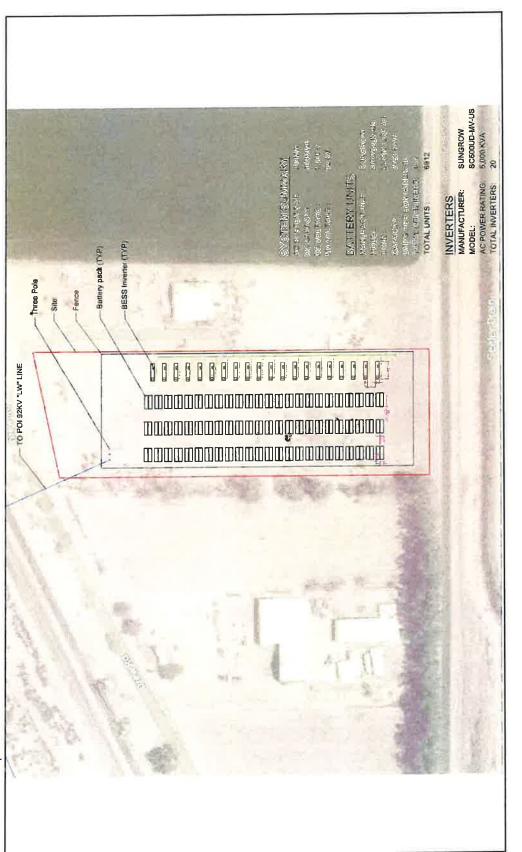
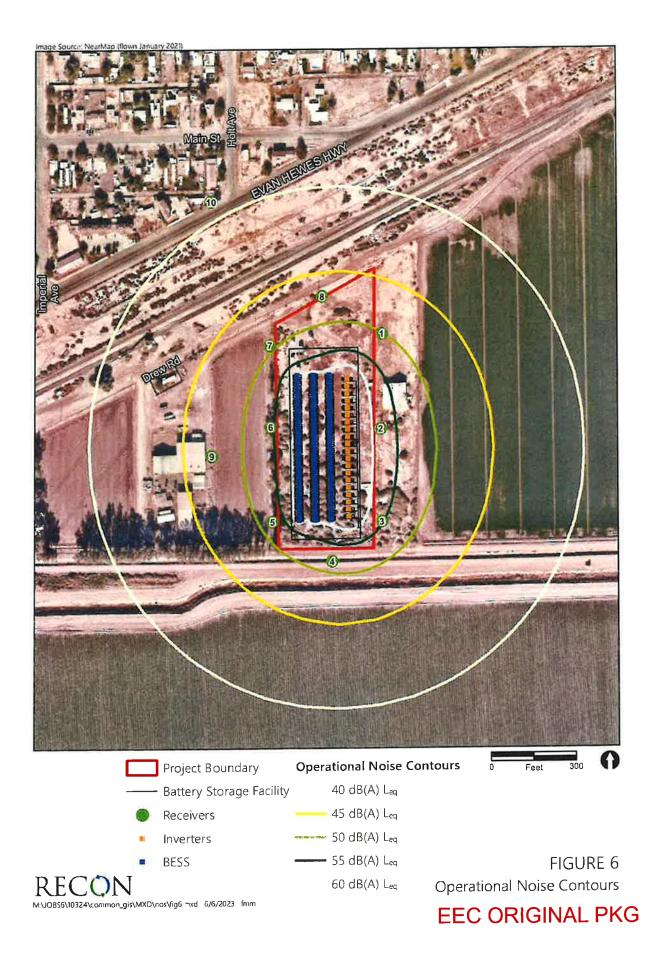

FIGURE 2 Project Location on Aerial Photograph

FIGURE 3 Site Plan

Map Source: ZGLOBAL



Project Boundary Noise Measurement Location

RECON M:J:0856\10324\con:mon_gis\MXD\nos\fig4.mxd 6/6/2023 [mm FIGURE 4 Noise Measurement Location

ATTACHMENTS

ATTACHMENT 1

Noise Measurement Data

10324 Alba Peaker Noise Measurement Summary

Some File Name on Mete LxT Data 216 s LxT_0003896-20230323 101754-LxT_Data 216 ldbm File Name on PC Serial Number 0003895 SoundTrack LxT@ Model Firmware Version User 2404 Location Job Description Nate Merer . Descripti 2023-03-23 10 17:54 Start 2023-03-23 11:21:25 01 03:31 8 Stop Duration Run Time 01 03 06 4 00:00:25 4 Pause Pre-Calibration 2023-03-23 10:15 56 Post-Calibration Calibration Deviation None 1.1 ľ A Weighting RMS Weight A Weighting Slow Peak Weight Detector Preamplifier PRMLitt Off Microphone Correction Integration Method Linear 144 7 dB Overload C 97.6 37.5 Z 102.6 JB A 100.6 37.8 Under Range Peak Under Range Umit Noise Floor 44 6 dB 35 4 dB 287 28,4 LAes LAE EA EA8 501 85.9 43 323 µPa⁷h 329 S22 µPa²h 1,648 mPa³h EA40 LApeak (max) LASmax 2023-03-23 10:18:22 2023-03-23 10 42:22 97 5 dB 68 5 d9 LASmin 2023-03-23 10 30:52 412 d3 dB SEA 565 s 00 s 10 0 LAS > 60.0 dB (Exceedance Counts / Duration) LAS > 70.0 dB (Exceedance Counts / Duration) LApsak > 135.0 dB (Exceedance Counts / Duration) LApsak > 137.0 dB (Exceedance Counts / Duration) LApsak > 137.0 dB (Exceedance Counts / Duration) 00 ş 00 ş 0 0 0 00 s LCeq LAeq LCeq - LAeq LAleq LAeq LAleq - LAeq 738 d9 501 d3 237 d9 53 0 dB 50 1 dB Z 6 dB Z Time Stamp c A Time Stamp dB dB Time Stamp dB 738 50.1 Leg Ls(max) 68 5 2023/03/23 10:42:22 LS(min) 412 2023/03/23 10 30:52 97.5 2023/03/23 10:18 22 LPeak(mod) 0 Overload Count Overload Duration 00 \$ Dose Name OSHA-1 OSHA-Z 5 dB Exchange Rate Threshold 5 90 90 8 80 dB 90 dB 8 h Criterion Level Criterion Duration Dose % % Projected Dose TWA (Projected) d8 dB TWA (I) 413 413 dB Lep (t) LA5.00 53.9 di LA10.00 LA33 30 517 dB 48.4 dB 47.1 dB LA50.00 LA66.60 450 dB 44,3 dB LA90.00

EEC ORIGINAL PKG

ŝ

ATTACHMENT 2

SoundPLAN Data – Construction

		10324 Alba Peaker							
		SoundPLAN Data - Construction							
		Noise							
Source name	Reference	Level	Cwall	CI	CT				
		dB(A)	dB(A)	dB(A)	dB(A)				
Construction	Lw/unit	115.9	-	-	-				

Construction

10324 Alba Peaker SoundPLAN Data - Construction

		SoundPLAN Data - Cons	
	Coordinates		Noise
No.	х	Y	Level
	(meters)		dB(A)
1	623200.49	3628938.09	63.7
2	623198.91	3628835.69	68.1
3	623200.49	3628735.68	66.9
4	623146.52	3628692.82	66.6
5	623081.43	3628735.68	67.5
6	623079.84	3628838.08	68.5
7	623079.05	3628926.18	65.6
8	623135.41	3628978.57	61.9
9	623015.55	3628807.12	61.2
10	623014.75	3629080.96	54.1

Receivers

ATTACHMENT 3

SoundPLAN Data – Operation

10324 Alba Peaker SoundPLAN Data - Operation

Level Source name Reference Leq1 dB(A) BESS1 Lw/unit 76 BESS2 Lw/unit 76 BESS3 Lw/unit 76 BESS4 Lw/unit 76 **BESSS** Lw/unit 76 BESS6 76 Lw/unit BESS7 Lw/unit 76 BESS8 Lw/unit 76 BESS9 76 Lw/unit 76 BESS10 Lw/unit BESS11 76 Lw/unit BESS12 76 Lw/unit BESS13 Lw/unit 76 BESS14 Lw/unit 76 BESS15 Lw/unit 76 BESS16 Lw/unit 76 BESS17 Lw/unit 76 BESS18 Lw/unit 76 BESS19 Lw/unit 76 BESS20 Lw/unit 76 BESS21 Lw/unit 76 BESS22 Lw/unit 76 76 BESS23 Lw/unit BESS24 76 Lw/unit BESS25 76 Lw/unit BES526 76 Lw/unit 76 BESS27 Lw/unit BESS28 76 Lw/unit BESS29 76 Lw/unit 76 BESS30 Lw/unit 76 BESS31 Lw/unit 76 BESS32 Lw/unit BESS33 Lw/unit 76 BESS34 Lw/unit 76 BESS35 Lw/unit 76 BESS36 Lw/unit 76 BE\$\$37 Lw/unit 76 BESS38 Lw/unit 76 BESS39 Lw/unit 76 BESS40 76 Lw/unit BESS41 Lw/unit 76 BESS42 Lw/unit 76 76 BESS43 Lw/unit 76 BESS44 Lw/unit 76 BESS45 Lw/unit 76 BESS46 Lw/unit BESS47 76 Lw/unit BESS48 76 Lw/unit 76 BESS49 Lw/unit 76 BESS50 Lw/unit BESS51 Lw/unit 76 BESS52 Lw/unit 76 BE5553 Lw/unit 76 BESS54 Lw/unit 76 BESS55 Lw/unit 76 BESS56 Lw/unit 76 BESS57 Lw/unit 76 BESS58 76 Lw/unit 76 BESS59 Lw/unit 76 BESS60 Lw/unit BESS61 Lw/unit 76 BESS62 76 Łw/unit 76 BESS63 Lw/unit 76 BESS64 Lw/unit BESS65 Lw/unit 76 BESS66 Lw/unit 76 BESS67 Lw/unit 76 76 BE5568 Lw/unit 76 BESS69 Lw/unit 76 BESS70 Lw/unit

BESS71

Lw/unit

76

BESS72	Lw/unit	76
BESS73	Lw/unit	76
BESS74	Lw/unit	76
BESS75	Lw/unit	76
		76
BESS76	Lw/unit	-
BESS77	Lw/unit	76
BESS78	Lw/unit	76
BESS79	Lw/unit	76
BESS80	Lw/unit	76
BE5581	Lw/unit	76
BESS82	Lw/unit	76
BESS83	Lw/unit	76
BE5584	Lw/unit	76
		76
8E5585	Lw/unit	
BESS86	Lw/unit	76
BESS87	Lw/unit	76
BESSB8	Lw/unit	76
8ESS89	Lw/unit	76
BESS90	Lw/unit	76
BESS91	Lw/unit	76
BESS92	Lw/unit	76
	-	76
BESS93	Lw/unit	
BESS94	Lw/unit	76
BESS95	Lw/unit	76
BESS96	Lw/unit	76
BESS97	Lw/unit	76
BE5598	Lw/unit	76
865599	Lw/unit	76
BESS100	Lw/unit	76
BE55101	Lw/unit	76
		76
BE55102	Lw/unit	
BESS103	Lw/unit	76
BESS104	Lw/unit	76
BESS105	Lw/unit	76
BESS106	Lw/unit	76
BESS107	Lw/unit	76
BESS108	Lw/unit	75
BESS109	Lw/unit	76
BESS110	Lw/unit	76
BESS111	Lw/unit	76
BESS112	Lw/unit	76
BESS113	Lw/unit	76
BESS114	Lw/unit	76
BESS115	Lw/unit	76
BESS116	Lw/unit	76
BESS117	Lw/unit	75
BESS118	Lw/unit	76
BESS119	Lw/unit	76
BE5S120	Lw/unit	76
BESS121	Lw/unit	75
BESS122	Lw/unit	76
BESS123	Lw/unit	76
BESS124	Lw/unit	76
BESS125	Lw/unit	75
BESS126	Lw/unit	76
BESS127	Lw/unit	76
BESS128	Lw/unit	76
BESS129	Lw/unit	76
	Lw/unit	76
BESS130		
BESS137	Lw/unit	76
BESS132	Lw/unit	76
BESS133	Lw/unit	76
BESS134	Lw/unit	76
BESS135	Lw/unit	76
BESS136	Lw/unit	76
BESS137	Lw/unit	76
BE\$5138	Lw/unit	76
		76
BESS139	Lw/unit	
BESS140	Lw/unit	76
BESS141	Lw/unit	76
BESS142	Lw/unit	76
BESS143	Lw/unit	76
BESS144	Lw/unit	76

and the second second The second rest and rest of the · 王立二日、他也常好な」、日本二日正正三日 Bank and the fight of the second second 第一十五十五百五十二百五百百二十五百五十二五 ********************* そうらいないないないないないないないない 2222222222222222222222222222222 化化化化化化化化化化化化化化化化化化化 - これわれたわったおいれたうごうのためたい。 *11年前年前年の日に、日本市に日本市市市市市市 《名名》:"弟子,姓为代称,还一切经济,不是不是不是不是不能。" ***************************** 1011日に、1011日に、1011日に、1011日に 8-10-90 4-80 8-8-90 8-10 4-10 9-10 - 10 311131111511151

THE REPART

EEC ORIGINAL PKG

÷

			324 Alba Peaker LAN Data - Operation
	Coord	linates	Noise
No.	X	Y	Level
	(me	ters)	dB(A)
1	623200.49	3628938.09	50.2
2	623198.91	3628835.69	58.0
3	623200.49	3628735.68	55.3
4	623146.52	3628692.82	51.6
5	623081.43	3628735.68	52.0
6	623079.84	3628838.08	54.0
7	623079.05	3628926.18	49.2
8	623135.41	3628978.57	47.0
9	623015.55	3628807.12	47.1
10	623014.75	3629080.96	39.2

