PROJECT REPORT

TO: ENVIRONMENTAL EVALUATION

COMMITTEE

FROM: PLANNING & DEVELOPMENT SERVICES

AGENDA DATE: October 24, 2019

AGENDA TIME 1:30 PM / No. 1

PROJECT TYPE: Orni 5-Tru	ickhaven Geoth	ermal E	xplorator	y Wells &	Seismic	Testing	Project -
Initial Study #18-0025	5			SI	UPERVIS	SOR DIS	ST # <u>4</u>
LOCATION: Salton	Sea & Truck-ha	ven Geo	othermal	areas,_A	NPN: <u>017-</u>	340-00	3-, et.al
Salton Se	a Areas, CA			_PARCEL	SIZE:	vario	ıs
GENERAL PLAN (existing) Ope	en Space / Salto	n Sea l	Jrban Are GENE	ea Plan/ va RAL PLAI	arious N (proposed)		
ZONE (existing) S-1 Open Sp	ace/ State Land	ls/Parks	/ Govt. /	-ederal	ZON	IE (propos	sed) N/A
GENERAL PLAN FINDINGS		TENT	☐ INC	ONSISTENT	N	1AY BE/F	INDINGS
PLANNING COMMISSION D	DECISION:			HEARING I	DATE:		
	`APPRO'	V ED	☐ DEN	IIED	☐ O	THER	
PLANNING DIRECTORS DECISION:			HEARING DATE:				
	APPRO	/ED	☐ DE	NIED		THER	
ENVIROMENTAL EVALUAT	TON COMMITT	EE DEC	CISION:	HEARING [DATE:	10/2	4/2019
				INITIAL ST	UDY:	18-00	25
□ NE	EGATIVE DECLAF	RATION	MITIC	GATED NEG	. DECLAR	ATION	☐ EIR
DEPARTMENTAL REPORTS	S / APPROVAL	<u>S:</u>					
PUBLIC WORKS AG APCD E.H.S. FIRE / OES SHERIFF OTHER	NAHC,	NONE NONE NONE NONE NONE			ATTACHI ATTACHI ATTACHI ATTACHI ATTACHI	ED ED ED ED	

REQUESTED ACTION:

(See Attached)

Planning & Development Services
801 MAIN ST., EL CENTRO, CA.., 92243 442-265-1736
(Jim Minnick, Director)
Db\017\340\003\EEC hearing\projrep

☑ MITIGATED NEGATIVE DECLARATION

Initial Study & Environmental Analysis
For:

Truckhaven Geothermal Exploration Well Project

Prepared By:

COUNTY OF IMPERIAL

Planning & Development Services Department 801 Main Street El Centro, CA 92243

(442) 265-1736 www.icpds.com

November 2019

TABLE OF CONTENTS

	PAGE
SECTION 1	
I. INTRODUCTION	3
	•
SECTION 2	
II. ENVIRONMENTAL CHECKLIST	8
PROJECT SUMMARY ENVIRONMENTAL ANALYSIS	10
ENVIRONMENTAL ANALYSIS	13
I. AESTHETICS	22
II. AGRICULTURE AND FOREST RESOURCES	
III. AIR QUALITY	24
IV. BIOLOGICAL RESOURCES Would the project:	31
V. CULTURAL RESOURCES Would the project: VI. ENERGY Would the project:	34 35
VII. GEOLOGY AND SOILS Would the project:	36
VIII. GREENHOUSE GAS EMISSION	40
IX. HAZARDS AND HAZARDOUS MATERIALS Would the project:	42
X. HYDROLOGY AND WATER QUALITY Would the project:	44
XI. LAND USE AND PLANNING Would the project:	45
XII. MINERAL RESOURCES Would the project:	46
XIII. NOISEXIV. POPULATION AND HOUSING Would the project:	46
XV. PUBLIC SERVICES	57
XVI. RECREATION	
XVII. TRANSPORTATION Would the project:	53
XVIII. TRIBAL CULTURAL RESOURCES	54
XIX. UTILITIES AND SERVICE SYSTEMS Would the project:	55
XX. WILDFIRE	56
SECTION 3	
III. MANDATORY FINDINGS OF SIGNIFICANCE	22
IV. PERSONS AND ORGANIZATIONS CONSULTED	23 24
V. REFERENCES	25
VI. NEGATIVE DECLARATION - COUNTY OF IMPERIAL	26
27 FINDINGS	27
SECTION 4	
VIII. RESPONSE TO COMMENTS (IF ANY)	28
IX. MITIGATION MONITORING & REPORTING PROGRAM (MMRP) (IF ANY)	29

Figures

Figure 1: Vicinity Map	18
Figure 2: Proposed Well Locations	19
Figure 3: Geophysical Survey Travel Paths	20
Tables	
Table 1: Project Well Land Ownership and Access Information – Geothermal Wells	12
Table 2: Designations/Classifications for the Project Area	25
Table 3: Ambient Air Quality Monitoring Summary	27
Table 4: ICAPCD Thresholds of Significance	28
Table 5: Construction-Related Criteria Pollutant Emissions from the Geophysical Survey	28
Table 6: Construction-Related Criteria Pollutant Emissions from One Well Site	29
Table 7: Exploratory Wells Operations-Related Criteria Pollutant Emissions	29
Table 10: Proposed Project Greenhouse Gas Emissions	41
Table 11: Construction Equipment Emissions and Usage Factors	48
Table 12: Proposed Project Construction Noise Levels at Nearby Homes Prior to Mitigation	49
Table 13: Mitigated Proposed Project Construction Noise Levels at Nearby Homes	49
Table 14: Typical Construction Equipment Vibration Emissions	51
Table 8: Potential for Occurrence – Special Status Plant Species	64
Table 9: Potential for Occurrence – Special Status Wildlife Species	

SECTION 1 INTRODUCTION

A. PURPOSE

This document is a \square policy-level, \boxtimes project level !	nitial Study for evaluation of potential environmental impacts
resulting with the proposed _project	

B. CALIFORNIA ENVIRONMENTAL QUALITY ACT (CEQA) REQUIREMENTS AND THE IMPERIAL COUNTY'S GUIDELINES FOR IMPLEMENTING CEQA

As defined by Section 15063 of the State California Environmental Quality Act (CEQA) Guidelines and Section 7 of the County's "CEQA Regulations Guidelines for the Implementation of CEQA, as amended", an **Initial Study** is prepared primarily to provide the Lead Agency with information to use as the basis for determining whether an Environmental Impact Report (EIR), Negative Declaration, or Mitigated Negative Declaration