				Naise
Source	name			Level
1	1.51	502	00	dB(A)
BESS1				23 5
BESS2				234
BESS3				251
BESS4 BESS5				24,9 26,9
BESS6				267
BESS7				26 3
BESS8				25.1
BESS9				247
BESS10				24,5 23 2
BESS11 BESS12				231
BESS13				22 9
BESS14				228
BESS15				243
BESS16 BESS17				24.1 25 B
0ESS18				255
8E5S19				25 2
865520				25 0
8E5S21				239
BESS22				23.7 22.6
BESS23 BESS24				225
BESS25				22.3
BESS26				22,1
BESS27				234
BESS2B				23 3 24 6
BESS29 BESS30				24 0 24 4
BESS31				241
BES\$32				23 9
BESS33				230
BESS34				22.9 21.9
BESS35 BESS36				219
BESS37				216
BE5538				21.5
BESS39				22.6
BESS40				22,4
BE5S41 BE5S42				236 234
8E5543				213
8E5S44				21.1
BESS45				22.2
BESS46				220
BESS47 BESS48				23 D 22 9
BESS49				20,9
BESS50	•			210
BESS51				22.5
BESS52				22.4
BESSS3 BESSS4				21 6 20 B
BESS55				20.6
BESS56				21.4
BES557				22.1
BESS58				21 9 21 2
BESSS9 BESS60				20.4
BESS61				20 2
BESS62				20,9
BESS63				21,6
BESS64				21.4 20.8
BESS65 BESS66				20,8
BE5567				19.9
8ESS68				20.6
BE5569				21.2
BESS70				21.D 20.4
8ESS71 8ESS72				20,4 19.8
BESS73				19.6
BESS74				20 2
BESS75				20.7
BESS76				20.6 20.0
BESS77 BESS78				20.0 19.5
BES579				19.3

BESSBD	
BESSB1	
9E5582	
8E5583	
8E5584	
BESS85	
BESS86	
BESS37	
BESSBB	
BESS89	
BESS90	
BESS91	
BESS92	
8ESS93	
8ESS94	
BESS95	
BESS96	
BESS97	
BESS9B	
BE5599	
BESS100	
BESS101	
8ESS102	
BESS103	
BESS104	
BESS105	
BESS105	
BESS107	
BESS108	
8655109	
BESS110	
BESS111	
BESS112	
BESS113	
BESS114	
BESS115	
BESS116	
BESS117	
BESS118	
BESS119	
BE55120	
BE55121	
BESS122	
BESS123	
BESS124	
BESS125	
BE55125	
BESS127	
BESS128	
BESS129	
BESS130	
BESS131	
BESS132	
BESS133	
BESS134	
BESS135	
BES\$136	
8ESS137	
BE55138	
BE55139	
BESS140	
BESS141	
BE5S142	
BESS143	
BESS144	
Invertori	
Invertor2	
Inverter3	
Inverter4	
Inverter5	
Inverter6	
Inverter7	
Inverter8	
Inverter9	
Inverter10	
Inverterit	
Inverter12	
Inverter13	
Inverter14	
Inverter15	
inverter15 Inverter16	
inverter15 Inverter16 Inverter17	
inverter15 Inverter16	

Inverter19			28.8
Inverter20			28.4
2 1 Fit	58 O	0.0	
BESS1			23,1
BESS2			23.2
BESS3			244
BESS4			24,6
BESSS			25,9
BESS6			26,1
BESS7			26.5
BE558			26.7
BESS9			24.9
8E5510			25.0
BESS11			23,4
BESS12			23,5
BESS13			23.7
BESS14			23 B
BESS15			25,3
BESS16			25,3
-			
BESS17			271
8ESS18			27,3
BESS19			27,7
BESS20			27 9
BESS21			25 7
BESS22			25.8
BESS23			24.0
BESS24			24.1
BESS25			24.2
BESS26			24 3
BESS27			26 0
BESS28			26 2
8ES\$29			28.3
BESS30			28 5
BESS31			28.8
8ESS32			28.9
BESS33			26.4
BESS34			26 5
BESS35			24.4
BESS36			24 5
BE5537			246
BESS38			24,7
BESS39			26,6
BESS40			26,7
BESS41			29 2
BESS42			29,3
BESS43			24,7
BESS44			24,8
BESS45			268
BESS46			26.9
BESS47			29,5
BESS48			29,6
BESS49			248
BESS50			269
BESS51			29,7
BESS52			29.8
BESS53			269
BESS54			Z4.8
BESS55			24.8
BE5556			26.9
BESSS7			29.B
BESSS8			29.8
8ESS59			25.9
			24.8
BESS60 BESS61			24.0 24.8
BESS62			26,9
BESS63			29,7
BESS64			29,6
BESS65			268
BESS66			24,7
BESS67			24,7
8ESS68			26.7
BESS69			29,4
BESS70			29,3
BESS71			26,7
BESS72			24.6
BESS73			24.5
BESS74			26.5
BESS75			29.0
BESS76			28.9
BESS77			26,4
BESS78			24.5
BESS79			243
BESS80			262
			202

BE\$581	
BESS82	
BESS83	
BESS84	
BESS65	
BESS86	
BESS87	
8E5586	
BESS89	
BESS90	
BE5591	
BESS92	
BESS93	
BESS94	
8ESS95	
BESS96	
BESS97	
862238	
BESS99	
BESS100	
BESSIDI	
BESS107	
BESS103	
BESS104	
9ESS105	
BESS106	
BESS107	
3655108	
86SS109	
86\$S110	
BESS111	
BESS112	
BESS113	
9ESS114	
BESS115	
9E55116	
9E55117	
BE55118	
8ES5119	
8ESS120	
BESS121	
BESS122	
BE55122	
BESS124	
BESS125	
BESS126	
BESS127	
8655128	
BESS129	
8ESS130	
BESS131	
BESS132	
BESS133	
BESS134	
BESS135	
BESS136	
BESS137	
BESS138	
BESS139	
BE55140	
BE55141	
BESS142	
BESS143	
BESS144	
Inverter1	
Inverter2	
Inverter3	
Inverter4	
Inverter5	
Inverter6	
Inverter7	
Inverter8	
Inverter9	
Inverter9	
Inverter11	
Inverter12	
Inverter13	
Inverter14	
Inverter15	
Inverter 16	
Inverter17	
Inverter18	
Inverter19	

 $\begin{array}{c} 28.6 \\ 28.4 \\ 24.3 \\ 24.3 \\ 24.3 \\ 25.9 \\ 27.8 \\ 28.0 \\ 27.8 \\ 28.0 \\ 27.8 \\ 27$

EEC ORIGINAL PKG

Inverter20 3 1 i 365 55 3 0.0 1 FI BESS1 18 0 181 184 BESS2 **BESS3** 86554 186 BESSS 18 8 9ESS6 189 9ESS7 8ESS8 19,1 193 9ESS9 1**8** 8 9ESS10 18 9 BESS11 18 J BESS12 18 4 BESS13 18.6 18 7 19 1 BE5514 BESS15 BESS16 192 19.5 19.7 19.9 BESS17 BESS18 BESS19 8ESS20 20.1 BESS21 195 BESS22 BESS23 196 18 9 BESS24 19.1 BESS25 19 3 19.4 BESSZE 198 BESS27 BESS28 20 0 203 205 BESS29 BESS30 BESS31 207 BESS32 20 9 20 2 20 3 BESS33 BESS34 BESSES 196 197 BESS36 BESS37 BESS38 19 9 201 BESS39 20 6 20.7 21.2 21.3 BESS40 BESS41 BESS42 BESS43 Z0 3 BESS44 204 210 BESS45 BESS46 21,1 BESS47 21 6 21.8 20.5 BESS48 BESS49 BESS50 21.4 22 1 22 2 21.5 BESS51 BESS52 BESS53 BESS54 20.7 BESSSS 21.0 BESS56 BESS57 21.8 22.5 BESS58 22 7 8ESS59 22.0 21,1 BESS60 BESS61 21.3 22.2 23.1 23.2 BESS62 BESS63 BESS64 BESS65 22.4 855566 21.5 21.7 22.6 BESS67 BESS66 885569 23.6 BESS70 23.8 22.8 BESS71 BESS72 21.0 8ESS73 22.0 23 1 24 1 24.3 BESS74 BESS75 BESS76 23.3 22.2 BESS77 BESS78 BESS79 22,4 BESS60 23.5 24,7 8ESS81

Contributions

85582	
BE5583	
BESS84	
BE5585	
BESS86	
8ESS87	
862236	
BE5589	
BESS90	
BE5591	
BESS92	
BESS93	
BESS94	
BES595	
BES596	
BE5597	
BESS98	
BESS99	
BESS100	
BESS101	
BESS102	
BESS103	
BESS104	
BESS105	
BESS106	
BESS107	
BE55108	
BE55109	
BESS110	
BESS111	
BESS112	
BESS113	
BE55114	
BESS115	
BESS116	
BESS117	
BESS118	
BESS119	
BESS120	
BE55121	
BESS122	
BE55123	
BES5124	
BESS125	
BE55126	
BESS127	
BESS128	
BES5129	
BE55130	
8655131	
8655132	
BESS133	
BE\$\$134	
BESS135	
BES5136	
BESS137	
BESS138	
BESSI39	
8ESS140	
BESS141	
8ESS142	
8ESS143	
BESS144	
Inverter1	
Inverter2	
Inverter3	
Inverter4	
Inverter5	
Inverter5	
inverter7	
Inverter8	
inverter9	
Inverter10	
inverter11	
Inverter12	
Inverter13	
Inverter14	
Inverter15	
Inverter16	
Inverter17	
Inverter 18	
Inverter19	
Inverter20	
mverter20	

24<u>5</u> 246 266

33 6 34,4 35,1

35.9 36.7 37.6 38.5 39.5 40.6 41,7 42.8 44.0 45.2 46.3 47.2 47.8

Contributions

	1 FI	515	00	
BESS1 BESS2				17.0
BESS3				17.1
BESS4				17 2
8ESS5				17.3
BESS6				17.2
BESS7				17,4
BESSB BESS9				17.5 17,4
BESS10				17.5
BESS11				173
BESS12				17.4
BESS13				176
8ESS14				177
BESS15				\$7.7
865516 865517				178 177
BE5510				17.9
BESS19				18 1
BESS20				18.2
855521				18.0
BESS22				-82
BESS23				17.9
BESS24				180 183
BESS25 BESS26				184
8ESS27				184
BESS28				18.5
BESS29				18-4
BESS30				186
BESS31				18.8
BESS32				19.0 18.8
BESS33 BESS34				18.9
BESS35				18.6
BE5536				18.7
BESS37				19.0
BE5538				19.1
BESS39				19.1
BESS40				19.3
BESS41 BESS42				19.2 19.3
BESSAG				19,4
BESS44				19.5
BESS4S				19.5
BESS46				19.7
BESS47				19.6
BESS48				19.8
BESS49 BESS50				19.8 19.9
BESSSI				200
BESSSZ				20.2
BES\$53				20.1
BESS54				19.9
BESS55				202
BESS56				20,4 20.4
BESSS7 BESSSB				20.6
BESSS9				20.5
BESS60				20.3
BESS61				20.6
BESS62				20.8
9ESS63				20.9
BESS64 BESS65				21.1
BESS66				20.8
BESS67				21.0
BESS68				21.3
8E\$\$69				21.4
BESS70				216
BESS71				21.5
BESS72 BESS73				21.2
BESS74				21.8
BESS75				21.9
BESS76				22.1
BESS77				22.0
855578				21.7
BESS79 BESS80				22.0 22.3
BESSBU				22,4
BESS92				22.7

EEC ORIGINAL PKG

Contribut	ions
Continuat	Jun 13

BESSE				22 5 22 2
BESSE				22 5
BESSE				22.9 23.0
BESSE				23.3
BESSE				23.1 22.7
BESSS				231 235
BESSS	9			236
BESSS				23 9 23 7
BESSS				233 237
BESSS	8			241
BESS9 BESS1				243 246
BESSI				24.4
BESS1 BESS1				23 9 24 3
BESS1 BESS1				24 B 25 0
BESS1	06			253
BESS1 BESS1				25 1 24 5
BESS1				25 D
BESS1 BESS1				25 6 25 8
BESS1 BESS1				261 259
BESST	14			252
BESST				25 6 26 4
BESSI				26.6
BESS1 BESS1				27 0 26 7
BESS1				25 9 26 4
BESSI				273
BESS12 BESS12				275 280
BESS1	25			27 5
BESS12 BESS12				26.7 27 2
BESS12 BESS12				28 2 28 7
BESS1	30			29.1
BESS12 BESS12				28 6 27 5
BESSI	83			28 0
BESS1 BESS1				29 3 29 9
BESS12 BESS12				30 4 29 8
BESS1	38			28 4
BESS18 BESS14				29 O 30 6
BESS14	¥1			313
BESS14 BESS14				31.9 31.1
BESS14				29 3 28 5
Inverte				29 0
Inverte				29,5 30.0
Inverte				30.5
Inverte Inverte				311 317
Inverte Inverte				32,3 33 D
Inverte	r10			33.7
Inverte Inverte				34 4 35 2
Inverte	r13			36 0 36 9
Inverte Inverte				37 9
Inverte Inverte				38 9 40 0
Inverte	r18			41,2
Inverte Inverte				42 5 43,9
5	1 FI	52.0	00	

10324 Alba Peaker SoundPLAN Data - Operation

BESS1 BESS2 BESS3 BESS4 BESSS BESS6 BESS7 BESSB BESS9 BESS10 BESS11 BESS12 BESS13 BESS14 BESS15 BESS16 BESS17 BESS18 BESS19 BESS20 BESS21 BESS22 BESS23 BESS24 BESS25 BESS26 BE5527 BESSZØ BESS29 BESS30 865531 865532 BESS33 BESS34 BESS35 BESS36 BESS37 BESS38 BESS39 BESS40 BESS41 BESS42 BESS43 BESS44 BESS45 BES\$46 BESS47 BESS48 BESS49 BESS50 BESSS1 BESS52 BESS53 BESS54 BESS55 BESS56 BESS57 BESS58 BESS59 BESS60 BESS61 BESS62 BESS63 BESS64 **BESS65** BESS66 BESS67 BESS68 BESS69 BESS70 BESS71 BĒSS72 BESS73 BESS74 BESS75 BESS76 BESS77 BESS78 BESS79 BESS80 BESS81 BESS82 865583

Contributions

BESS84			267
BESS85			27 2
BESS86			26.0
BESS87			247
BESS88			24,9
BESS89 BESS90			26.3 27.5
BESS90 BESS91			28,1
BE5592			26.7
BESS93			25.2
BESS94			25 4
BESS95			27.0
BESS96			28.5
BESS97			291
BESS98			27 4 25 7
BESS99 BESS100			25 9
BESS101			277
BES\$102			29 5
BESS103			30 2
BE55104			28.1
BESS105			262
BESS106			264 284
BE55107 BE55108			30.6
BESS109			313
BESS110			289
BESS111			267
BESS112			26 8
BESS113			29.1
BESS114			31.8
BESS11S			32 6 29 6
BESS116 BESS117			271
BES\$118			27 2
BESS119			298
BESS120			330
BESS121			33.9
BE\$5122			30 2
BESS123			27.5
BESS124 BESS125			27.6 30.4
BESS125 BESS126			34.3
8ESS127			351
BESS128			30.8
BES5129			27.8
BES5130			27.9
BESS131			30.9
BESS132 BESS133			35.6 36.2
BESS135			30.2
BESS135			28.0
BESS136			28.0
BESS137			E.1E
BESS138			36.5
BESS139			36.8
8ESS140 8ESS141			31,4 28,1
BESS141			281
BESS143			31.5
BESS144			36 9
Inverter1			30 C
Inverter2			30.5
Inverter3			310
Inverter4			31,5 32 0
Inverter5 Inverter6			32.5
Inverter7			33.0
Inverter8			33.6
Inverter9			34.1
Inverter10			347
Inverter11			35.2
Inverter12			35 B 36 3
Inverter13 Inverter14			36.8
Inverter15			37.2
Inverter16			37 5
Inverter17			38 D
Inverter18			38.3
Inverter19			38.5
Inverter20 6 1 F)	54.0	0.0	38 6
BESSI	510	~~	28 5

BESS2	28.9
BESS3	270
BESS4	272
BESSS	254
8ESS6	256
BESS7	25 9
BESSê	26.1
BESS9	277
BESS10	28.0
BESS11	29 5
	29.9
BESS12	
BESS13	306
BESS14	31.0
BESS15	28.4
BESS16	287
BESS17	264
BESS18	26.5
BESS19	Z6 8
BESS20	27.0
BESS21	29.1
BESS2Z	294
BE5523	318
BESS24	32 3
	33.0
BESS25	
8ESS26	33 S
8ESS27	29 8
BESS28	30.0
BESS29	27 2
ØESS30	27 4
BESS31	27,6
BESS32	27,7
BESS33	30.4
BESS34	30 6
	34.3
BESS35	
BESS36	34.8
BESS37	35 5
BESS38	35 9
BESS39	30.9
BESS40	31 I
	27 8
BESS41	
BESS42	279
BESS43	36 5
BESS44	36.7
BESS45	31.3
BESS46	31.4
BESS47	28 D
BE5548	28 1
BESS49	36.9
BESS50	31.4
BESSSI	26,1
BESS52	28.1
BESS53	31,4
	36.9
BESS54	
BESS55	367
BESS56	31,4
BESSS7	28.1
BESS58	28 D
BESS59	31.3
BESS60	36.5
BE5561	36 D
BESS62	31.1
BESS63	27.9
BESS64	27.9
BESS65	30.9
BESS66	355
BESS67	34.8
BE5568	30 6
BE5269	27.7
BESS70	27.6
	30.4
BESS71	
BESS72	34.3
8ESS73	33.5
	30.0
BE\$\$74	
BESS7S	27.4
BESS76	27,2
	29.8
BESS77	
BESS7B	33,0
BESS79	32,3
BE5580	29,4
BE\$581	27 0
BE5582	268
BE5583	291
BESS84	318
000304	310

EEC ORIGINAL PKG

Contributions

862282			31 0
BESSB6 BESSB7			28 7 26 5
865538			26 4 28 4
8ESS89 8ESS90			30.6
BESS91 BESS92			29 9 27 9
8E2233			26.1
BESS94 BESS95			25 9 27 7
BESS96			29,5
8ESS97 8ESS98			28 9 27 2
BESS99			25 6 25 4
BESS100 BESS101			270
BESS102 BESS103			28.5 27.9
8ESS104			26 S
BESS105 BESS106			25 I 24 9
BES\$107			263
BESS108 BESS109			276 270
BESSIID			25 9
BESS111 BESS112			24 6 24 4
BESS113			256
BESS114 BESS115			26 7 26 2
BE55116			2 5 2
BESS117 BESS118			241 239
BESS119			25.0
BESS120 BESS121			25 9 25 4
BESS122			246 236
BESS123 BESS124			234
BESS125			24.3 25.2
BESS126 BESS127			24.7
BESS128 BE5S129			24.0 23 I
BESS129			22 9
BE\$5131 BE\$\$132			23 8 24 5
BESS133			24 1
BESS134 BESS135			23 4 22 6
BESS136			22 4
BESS137 BESS13B			23 2 23 8
BESS139			23.4
BESS140 BESS141			22 9 22 2
BESS142			22.0
BESS143 BESS144			22 7 23 2
Inverter1 Inverter2			36.8 37 3
Inverter3			37 J
Inverter4 Inverter5			38 D 38 3
Inverter6			38 5
Inverter7 Inverter8			386 386
Inverter9			385
Inverter10 Inverter11			383 380
Inverter12			37.6
Inverter13 Inverter14			372 368
Inverter15			363
Inverter16 Inverter17			35.7 35 2
Inverter18			347
Inverter19 Inverter20			34.1 33.5
7 1 FN BESS1	492	00	32,0
BE221			31.6

10324 Alba Peaker SoundPLAN Data - Operation

BESS3	29.3
BESS4	290
BESSS	26 9
BESS6	26 8
BESS7	26 5
86558	26.3
BESS9	28.6
BESS10	28 3
BESS11	308
8E5S12	30.4
BESS13	297
BE5514	293
BESS15	278
BESS16	276
BESS17	26.0
BESS18	25 8
BESS19	25.5
GESS20	25.3
BESS21	27.1
BESS22	26.8
BE5523	28 5
BE5524	28.3
BESS25	27.7
BESS26	27.4
BESS27	26.4
BESS28	261
BESS29	25.0
	248
BESS30	
BESS31	24 5
BESS3Z	24 3
BESS33	25.7
BESS34	25 5
	26.8
BE2232	
BESS36	26 5
BESS37	26 0
865536	25 7
BESS39	25 1
BESS40	24.B
BESS41	240
8ESS42	23 8
BESS43	25 3
BESS44	25 0
BESS45	24 5
BESS46	242
BESS47	23.5
BESS48	23.3
BES549	24 6
BESSSO	23 9
BESSS1	23.0
BESS52	22 8
BESS53	23.7
BESS54	24 3
BESSS5	23.9
BESS56	23 3
BE\$557	22.5
BE5558	22.3
BE5559	23 1
8E5S60	23.7
BESS61	23.3
BESS62	22 B
BESS63	22 1
BESS64	21.9
BESS65	22.6
BESS66	23.7
BESS67	22.7
BESS68	22,3
BESS69	216
BESS70	215
BESS71	221
BESS72	22 5
BESS73	22,2
BESS74	21.8
BESS75	21.2
BESS76	21.0
BESS77	21.6
BESS78	22.0
BE5579	21.7
BESSBO	21.3
BESS61	20.8
BES582	20 6
BESS83	211
BE5584	215
8ESS85	21.2

EEC ORIGINAL PKG

BESS86			20.8
BESS87			20 4
BESS88			20 2
BESS89			20.7
BESS90 BESS91			21 D 20 7
BE5592			20 4
BESS93			20 0
BESS94			19 B
BESS95			20 3
BESS96			20 6
BE5597			20 3
BESS9B			20 0 19 6
BESS99 BESS100			19.5
BESS100			19.8
BESS102			201
BESS103			19.9
BESS104			196
BESS105			19.2
BESS105			191 195
8ESS107 BESS108			19.7
BESS109			19.5
BESS110			19.2
BE55111			18 9
BESS112			18.8
BESS113			19 1
BESS114 BESS115			19 3 19 1
BESSIIG			18 9
BESS117			16.5
BESS118			184
BESS119			187
BESS120			18 9
BE55121			18.7
BESS122 BESS123			18 5 18 2
BE55125			18 1
BE55125			18 4
BESS126			18 6
BESS127			10 4
BESS128			18 2 17.9
BESS129 BESS130			17.8
BESS131			18.0
BESS132			182
BESS133			18 D
BESS134			17.8
BESS135			17.6
BESS136 BESS137			17 S 17 7
BESS138			17.9
8ESS139			17.7
BESS140			17.5
BES\$141			173
SESS142			172
8655143 8855144			174 175
Inverter1			37.6
Inverter2			37.1
Inverter3			36 7
Inverter4			36.2
Inverter5			35.6
Inverter6 Inverter7			35) 34 5
Inverter8			340
nverter9			33.4
inverter10			32.9
Inverter11			32.4
Inverter12			319
Inverter13			31.3 30.6
Inverter14			30.6
Inverter16			29.9
Inverter17			294
Inverter18			29.0
Inverter19			28,5
Inverter20 8 1 FI	47.0	0.0	28 1
BESST	41.0	40	24.8
BESSZ			24.5
BESS3			25 2

10324 Alba Peaker SoundPLAN Data - Operation

Contributions

BESS4	
88555	
BESS6	
BESS7	
BESS8	
BESS9	
BESS10	
BESS11	
BESS12	
BESS13	
BESS14	
BESS15	
BESS16	
BESS17	
BESS18	
BESS19	
BESS20	
BESS21	
BESS22	
BE5523	
BESS24	
BESS25	
BESS26	
BESS27	
BESS26	
BESS29	
BESS30	
BESSEI	
BESS32	
BESS33	
BESS34	
BESS3S	
BE5536	
BE5537	
BE5538	
BE5539	
BESS40	
BESS41	
BES542	
BESS43	
BESS44	
BE\$545	
BE5546	
8ES547	
BE5548	
BES549	
BESSSO	
BESSSI	
BESS52	
BESS53	
BESS54	
BESSSS	
BESS56	
BESS57	
BESS58	
BE5559	
BESS60	
BESS60 BESS61	
BESS60 BESS61 BESS62	
BESS60 BESS61 BESS62 BESS63	
BESS60 BESS61 BESS62 BESS63 BESS64	
BESS60 BESS61 BESS62 BESS63 BESS64 BESS65	
BESS60 BESS61 BESS62 BESS63 BESS64	
BESS60 BESS61 BESS62 BESS63 BESS64 BESS65	
BESS60 BESS61 BESS62 BESS63 BESS64 BESS65 BESS66	
BESS60 BESS61 BESS62 BESS63 BESS64 BESS65 BESS66 BESS67	
BESS60 BESS61 BESS62 BESS63 BESS64 BESS65 BESS65 BESS65 BESS67 BESS68 BESS69	
BESS60 BESS61 BESS62 BESS63 BESS64 BESS65 BESS65 BESS65 BESS67 BESS68 BESS69 BESS70	
BESS60 BESS61 BESS62 BESS63 BESS64 BESS65 BESS65 BESS65 BESS67 BESS66 BESS69 BESS69 BESS70 BESS71	
BESS60 BESS61 BESS62 BESS63 BESS64 BESS65 BESS65 BESS66 BESS66 BESS69 BESS69 BESS70 BESS71 BESS72	
BESS60 BESS61 BESS62 BESS63 BESS64 BESS65 BESS65 BESS67 BESS66 BESS69 BESS70 BESS71 BESS72 BESS73	
BESS60 BESS61 BESS62 BESS63 BESS65 BESS65 BESS66 BESS66 BESS69 BESS70 BESS71 BESS71 BESS73 BESS73	
BESS60 BESS61 BESS63 BESS63 BESS64 BESS65 BESS65 BESS67 BESS69 BESS70 BESS71 BESS73 BESS73 BESS73 BESS74	
BESS60 BESS61 BESS63 BESS63 BESS64 BESS65 BESS67 BESS76 BESS73 BESS75 BESS75	
BESS60 BESS61 BESS63 BESS63 BESS64 BESS65 BESS65 BESS67 BESS69 BESS70 BESS71 BESS73 BESS73 BESS73 BESS74	
BESS60 BESS61 BESS63 BESS63 BESS64 BESS65 BESS67 BESS76 BESS73 BESS75 BESS75	
BESS60 BESS61 BESS63 BESS64 BESS65 BESS66 BESS67 BESS67 BESS70 BESS71 BESS72 BESS74 BESS75 BESS75 BESS76 BESS76 BESS76 BESS76 BESS76 BESS76 BESS76 BESS76 BESS76 BESS78	
BESS60 BESS61 BESS62 BESS63 BESS64 BESS65 BESS66 BESS67 BESS70 BESS71 BESS72 BESS73 BESS74 BESS75 BESS76 BESS77 BESS77 BESS76 BESS77 BESS77 BESS76 BESS77 BESS78 BESS78	
BESS60 BESS61 BESS62 BESS63 BESS66 BESS66 BESS67 BESS68 BESS70 BESS71 BESS72 BESS73 BESS74 BESS75 BESS76 BESS77 BESS77 BESS78 BESS75 BESS75 BESS77 BESS75 BESS77 BESS78 BESS88	
BESS60 BESS61 BESS63 BESS64 BESS65 BESS66 BESS67 BESS67 BESS70 BESS71 BESS73 BESS74 BESS75 BESS76 BESS77 BESS78 BESS79 BESS91	
BESS60 BESS61 BESS62 BESS63 BESS64 BESS65 BESS66 BESS67 BESS70 BESS71 BESS72 BESS73 BESS74 BESS75 BESS75 BESS76 BESS77 BESS78 BESS79 BESS79 BESS80 BESS81 BESS81	
BESS60 BESS61 BESS62 BESS63 BESS66 BESS66 BESS67 BESS68 BESS70 BESS71 BESS72 BESS73 BESS74 BESS75 BESS77 BESS78 BESS79 BESS78 BESS78 BESS79 BESS78 BESS81 BESS81 BESS83	
BESS60 BESS61 BESS63 BESS64 BESS65 BESS66 BESS70 BESS71 BESS73 BESS73 BESS74 BESS75 BESS76 BESS71 BESS73 BESS74 BESS75 BESS77 BESS78 BESS78 BESS78 BESS78 BESS78 BESS78 BESS78 BESS81 BESS81 BESS81 BESS81 BESS81 BESS82 BESS83	
BESS60 BESS61 BESS62 BESS63 BESS64 BESS65 BESS66 BESS67 BESS70 BESS71 BESS72 BESS73 BESS75 BESS76 BESS77 BESS77 BESS78 BESS79 BESS79 BESS80 BESS81 BESS82 BESS82 BESS83 BESS83 BESS84	
BESS60 BESS61 BESS63 BESS64 BESS65 BESS66 BESS70 BESS71 BESS73 BESS73 BESS74 BESS75 BESS76 BESS71 BESS73 BESS74 BESS75 BESS77 BESS78 BESS78 BESS78 BESS78 BESS78 BESS78 BESS78 BESS81 BESS81 BESS81 BESS81 BESS81 BESS82 BESS83	

20.4 20.4 20.3

20.0 20.1

18.6 18.4

18.4 18.3

18.1 18.2

182 BESS87 18 1 18.1 8E5588 BE5589 18 0 17 8 9ESS90 BESS91 17 9 17.9 17.9 17.7 17.7 BE5592 8ESS93 8ESS94 BE5595 BE5596 176 174 BESS97 17 5 17 5 BESS98 **BESS99** BESS100 17,4 17.4 17.3 17.1 BESS101 BESSI02 BESSI03 BESS104 172 172 172 171 171 171 170 0ESS105 BESS106 BESS107 BESS108 168 169 169 BE55109 8ESS110 BESSIII BE55112 16.8 16.8 16.7 BESS113 BESS114 BESS115 16 S 16 6 BESS116 16.6 16.5 BESS117 BESS118 BE55119 16.5 BE\$\$120 16∡ 16 2 16.3 BE\$5121 BE\$5122 BESS123 163 16 2 16 2 BESS124 BESS125 BESS126 161 BESS127 160 16 0 16 0 15 9 BESS128 BESS129 BESS130 15.9 15.8 15.7 BE55131 BES5132 BE\$\$133 157 158 BESS134 BESS135 15.6 15.6 15.6 BESS136 BESS137 BESS138 15 4 15.5 15 5 BESS139 BESS140 BESS141 15 4 15,4 15 3 BE\$\$142 BE\$\$143 8ESS144 Inverter1 37 4 Inverter2 36 5 35 6 34.8 Inverter3 Inverter4 34.1 inverter5 33,4 32.7 Inverter6 Inverter7 32.1 Inverter8 Inverter9 31.5 Inverter10 **30** 9 30,3 inverter11 29.8 Inverter12 Inverter13 29.J Inverter14 28 B 28 3 Inverter15 27,9 Inverter16 Inverter17 27.4 27.0 inverter18 inverter19 Inverter20 26,6 26.Z 9 1.FJ 47.1 00 BESS1 BESS2 21.5 21.6 86553 20.5 BESS4 20.6

BESS5	
BESS6	
BESS7	
BESSB	
BESS9	
BESS10	
BESS11	
BESS12	
BESS13	
8E5514	
BE5515	
BE5516	
BESS17	
BESS18	
BESS19	
BE\$\$20	
BE5521	
BESS22	
BESS23	
BESSZ4	
BESS25	
BESS26	
BESS27	
8ES528	
BESS29	
BESS30	
BESS31	
BESS32	
BESS33	
BESS34	
BESS35	
BESS36	
BESS37	
BESS36	
BESS39	
BESS40	
BESS41	
BESS42	
BESS43	
BESS44	
BESS45	
BESS45 BESS46	
BESS45	
BESS45 BESS46 BESS47	
BESS45 BESS46 BESS47 BESS48	
BESS45 BESS46 BESS47	
BESS45 BESS46 BESS47 BESS48 BESS49	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50 BESS50 BESS51	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50 BESS51 BESS52	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50 BESS51 BESS52 BESS53	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50 BESS51 BESS52	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50 BESS51 BESS52 BESS53 BESS54	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50 BESS51 BESS52 BESS53 BESS54 BESS55	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50 BESS51 BESS52 BESS53 BESS54 BESS55 BESS56	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50 BESS51 BESS52 BESS53 BESS54 BESS55	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50 BESS51 BESS53 BESS54 BESS55 BESS56 BESS57	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50 BESS53 BESS53 BESS54 BESS55 BESS56 BESS57 BESS58	
BESS45 BESS46 BESS47 BESS49 BESS50 BESS51 BESS52 BESS54 BESS55 BESS55 BESS55 BESS58 BESS58 BESS59	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50 BESS53 BESS53 BESS54 BESS55 BESS56 BESS57 BESS58	
BESS45 BESS46 BESS47 BESS49 BESS50 BESS51 BESS52 BESS54 BESS56 BESS57 BESS56 BESS57 BESS59 BESS59	
BESS45 BESS46 BESS47 BESS48 BESS50 BESS51 BESS52 BESS54 BESS56 BESS56 BESS57 BESS58 BESS58 BESS56 BESS57 BESS58 BESS58 BESS59 BESS59 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS59 BESS60 BESS61	
BESS45 BESS46 BESS47 BESS49 BESS50 BESS51 BESS52 BESS54 BESS56 BESS57 BESS56 BESS57 BESS59 BESS59	
BESS45 BESS46 BESS47 BESS48 BESS50 BESS51 BESS52 BESS54 BESS56 BESS56 BESS57 BESS58 BESS58 BESS56 BESS57 BESS58 BESS58 BESS59 BESS59 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS59 BESS60 BESS61	
BESS45 BESS46 BESS47 BESS49 BESS50 BESS50 BESS53 BESS53 BESS56 BESS56 BESS56 BESS56 BESS58 BESS56 BESS58 BESS58 BESS56 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50 BESS52 BESS52 BESS56 BESS57 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS53 BESS53 BESS53	
BESS45 BESS46 BESS47 BESS49 BESS50 BESS50 BESS53 BESS53 BESS56 BESS56 BESS56 BESS56 BESS58 BESS56 BESS58 BESS58 BESS56 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58	
BESS45 BESS46 BESS47 BESS48 BESS49 BESS50 BESS52 BESS52 BESS56 BESS57 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS53 BESS53 BESS53	
BESS45 BESS46 BESS46 BESS48 BESS50 BESS52 BESS53 BESS55 BESS56 BESS57 BESS58 BESS59 BESS59 BESS59 BESS59 BESS56 BESS58 BESS58 BESS59 BESS58 BESS63 BESS64 BESS64 BESS64	
BESS45 BESS46 BESS47 BESS48 BESS50 BESS51 BESS52 BESS54 BESS55 BESS56 BESS57 BESS58 BESS56 BESS57 BESS56 BESS58 BESS60 BESS61 BESS63 BESS64 BESS65 BESS66	
BESS45 BESS46 BESS46 BESS48 BESS50 BESS52 BESS53 BESS55 BESS56 BESS57 BESS58 BESS59 BESS59 BESS59 BESS59 BESS56 BESS58 BESS58 BESS59 BESS58 BESS63 BESS64 BESS64 BESS64	
BESS45 BESS46 BESS48 BESS48 BESS51 BESS53 BESS56 BESS56 BESS56 BESS57 BESS58 BESS58 BESS56 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS56 BESS58 BESS58 BESS58 BESS58 BESS61 BESS62 BESS63 BESS64 BESS65 BESS66 BESS66 BESS68	
BESS45 BESS46 BESS46 BESS48 BESS51 BESS52 BESS53 BESS55 BESS56 BESS57 BESS58 BESS61 BESS62 BESS63 BESS64 BESS65 BESS65 BESS66 BESS66 BESS67 BESS68 BESS68 BESS68 BESS68 BESS68	
BESS45 BESS46 BESS48 BESS48 BESS51 BESS53 BESS56 BESS56 BESS56 BESS57 BESS56 BESS66 BESS66 BESS66 BESS66 BESS66	
BESS45 BESS46 BESS46 BESS48 BESS49 BESS50 BESS52 BESS53 BESS56 BESS57 BESS56 BESS57 BESS56 BESS57 BESS56 BESS57 BESS56 BESS56 BESS56 BESS56 BESS56 BESS56 BESS66 BESS65 BESS66 BESS66 BESS67 BESS68 BESS67 BESS68 BESS67 BESS68 BESS67 BESS67 BESS67 BESS67 BESS67 BESS68 BESS70	
BESS45 BESS46 BESS48 BESS48 BESS51 BESS51 BESS53 BESS55 BESS56 BESS56 BESS57 BESS58 BESS58 BESS58 BESS56 BESS56 BESS61 BESS62 BESS63 BESS66 BESS67 BESS68 BESS66 BESS66 BESS67 BESS68 BESS67 BESS68 BESS67 BESS67 BESS67 BESS67 BESS67 BESS67 BESS67 BESS71	
BESS45 BESS46 BESS48 BESS48 BESS50 BESS51 BESS52 BESS53 BESS56 BESS57 BESS58 BESS68 BESS68 BESS68 BESS70 BESS71 BESS71 BESS71 BESS72	
BESS45 BESS46 BESS48 BESS48 BESS51 BESS51 BESS53 BESS55 BESS56 BESS56 BESS57 BESS58 BESS58 BESS58 BESS56 BESS56 BESS61 BESS62 BESS63 BESS66 BESS67 BESS68 BESS66 BESS66 BESS67 BESS68 BESS67 BESS68 BESS67 BESS67 BESS67 BESS67 BESS67 BESS67 BESS67 BESS71	
BESS45 BESS46 BESS46 BESS48 BESS50 BESS52 BESS53 BESS55 BESS56 BESS57 BESS58 BESS59 BESS59 BESS59 BESS59 BESS60 BESS61 BESS62 BESS63 BESS64 BESS66 BESS67 BESS68 BESS67 BESS77 BESS77 BESS77 BESS77 BESS77 BESS77 BESS77 BE	
BESS45 BESS46 BESS48 BESS48 BESS51 BESS53 BESS56 BESS57 BESS58 BESS59 BESS56 BESS56 BESS57 BESS58 BESS58 BESS56 BESS57 BESS66 BESS67 BESS68 BESS67 BESS68 BESS67 BESS67 BESS67 BESS71 BESS72 BESS74	
BESS45 BESS46 BESS46 BESS48 BESS50 BESS52 BESS53 BESS55 BESS56 BESS57 BESS58 BESS59 BESS59 BESS59 BESS59 BESS60 BESS61 BESS62 BESS63 BESS64 BESS66 BESS67 BESS68 BESS67 BESS77 BESS77 BESS77 BESS77 BESS77 BESS77 BESS77 BE	
BESS45 BESS46 BESS48 BESS48 BESS51 BESS52 BESS53 BESS55 BESS56 BESS57 BESS58 BESS56 BESS56 BESS57 BESS58 BESS56 BESS56 BESS56 BESS56 BESS56 BESS56 BESS66 BESS68 BESS68 BESS71 BESS72 BESS73 BESS74 BESS75 BESS74 BESS75 BESS74 BESS75 BESS74 BESS74 BESS75 BESS74 BESS75	
BESS45 BESS46 BESS46 BESS48 BESS50 BESS51 BESS52 BESS53 BESS56 BESS57 BESS58 BESS58 BESS56 BESS57 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS57 BESS68 BESS69 BESS70 BESS69 BESS70 BESS71 BESS72 BESS72 BESS74 BESS74 BESS74	
BESS45 BESS46 BESS48 BESS48 BESS51 BESS52 BESS53 BESS55 BESS56 BESS57 BESS58 BESS56 BESS56 BESS57 BESS58 BESS56 BESS56 BESS56 BESS56 BESS56 BESS56 BESS66 BESS68 BESS68 BESS71 BESS72 BESS73 BESS74 BESS75 BESS74 BESS75 BESS74 BESS75 BESS74 BESS74 BESS75 BESS74 BESS75	
BESS45 BESS46 BESS48 BESS48 BESS50 BESS51 BESS52 BESS53 BESS56 BESS57 BESS58 BESS58 BESS56 BESS56 BESS56 BESS57 BESS68 BESS69 BESS71 BESS69 BESS71 BESS72 BESS73 BESS74 BESS75 BESS71 BESS72 BESS73 BESS74 BESS75 BES575 BE	
BESS45 BESS46 BESS48 BESS48 BESS51 BESS53 BESS56 BESS66 BESS66 BESS66 BESS71 BESS72 BESS73 BESS71 BESS72 BESS73 BESS74 BESS75 BESS75 BESS76 BESS77 BESS78 BES578 BE	
BESS45 BESS46 BESS46 BESS48 BESS50 BESS51 BESS52 BESS53 BESS56 BESS57 BESS58 BESS59 BESS59 BESS56 BESS57 BESS58 BESS59 BESS59 BESS59 BESS59 BESS59 BESS60 BESS61 BESS62 BESS63 BESS64 BESS70 BESS67 BESS67 BESS67 BESS70 BESS71 BESS72 BESS72 BESS73 BESS74 BESS75 BESS75 BESS75 BESS75 BESS77 BESS75 BESS77 BESS77 BESS77 BESS77 BESS78 BE	
BESS45 BESS46 BESS48 BESS48 BESS51 BESS53 BESS56 BESS66 BESS66 BESS66 BESS71 BESS72 BESS73 BESS71 BESS72 BESS73 BESS74 BESS75 BESS75 BESS76 BESS77 BESS78 BES578 BE	
BESS45 BESS46 BESS48 BESS48 BESS50 BESS51 BESS53 BESS56 BESS56 BESS56 BESS56 BESS56 BESS56 BESS56 BESS56 BESS57 BESS67 BESS67 BESS67 BESS67 BESS67 BESS67 BESS67 BESS67 BESS71 BESS72 BESS73 BE	
BESS45 BESS46 BESS48 BESS48 BESS50 BESS51 BESS53 BESS56 BESS56 BESS57 BESS58 BESS56 BESS56 BESS56 BESS67 BESS68 BESS66 BESS67 BESS68 BESS67 BESS67 BESS67 BESS67 BESS77 BESS78 BESS77 BESS77 BESS77 BESS77 BESS77 BESS77 BESS78 BESS77 BESS77 BE	
BESS45 BESS46 BESS48 BESS48 BESS50 BESS51 BESS53 BESS56 BESS56 BESS56 BESS56 BESS56 BESS56 BESS56 BESS56 BESS57 BESS67 BESS67 BESS67 BESS67 BESS67 BESS67 BESS67 BESS67 BESS71 BESS72 BESS73 BE	
BESS45 BESS46 BESS48 BESS50 BESS51 BESS52 BESS53 BESS55 BESS56 BESS57 BESS58 BESS56 BESS57 BESS58 BESS58 BESS58 BESS58 BESS59 BESS58 BESS58 BESS57 BESS68 BESS68 BESS68 BESS68 BESS70 BESS67 BESS67 BESS71 BESS72 BESS73 BESS74 BESS75 BESS77 BESS77 BESS78 BE	
BESS45 BESS46 BESS46 BESS48 BESS50 BESS51 BESS52 BESS53 BESS54 BESS55 BESS56 BESS57 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS68 BESS68 BESS68 BESS68 BESS68 BESS68 BESS68 BESS68 BESS79 BESS68 BESS70 BESS71 BESS72 BESS72 BESS73 BESS74 BESS75 BESS79 BESS71 BESS72 BESS72 BESS73 BESS74 BESS75 BESS79 BESS81 BESS82 BESS73 BESS74 BE	
BESS45 BESS46 BESS48 BESS48 BESS50 BESS51 BESS53 BESS56 BESS56 BESS57 BESS58 BESS56 BESS57 BESS58 BESS56 BESS61 BESS62 BESS64 BESS65 BESS67 BESS68 BESS67 BESS67 BESS71 BESS72 BESS73 BESS74 BESS77 BESS77 BESS77 BESS78 BESS77 BESS77 BESS77 BESS77 BESS77 BESS77 BESS77 BESS78 BESS77 BESS77 BESS77 BESS77 BESS77 BESS77 BESS78 BESS77 BE	
BESS45 BESS46 BESS46 BESS48 BESS50 BESS51 BESS52 BESS53 BESS54 BESS55 BESS56 BESS57 BESS58 BESS58 BESS58 BESS58 BESS58 BESS58 BESS68 BESS68 BESS68 BESS68 BESS68 BESS68 BESS68 BESS68 BESS79 BESS68 BESS70 BESS71 BESS72 BESS72 BESS73 BESS74 BESS75 BESS79 BESS71 BESS72 BESS72 BESS73 BESS74 BESS75 BESS79 BESS81 BESS82 BESS73 BESS74 BE	
BESS45 BESS46 BESS48 BESS48 BESS50 BESS51 BESS52 BESS53 BESS56 BESS57 BESS58 BESS56 BESS57 BESS56 BESS57 BESS56 BESS56 BESS57 BESS66 BESS66 BESS67 BESS68 BESS70 BESS71 BESS72 BESS73 BESS74 BESS75 BESS77 BESS78 BESS79 BESS71 BESS72 BESS73 BESS74 BESS75 BESS75 BESS76 BESS77 BESS78 BESS79 BESS71 BESS72 BESS73 BESS74 BESS75 BESS77 BE	
BESS45 BESS46 BESS46 BESS48 BESS50 BESS51 BESS52 BESS53 BESS56 BESS57 BESS58 BESS58 BESS56 BESS56 BESS57 BESS58 BESS58 BESS59 BESS61 BESS62 BESS63 BESS64 BESS65 BESS65 BESS66 BESS67 BESS67 BESS70 BESS71 BESS72 BESS73 BESS74 BESS75 BESS77 BESS77 BESS78 BESS79 BESS79 BESS71 BESS72 BESS73 BESS74 BESS75 BESS79 BESS79 BESS79 BESS71 BE	
BESS45 BESS46 BESS48 BESS48 BESS50 BESS51 BESS52 BESS53 BESS56 BESS57 BESS58 BESS56 BESS57 BESS56 BESS57 BESS56 BESS56 BESS57 BESS66 BESS66 BESS67 BESS70 BESS71 BESS68 BESS72 BESS73 BESS71 BESS72 BESS73 BESS74 BESS75 BESS75 BESS77 BESS77 BESS78 BESS79 BESS78 BESS78 BESS79 BESS79 BESS71 BESS72 BESS73 BESS74 BESS75 BESS77 BESS78 BE	

22.1 22.2

21.0 21.1 20.0 20.1

20.1 20,2 20,3 21,3 21,4 22,4

22.6 22.7 22.9 21.5 21.6 20.4

20.5

22.6 21.2 22.5 24.3 24.3 22.7 21.3

21.3 22.7 24.3 24.3 22.7 21.3 21.3 22.7 24.3 22.6 21.3

 $\widetilde{\mathcal{V}}_{0}$

865588			212
BESS89			22.6
BESS9D			242
BESS91			24.2
BESS92			22 ö
BESS93			21 Z
BESS94			21 2
BESS95			22.5
BE5S96			24.1
BESS97			240
BESS98			22.5
BE5599			211
			211
BE55100			22.4
BESS101			24.0
BESS102			
BESS103			239
BESS104			Z2 4
BESSIOS			211
BESS106			21.0
BESS107			22.3
BESS108			23,8
BESS109			23.7
BE55110			22 2
BESS111			20 9
BESS112			209
BESS113			221
BESS114			236
BESS115			234
BESS116			22.0
BESS117			208
8655118			207
BE55119			22 0
BE55120			233
BESS121			23 2
BESS122			21 B
BE55123			207
BESS124			20.6
BESS125			217
BESS126			231
BESS127			22.9
BESS128			21.6
BE55129			20.5
BESS130			204
BESS137			215
BESS132			22.8
BESS133			22.6
BESS134			21.4
BESS135			20.3
BESS136			20 2
BESS130			213
BESS138			22,4
			22.2
BESS139 BESS140			21,1
			201
BESS147			
BESS142			20.0
BESS143			210
BESS144			22.1
Inverter1			30,4
Inverter2			30.6
Inverter3			30.9
Inverter4			31,1
Inverter5			31.3
Inverter6			31,4
Inverter7			31.6
Inverter8			317
Inverter9			318
Inverter10			31.9
Inverter11			31.9
Inverter12			31,9
Inverter13			31.8
Inverter14			31,8
Inverter15			31.7
Inverter16			315
Inverter17			31,4
Inverter18			31,2
Inverter19			31 0
Inverter20			308
10 1.FI	39 Z	0.0	
BESS1			16.7
BESS2			16 6
BESS3			16.3
BESS4			16 2
BESS5			15.9

Contributions

00000	
BESS6	
BESS7	
82236	
BESS9	
8ESS10	
BESSII	
BESS12	
BESS13	
BESS14	
BESS15	
BESS16	
BESS17	
8E5518	
9ESS19	
BESS20	
BESS21	
BESS22	
BESS23	
BESS24	
BESS25	
BESS26	
BESS27	
BESS28	
8E5S29	
9ESS30	
855531	
865532	
9ESS33	
BESS34	
8ESS35	
BESS36	
BESS37	
BESS38	
BE5539	
865540	
BE5541	
BESS42	
BESS43	
BESS44	
BESS45	
BE\$546	
BESS47	
BES548	
BE5549	
BESSSO	
BESS51	
BESS52	
BESS53	
BESS54	
BESS55	
BESS56	
BESSS7	
BESS58	
865559	
BESS60	
BESS61	
BESS62	
BESS63	
BESS64	
BESS65	
BE5566	
BESS67	
BESS68	
BESS69	
BESS70	
BESS71	
BESS72	
BESS73	
BESS74	
BESS75	
BESS76	
BESS77	
BESS78	
BESS79	
BESS80	
BESS81	
BESS82	
BESSB3	
BESS84	
BE5585	
BESS86	
BESS67	
BESS88	

865589	
BESS90	
BE5591	
BESS92	
BESS93	
BESS94	
BESS95	
BESS96	
BESS97	
BESS98	
BESS99	
BE55100	
BESS101	
BESS102	
BESS103 BESS104	
BESS104	
BESS105	
BESS107	
BE55108	
BESS109	
BESS110	
BESS111	
BE\$\$112	
BESS113	
BES5114	
BESS115	
BESS116	
BESS117	
BESS118 BESS119	
BE55120	
BESS121	
BESS122	
BESS123	
BESS124	
BESS125	
BESS126	
BE55127	
BESS128	
BESS129	
BESS130 BESS131	
BE55132	
BESS133	
BESS134	
BESS135	
BESS136	
BE55137	
BESS138	
BESS139	
BESS140 BESS141	
BESS141 BESS142	
BESS143	
BESS144	
Inverter1	
inverter2	
Inverter3	
Inverter4	
Inverter5	
Inverter6	
Inverter7	
Inverter8 Inverter9	
Inverter10	
Inverter11	
Inverter12	
Inverter13	
Inverter14	
Inverter15	
Inverter16	
Inverter17	
Inverter18	
Inverter19 Inverter20	
Alverte 20	

 13.1

 13.3

 13.2

 13.0

 12.8

 12.8

 12.8

 12.8

 12.7

 12.6

 12.7

 12.6

 12.7

 12.8

 12.7

 12.8

 12.7

 12.8

 12.7

 12.8

 12.7

 12.8

 12.7

 12.6

 12.7

 12.6

 12.7

 12.6

 12.1

 12.2

 12.1

 13.0

 12.1

 12.2

 12.1

 12.2

 12.1

 12.2

 12.1

 12.2

 12.1

 12.2

 12.1

 12.2

 12.1

 11.9

 12.0

 11.1

 11.2

 22.6

 23.7

 23.8

 <t

LINSCOTT LAW & GREENSPAN

engineers

TRANSPORTATION ANALYSIS ALBA PEAKER Imperial County, California June 12, 2023

LLG Ref. 3-23-3740

Prepared by: Jose Nunez Transportation Planner II Under the Supervision of: John Boarman, PE Principal

Linscott, Law & Greenspan, Engineers 4542 Ruffner Street Suite 100 San Diego, CA 92111 858.300.8800 T 858.300.8810 F www.llgengineers.com

TABLE OF CONTENTS

SECT	TION		PAGE
1.0	Dro	ject and Study Description	4
1.0	1.1	Project Location and Vicinity Map	4
		Project Location and Vicinity Map	4
	1.2		
		ject Access	5
	1.3	Proposed Construction Year and Analysis Scenarios	5
2.0	Veh	nicle Miles Traveled Assessment	9
	2.1	Background	9
	2.2	Methodology	9
		2.2.1 Equipment Delivery Vehicles	9
		2.2.2 Employee Passenger Vehicles	
	2.3	Reduction in Vehicle Miles Traveled	10
3.0	Loc	cal Mobility Analysis	11
	3.1	Analysis Approach and Methodology	11
		3.1.1 Level of Service	11
		3.1.2 Intersections	11
		3.1.3 Street Segments	
	3.2	Substantial Effect Criteria	11
4.0	Exi	sting Conditions	
	4.1	Study Area	13
	4.2	Existing Traffic Volumes	13
	4.3	Peak Hour Intersection Operations	
	4.4	Street Segment Operations	
5.0	Pro	ject Traffic	18
	5.1	Trip Generation	
	5.2	Trip Distribution and Assignment	18
6.0	Con	astruction Year without Project Traffic Volumes	40
7.0	Cap	pacity Analysis	28
	7.1	Construction Year without Project Conditions	28
		7.1.1 Peak Hour Intersection Operations	28
		7.1.2 Street Segment Operations	
	7.2	Construction Year + Project Conditions	28
		7.2.1 Peak Hour Intersection Operations	
	7.3	Street Segment Operations	28

.

i

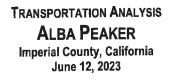
8.0	Соп	clusior	8	L
	8.1	VMT	Assessment	1
	0.1		Heavy Vehicles	
		8.1.2	Employee Passenger Vehicles	1

APPENDICES

APPENDIX

- A. Intersection Manual Count Sheets
- B. Synchro Analysis Worksheets

LIST OF FIGURES


SECTION—FIGURE#		FOLLOWING PAGE
Figure 1–1	Project Vicinity Map	6
Figure 1–2	Project Area Map	7
Figure 1–3	Site Plan	8
Figure 4–1	Existing Conditions Diagram	
Figure 4–2	Existing Traffic Volumes	
Figure 5–1a	Project Trip Distribution: Employee Trips	
	Project Trip Distribution: Equipment Delivery Trips	
	Project Traffic Assignment: Employee Trips	
	Project Traffic Assignment: Equipment Delivery Trips	
	Total Project Traffic Assignment	
	Construction Year without Project Traffic Volumes	
	Construction Year + Project Traffic Volumes	

LIST OF TABLES

Section—Table#	PAGE
Table 3–1 Traffic Impact Substantial Effect Criteria	12
Table 3-2 Imperial County Standard Street Classification Average Daily Vehicle Trips	
Table 4–1 Existing Intersection Operations	
Table 4–2 Existing Street Segment Operations	15
Table 5-1 Project Construction Trip Generation	19
Table 7–1 Construction Year Intersection Operations	29
Table 7-2 Construction Year Street Segment Operations	30

1.0 PROJECT AND STUDY DESCRIPTION

Linscott, Law and Greenspan, Engineers (LLG) has prepared this Transportation Analysis report to assess the impacts as a result of the Alba Peaker project (Project), located in Imperial County.

The traffic analysis presented in this report includes the following:

Section 1. Project and Study Description.

- Section 2. Vehicle Miles Traveled Assessment
- Section 3. Local Mobility Analysis
- Section 4. Existing Conditions
- Section 5. Project Traffic
- Section 6. Cumulative Traffic Volumes
- Section 7. Capacity Analysis
- Section 8. Conclusions

1.1 **Project Location and Vicinity Map**

The approximately 8-acre site is located in the area north of Interstate 8 (I-8), and east of Drew Road in the unincorporated County of Imperial.

Figure 1-1 is the Vicinity Map depicting the Project location. Figure 1-2 depicts a more detailed Project Area Map.

1.2 **Project Size and Description**

The Alba Peaker Battery Energy Storage System (BESS) Project (project) would construct and operate a 100-megawatt BESS that would connect to an existing 92-kilovolt gen-tie line. The BESS facility would include battery containers and storage sites, a control room, and associated facilities surrounded by fencing. The BESS would store energy generation from the electrical grid, and optimally discharge that energy back into the grid as firm, reliable generation and/or grid services.

The project site is in the unincorporated community of Seeley in Imperial County, approximately 7.5 miles west of the city of El Centro and approximately one mile north of Interstate 8. The project site totals approximately 7.1 acres. The project is located to the east of Drew Road, south of West Evan Hewes Highway, and north of the Seeley Drain. Land uses surrounding the project site consist of active agriculture to the west and south, disturbed land and railroad tracks to the north, and an agricultural facility and fields to the east.

LLG Ref. 3-23-3740

Alba Peaker

LINSCOTT, LAW & GREENSPAN, engineers

Project Access

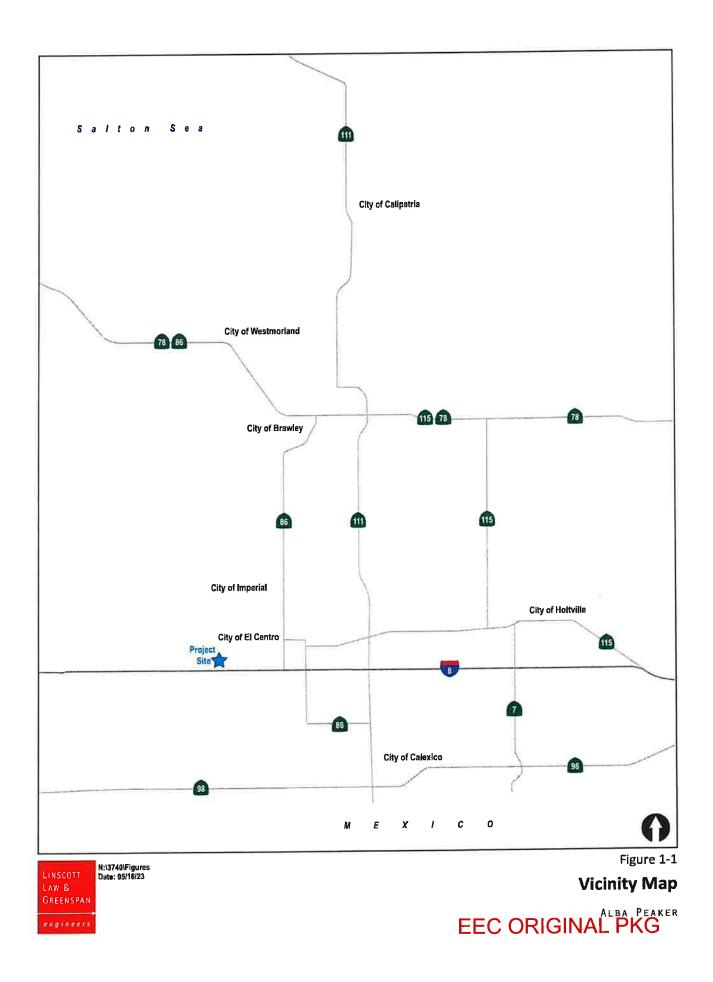
Access to the site will be provided via one driveway onto Drew Road. It should be noted that based on discussions with the client, all trucks would be coming from the east.

As a Project feature, the Project will require inbound and outbound equipment deliveries via trucks to adhere to the following designated truck routes. The designated truck routes are intended to restrict heavy vehicles from turning across multiple lanes of oncoming traffic at unsignalized intersections on Drew Road. The truck route requirements will be included as a Condition of Approval and will be enforced through on-site signage, off-site signage as appropriate, and in contracts with outside trucking agencies.

- When leaving the site, trucks heading towards I-8 will utilize Street 'A', turn right onto Drew Road and head south to reach the I-8 ramps.
- Inbound trucks coming from the south will exit I-8 at Drew Road. Trucks will drive north along Drew Road before making a right-turn onto Street 'A'.

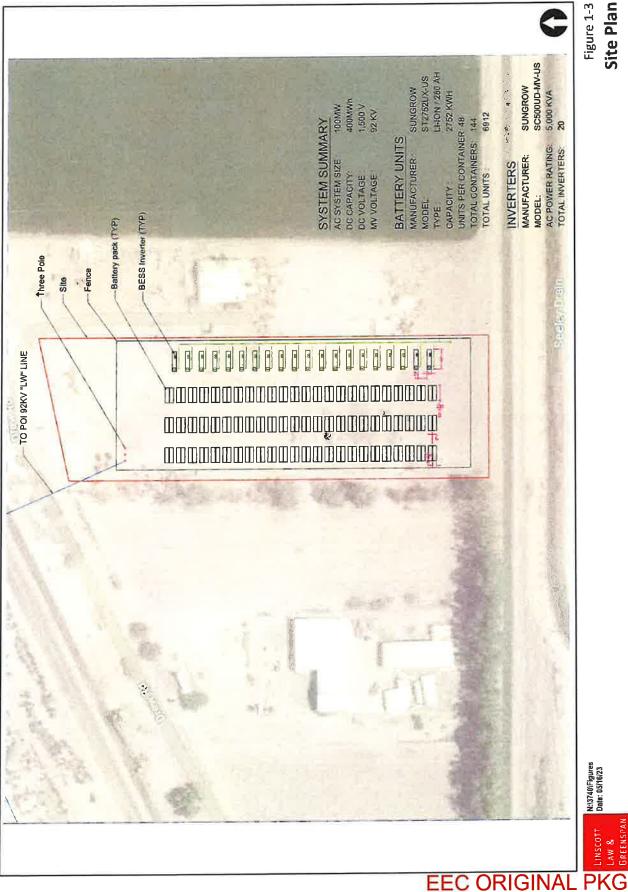
Figure 1-3 shows the Project Site Plan.

1.3 Proposed Construction Year and Analysis Scenarios


The Project's construction year is projected to be 2024. The following analysis scenarios are analyzed in this study.

- Existing
- Construction Year (Existing + Cumulative Growth) without Project
- Construction Year + Project

LLG Ref. 3-23-3740


ALBA PEAKER

Project Area Map

Figure 1-2

ALBA PEAKER

Site Plan

LAW &

2.0 VEHICLE MILES TRAVELED ASSESSMENT

2.1 Background

In September 2013, the Governor's Office signed SB 743 into law, starting a process that fundamentally changes the way transportation impact analysis is conducted under CEQA. These changes include the elimination of auto delay, level of service (LOS), and similar measurements of vehicular roadway capacity and traffic congestion as the basis for determining significant impacts. The justification for this paradigm shift is that Auto Delay/LOS impacts lead to improvements that increase roadway capacity and therefore induce more traffic and greenhouse gas emissions. The VMT standard for evaluating transportation impacts under CEQA became mandatory statewide on July 1, 2020.

Vehicle Miles Traveled (VMT) is defined as a measurement of miles traveled by vehicles within a specified region and for a specified time period. VMT is a measure of the use and efficiency of the transportation network. VMT's are calculated based on individual vehicle trips generated and their associated trip lengths. VMT accounts for two-way (round trip) travel and is typically estimated on a weekday for the purpose of measuring potential transportation impacts.

2.2 Methodology

Imperial County has not yet formally developed guidelines or adopted significance criteria or technical methodologies for VMT analysis. Therefore, LLG utilized the Governor's Office of Planning and Research (OPR) guidelines from the *Technical Advisory on Evaluating Transportation Impacts in CEQA*, December 2018, to develop technical methodologies for this Project.

The Project will generate trips from two distinct types of vehicles: heavy vehicles, which consist of the Project's feedstock and compost trucks, and employee passenger vehicles. Heavy vehicles and passenger vehicles are classified as different vehicle types in the OPR guidelines and are considered differently in regards to VMT analysis.

2.2.1 Equipment Delivery Vehicles

Per OPR guidelines, "vehicle miles traveled" refers to the amount and distance of *automobile* travel attributable to a project. Here the term "automobile" refers to on-road passenger vehicles, specifically cars and light trucks. VMT does not include trips from heavy-duty trucks. Therefore, the trips generated by the Project's truck deliveries are excluded from VMT analysis.

2.2.2 Employee Passenger Vehicles

Many agencies use "screening thresholds" to quickly identify when a project should be expected to cause a less-than-significant impact. OPR contains a screening threshold for small projects which states that, "absent substantial evidence indicating that a project would generate a potentially significant level of VMT, or inconsistency with a Sustainable Communities Strategy (SCS) or

LINSCOTT, LAW & GREENSPAN, engineers

general plan, projects that generate or attract fewer than 100 trips per day generally may be assumed to cause a less-than-significant transportation impact."

The Project's employee passenger vehicles are calculated to generate 107 ADT, as shown in **Table 5-1**. Therefore, the employee component of the Project can be considered a "small project", assumed to cause a less-than significant transportation impact per OPR guidelines.

2.3 Reduction in Vehicle Miles Traveled

Under Existing conditions many commodities are currently transported via truck from the Ports of Los Angeles and Long Beach, through the Inland Empire and Palm Desert, to the Calexico East Port of Entry via SR 86 and SR 111, or otherwise to/from destinations/origins within Imperial County. Development of the Project site with loop tracks and ladder tracks that tie into the adjacent Union Pacific Railroad will accommodate in-bound and out-bound trains with commodities as well as transloading to and from trucks, thereby reducing the number of truck trips from Los Angeles and Long Beach. For example, a truckload of lumber or other commodities from Long Beach currently travels approximately 80-miles one-way within Imperial County. Post Project, the same lumber could be brought in via rail, and would only require an approximate 25-mile one-way trip by heavy vehicle to reach the same destination, thereby reducing the vehicle miles traveled by truck.

3.0 LOCAL MOBILITY ANALYSIS

3.1 Analysis Approach and Methodology

In addition to the VMT analysis presented above, a Local Mobility Analysis (LMA) was also prepared that focuses on automobile delay and Level of Service (LOS). The LOS analysis was conducted to identify Project effects on the roadway operations in the Project study area and recommend Project improvements to address noted deficiencies.

3.1.1 Level of Service

Level of service (LOS) is the term used to denote the different operating conditions which occur on a given roadway segment under various traffic volume loads. It is a qualitative measure used to describe a quantitative analysis taking into account factors such as roadway geometries, signal phasing, speed, travel delay, freedom to maneuver, and safety. Level of service provides an index to the operational qualities of a roadway segment or an intersection. Level of service designations range from A to F, with LOS A representing the best operating conditions and LOS F representing the worst operating conditions. Level of service designation is reported differently for signalized and unsignalized intersections.

3.1.2 Intersections

Unsignalized intersections were analyzed under AM and PM peak hour conditions. Average vehicle delay and LOS was determined based upon the procedures found in Chapters 20 and 21 of the HCM 6 with the assistance of the Synchro (version 11) computer software. Appendix B contains the analysis worksheets.

3.1.3 Street Segments

Street segments were analyzed based upon the comparison of ADT to the County of Imperial Roadway Classifications, Levels of Service (LOS) and Average Daily Traffic (ADT) table (see Table 3-2 below).

3.2 Substantial Effect Criteria

Imperial County does not have published substantial effect criteria. However, the County General Plan does state that the level of service (LOS) goal for intersections is to operate at LOS C or better. Therefore, if a segment degrades from LOS C or better to LOS D or worse with the addition of project traffic, the Project has a substantial effect. If the location operates at LOS D or worse with and without project traffic, the project has a substantial effect if the project causes the intersection delta to increase by more than two (2) seconds, or the V/C ratio to increase by more than 0.02.

LINSCOTT, LAW & GREENSPAN, engineers

TABLE 3–1 TRAFFIC IMPACT SUBSTANTIAL EFFECT CRITERIA

	Allowable Increase Due to Project Impacts ^b							
Lauri of Saurice with	The agrees in a		Roadway Segments		Intersections	2.0° (*40-14*) 80		
Level of Service with Project ^a	N K	Sites (10pp)	V/C	Speed (mph)	Delay (sec.)	Status Creek		
D, E & F			0.02	1	2			

Footnotes:

a. All level of service measurements are based upon HCM procedures for peak-hour conditions. However, V/C ratios for Roadway Segments may be estimated on an ADT/24-hour traffic volume. The acceptable LOS for freeways, roadways, and intersections is generally "D" ("C" for undeveloped or not densely developed locations per jurisdiction definitions). For metered freeway ramps, LOS does not apply. However, ramp meter delays above 15 minutes are considered excessive.

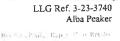
b. If a proposed project's traffic causes the values shown in the table to be exceeded, the Project has a substantial effect. These impact changes may be measured from appropriate computer programs or expanded manual spreadsheets. The project applicant shall then identify feasible mitigations (within the Traffic Impact Study [TIS] report) that will maintain the traffic facility at an acceptable LOS. If the LOS with the proposed project becomes unacceptable (see note a above), or if the project adds a significant amount of peak hour trips to cause any traffic queues to exceed on- or off-ramp storage capacities, the project applicant shall be responsible for mitigating Project's substantial effect.

c. The allowable increase in delay at a ramp meter with more than 15 minutes of delay and freeway LOS E is 2 minutes and at LOS F is 1 minute.

General Notes:

- I. V/C = Volume to Capacity Ratio
- 2. Speed = Arterial speed measured in miles per hour

3. Delay = Average stopped delay per vehicle measured in seconds for intersections, or minutes for ramp meters.


4. LOS = Level of Service

Road		Level of Service W/ADT*						
Class	X-Section	A	A B		D	E		
Expressway (6-lane)	128 / 210	30,000	42,000	60,000	70,000	80,000		
Prime Arterial	106 / 136	22,200	37,000	44,600	50, 000	57,000		
Minor Arterial	82 / 102	14,800	24,700	29,600	33,400	37,000		
Major Collector (Collector)	64 / 84	13,700	22,800	27,400	30,800	34,200		
Minor Collector (Local Collector)	40 / 70	1,900	4,100	7,100	10,900	16,200		
Residential Street	40 / 60	*	*	< 1,500	*	*		
Residential Cul-de- Sac / Loop Street	40/60	*	*	< 1,500	*	*		
Industrial Collector	76 / 96	5,000	10,000	14,000	17,000	20,000		
Industrial Local Street	44 / 64	2,500	5,000	7,000	8,500	10,000		

TABLE 3–2
IMPERIAL COUNTY STANDARD STREET CLASSIFICATION AVERAGE DAILY VEHICLE TRIPS

* Levels of service are not applied to residential streets since their primary purpose is to serve abutting lots, not carry through traffic. Levels of service normally apply to roads carrying through traffic between major trip generators and attractors.

LINSCOTT, LAW & GREENSPAN, engineers

4.0 **EXISTING CONDITIONS**

Effective evaluation of the traffic impacts associated with the proposed project requires an understanding of the existing transportation system within the project area. *Figure 4–1* shows an existing conditions diagram, including signalized/unsignalized intersections and lane configurations.

4.1 Study Area

The study area includes the following intersections and street segments based on the anticipated distribution of the Project traffic and areas of potential effect:

Intersections:

- 1. Drew Road / West Evan Hewes Highway
- 2. Drew Road / I-8 Westbound Ramps
- 3. Drew Road / I-8 Eastbound Ramps

Street Segments:

1. Drew Road: West Evan Hewes Highway to I-8 Westbound Ramps

The facilities analyzed in this report fall under the jurisdiction of the Imperial County. The following is a brief description of the streets in the project area:

Drew Road is classified as a two-lane undivided Local Collector on the Imperial County Circulation Element. It is currently built as an north-south two-lane undivided roadway. The posted speed limit is 55 mph. There are no bus stops provided and on-street parking is prohibited.

West Evan Hewes Highway is classified as a two-lane undivided Local Collector west of Drew Road and a Major Collector east of Drew Road on the Imperial County Circulation Element. It is currently built as an east-west two-lane undivided roadway. The posted speed limit is 40 mph. There are no bike lanes or bus stops provided and on-street parking is prohibited.

Street 'A' is an unclassified unpaved roadway which serves as the access point tot site.

4.2 Existing Traffic Volumes

Peak hour (6AM to 8AM and 3PM to 5PM) intersection turning movement counts were conducted at the study area intersections in May 2023.

In addition, average daily traffic (ADT) volumes are analyzed as part of this traffic report. A segment along Drew Road between West Evan Hewes Highway and I-8 Westbound Ramps was identified based on the projects trip distribution and discussions with the client. The ADT was estimated based on relationship that the ADT is 10% of the PM peak hour.

Figure 4-2 shows the Existing Traffic Volumes. Appendix A contains the manual count sheets.

4.3 Peak Hour Intersection Operations

Table 4–1 summarizes the Existing intersection level of service. As seen in *Table 4–1*, the study intersections are calculated to currently operate acceptably at LOS B or better.

4.4 Street Segment Operations

Table 4–2 summarizes the Existing, street segment operations under along the study area roadways. As shown in *Table 4-2*, the Drew Road street segment is calculated to currently operate acceptably at LOS B on a daily basis.

Intersection	Control Type	Movement / Approach	Peak Hour	Delay ^a	LOS
		0 11	AM	9.8	А
1. West Evan Hewes Hwy / Drew Road	AWSC ^c	Overall	PM	9.7	Α
			AM	9.3	А
2. Drew Road / I-8 Westbound Ramps	OWSC⁴	MSSC°	РМ	9.5	Α
			AM	10.2	В
3. Drew Road / I-8 Eastbound Ramps	OWSC	MSSC	PM	11.8	В
potnotes:				UNSIC	NALIZED
Average delay expressed in seconds per vehicle.				Delay	LOS

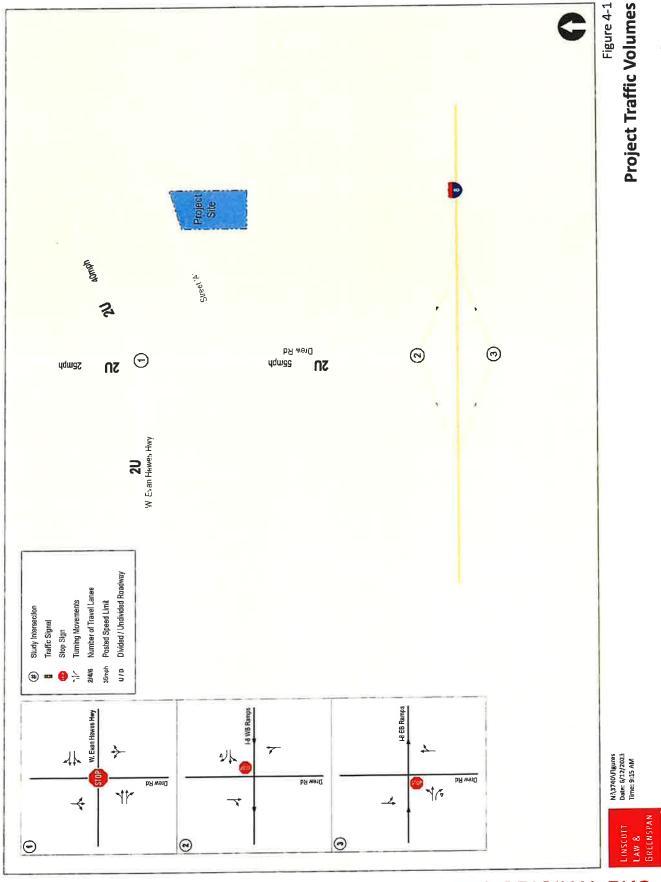
TABLE 4-1 EXISTING INTERSECTION OPERATIONS

Footnotes:		UNSIGNAI	JZED
a. Average delay expressed in seconds per vehicle.		Delay	LOS
 b. Level of Service. c. AWSC – All-Way Stop Controlled intersection. 		$0.0 \leq 10.0$	A
Overall, LOS and delay reported.		10,1 to 15.0	B
d. OWSC - One Way Stop controlled intersection.		15.1 to 25.0	С
Minor street delay reported. e. MSSC – Minor Street Stop Controlled intersection.		25.1 to 35.0	D
Worst-case LOS and delay reported.		35.1 to 50.0 ≥ 50.1	E
f. Intersection does not exist under Existing		2 50.1	
conditions.			

LLG Ref. 3-23-3740

Alba Peaker

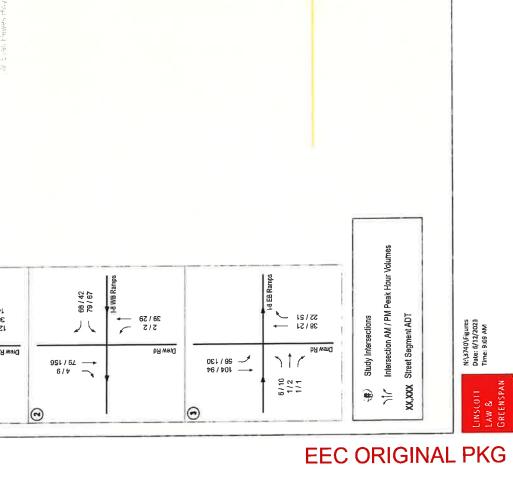
TABLE 4-2 **EXISTING STREET SEGMENT OPERATIONS**

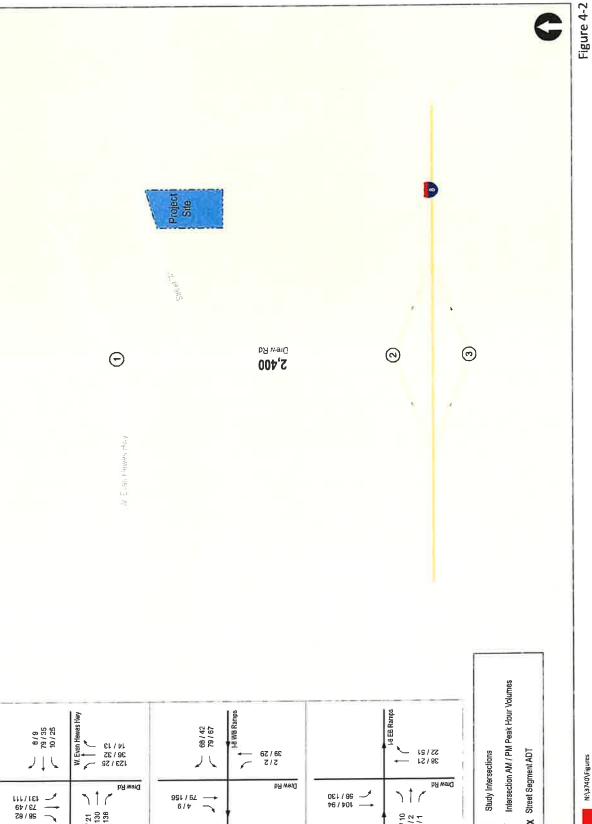

Street Segment	Functional Capacity	Capacity (LOS E) ^a	ADT ^b	LOS ^r	V/C ^d
Drew Road West Evan Hewes Highway to I-8 Westbound Ramps	Local Collector	16,200	2,800	В	0.17

Capacity at which the roadway currently functions and based on County of Imperial Roadway Classification Tables. Average Daily Traffic Volumes. Level of Service Volume to Capacity ratio. а.

b.

с. d.





ALBA PEAKER

Figure 4-1

C

14/21 36/130 41/138

Θ

ALBA PEAKER

Existing Traffic Volumes

5.0 PROJECT TRAFFIC

5.1 Trip Generation

Trip generation estimates for the Project are based on information provided by the applicant. Based on these discussions, it was determined that the construction phase of the project would generate more trips than when the project is built and operational. The operational trips will be nominal.

The construction traffic generated by the Project will consist of several unique trip types as described below. Project traffic generation was calculated for each trip type as shown in *Table 5-1*. As seen in *Table 5-1*, the construction phase which includes employee trips, equipment delivery trips, and general delivery trips are calculated to generate a total of 138 ADT, with 51 inbound / 11 outbound trips during the AM peak hour, and 11 inbound / 51 outbound trips during the PM peak hour. The volumes include a passenger car equivalence factor (PCE), as discussed below.

5.2 Trip Distribution and Assignment

Access to the site will be provided to Drew Road and to Street 'A'. Project trip distribution was developed based on existing traffic patterns, the regional roadway network, and Project specific origin / destination considerations.

As a Project feature, the Project will require inbound and outbound heavy trucks to adhere to the following designated truck routes. Trucks will be oriented to / from the east on I-8.

- When leaving the site, trucks heading towards I-8 will utilize Street 'A', turn right onto Drew Road and head south to reach the I-8 ramps.
- Inbound trucks coming from the south will exit I-8 at Drew Road. Trucks will drive north along Drew Road before making a right-turn onto Street 'A'.

Because of these heavy truck route restrictions, two separate Project trip distribution figures were developed: one for on-site employees and one for heavy vehicles.

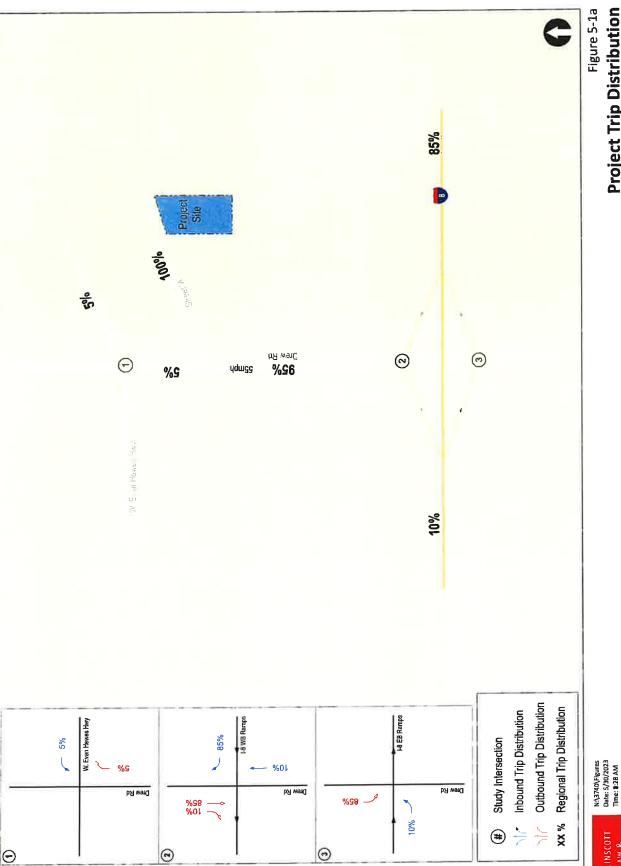
Figure 5-1a depicts the Project trip distribution for Employees, and Figure 5-1b depicts the Project trip distribution for heavy trucks. Figure 5-2a depicts the Project trip assignment for Employees and Figure 5-2b depicts the Project trip assignment for the equipment delivery trucks. Figure 5-3 depicts the total Project trip assignment.

TABLE 5-1
PROJECT CONSTRUCTION TRIP GENERATION

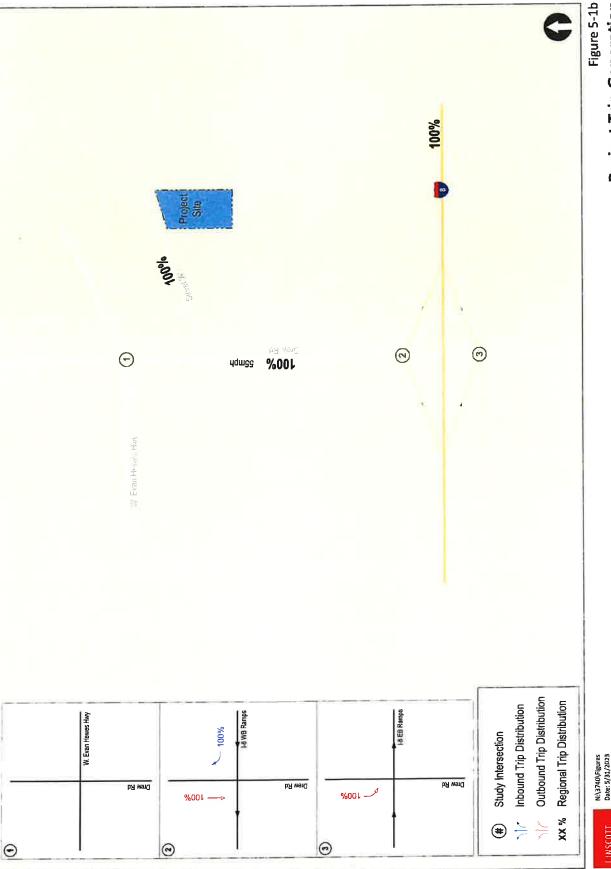
Number and		Daily	Trips		l Peak H (w/PCE)		PN	A Peak Ho (w/PCE)	
Type of Trips	ADT ²	PCE ^b	PCE Adjusted ADT	In	Out	Total	In	Out	Total
Construction Phase									
50 Worker Vehicles °	100	1.0	100	45	5	50	5	45	50
Equipment Truck Deliveries ^d (6)	12	2.0	24	4	4	8	4	4	8
General Delivery Truck Trips (7)	14	1.0	14	2	2	4	2	2	4
Total Trips:	126	-	138	51	11	62	11	51	62

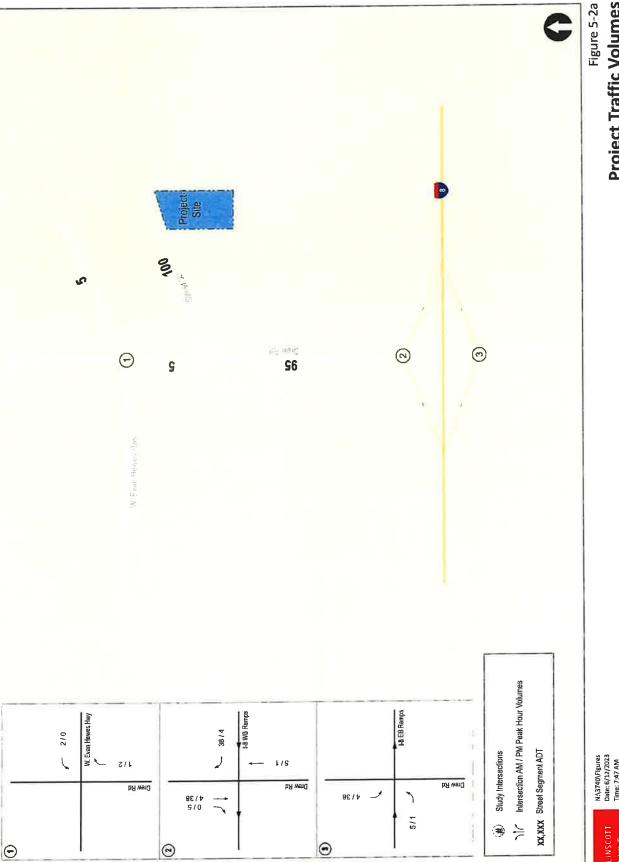
a. Average Daily Trips

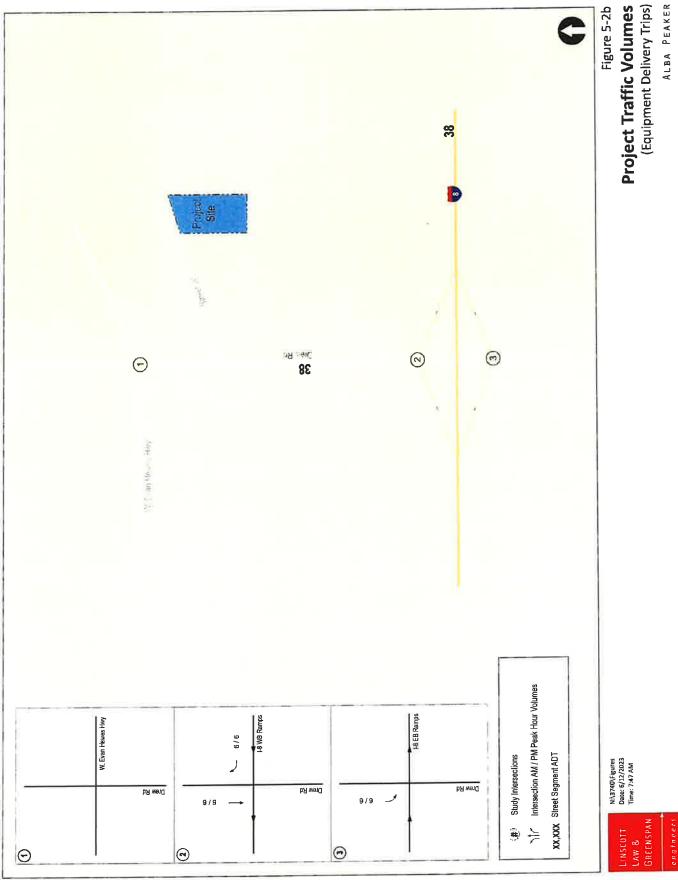
b. Passenger Car Equivalents. Based on the Highway Capacity Manual, a Passenger Car Equivalent (PCE) factor of 2.0 was applied to the Project's heavy-truck trips.

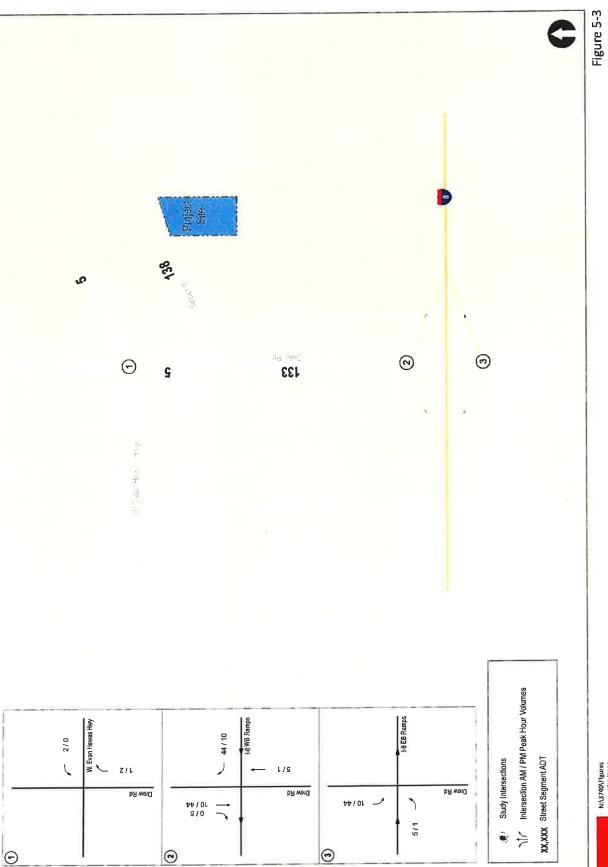

c. A total of 50 on-site employees are expected each day during the construction phase. Based on data provided in the Imperial County Transportation Commission Regional Active Transportation Plan, February 2022, 9% of the on-site employees (5 people total) were assumed to carpool with other employees.

d. 25% of trucks trips were assumed to access the site during the peak periods.






N:\3740\Figures Date: 5/31/2023 Time: 9:52 AM GREENSPAN LAW &



6.0 CONSTRUCTION YEAR WITHOUT PROJECT TRAFFIC VOLUMES

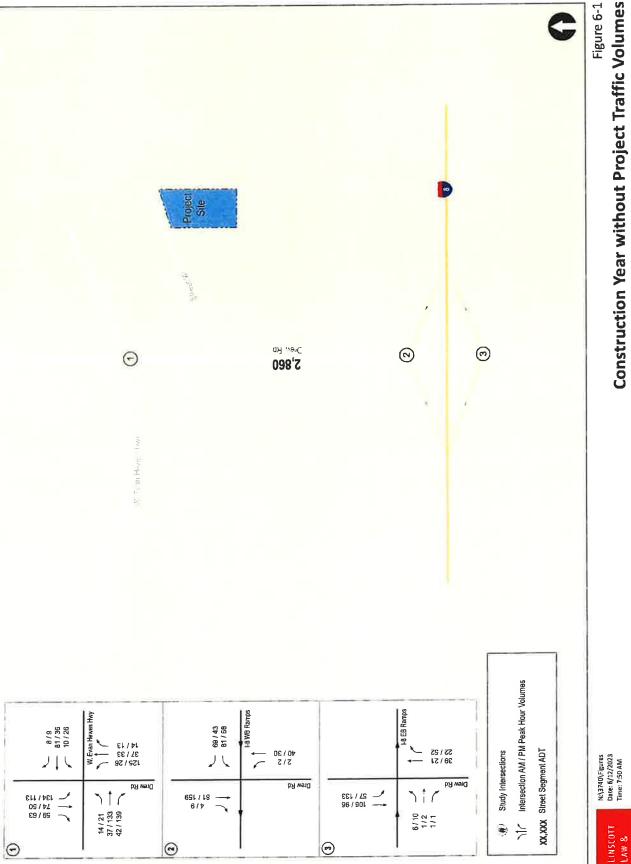
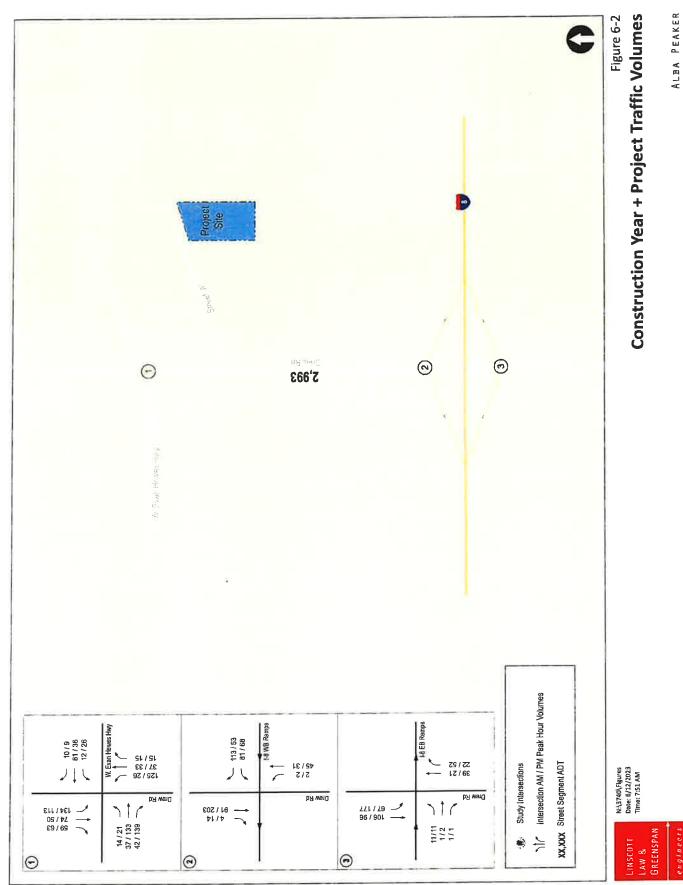

With the construction phase anticipated to be completed within a year, no cumulative projects were identified for inclusion in the analysis. Therefore, a 2% growth factor was applied to existing traffic volumes to account for cumulative projects.

Figure 6-1 depicts the Construction Year (Existing + Cumulative Projects) without Project traffic volumes, Figure 6-2 depicts the Construction Year + Project traffic volumes.

LLG Ref. 3-23-3740


ALBA PEAKER

Construction Year without Project Traffic Volumes

EEC ORIGINAL PKG

GREENSPAN

7.0 CAPACITY ANALYSIS

The following section presents the analysis of the study area intersections under Construction Year conditions.

7.1 Construction Year without Project Conditions

7.1.1 Peak Hour Intersection Operations

Table 7–1 summarizes the Opening Year without Project intersection operations. As shown in *Table 7–1*, the study intersections are calculated to operate acceptably at LOS B or better.

7.1.2 Street Segment Operations

Table 7-2 summarizes the Construction Year without Project street segment operations. As shown in *Table 7-2*, the Drew Road street segment is calculated to operate acceptably at LOS B on a daily basis.

7.2 Construction Year + Project Conditions

7.2.1 Peak Hour Intersection Operations

Table 7–1 summarizes the Construction Year + Project intersection operations. As shown in *Table 7–1*, the study intersections are calculated to continue to operate acceptably at LOS B or better.

7.3 Street Segment Operations

Table 7-2 summarizes the Construction Year + Project street segment operations. As shown in Table 7-2, the Drew Road street segment is calculated to continue to operate acceptably at LOS B on a daily basis.

LLG Ref. 3-23-3740

		Control	Movement/	Peak		ruction ear		tion Year oject	Δe
	Intersection	Туре	Approach	Hour	Delayª	LOS ^b	Delay ^a	LOS⁵	
1.	West Evan Hewes Hwy / Drew Road	AWSC	Overall	AM PM	9.9 9.8	A A	9.9 9.9	A A	0.0 0.1
2.	Drew Road / I-8 Westbound Ramps	owsc	MSSC ^d	AM PM	9.3 9.6	A A	9.3 9.8	A A	0.0 0.2
3.	Drew Road / I-8 Eastbound Ramps	owsc	MSSC	AM PM	10.3 11.9	B B	10.6 13.2	B B	0.3 1.3

TABLE 7-1 **CONSTRUCTION YEAR INTERSECTION OPERATIONS**

a. Average delay expressed in seconds per vehicle.

b. Level of Service.
c. AWSC - All-Way Stop Controlled intersection. Overall, LOS and delay reported.
d. MSSC - Minor-Street Stop Controlled intersection. Worst case LOS and delay reported.

UNSIGNALIZED

Delay	LOS
0.0 ≤ 10.0	А
10.1 to 15.0	в
15.1 to 25.0	С
25.1 to 35.0	D
35,1 to 50,0	Е
≥ 50.1	F

LINSCOTT, LAW & GREENSPAN, engineers

LLG Ref. 3-23-3740

Street Segment	Functional Capacity	Capacity (LOS E) ^a	Con	Construction Year Without Project	ear ct	Constru	Construction Year + Project	- Project	A V/C t	Impact?
			ADT ^b	LOS	V/C ^d	ADT ^b	°SO1	V/C ^d		
Drew Road										
West Evan Hewes Highway to I-8 Westbound Ramps	Local Collector	16,200	2,860	В	0.17	2,993	B	0.18	0.01	No

Capacity at which the roadway currently functions and based on County of Imperial Roadway Classification Table. Average Daily Traffic Volumes. Level of Service Volume to Capacity ratio. A denotes the increase in V/C due to Project.

ം പ്പ്പ്പ് ല്

LLG Ref. 3-23-3740 Alba Peaker the total of the design of the

30

8.0 CONCLUSIONS

8.1 VMT Assessment

8.1.1 Heavy Vehicles

Per OPR guidelines, "vehicle miles traveled" refers to the amount and distance of *automobile* travel attributable to a project. Here the term "automobile" refers to on-road passenger vehicles, specifically cars and light trucks. VMT does not include trips from heavy trucks. Therefore, the trips generated by the construction truck trips are excluded from VMT analysis.

8.1.2 Employee Passenger Vehicles

The Project's employee passenger vehicles are calculated to generate 100 ADT, as shown in *Table 5-1*. Therefore, the employee component of the Project can be considered a "small project", assumed to cause a less-than significant transportation impact per OPR guidelines.

The designated truck routes, which based on client discussions will be oriented to / from the east, are intended to restrict heavy vehicles from turning across multiple lanes of oncoming traffic at unsignalized intersections on. The truck route requirements will be included as a Condition of Approval and will be enforced through on-site signage, off-site signage as appropriate, and in contracts with outside trucking agencies.

- When leaving the site, trucks heading towards I-8 will utilize Street 'A', turn right onto Drew Road and head south to reach the I-8 ramps.
- Inbound trucks coming from the south will exit I-8 at Drew Road. Trucks will drive north along Drew Road before making a right-turn onto Street 'A'.

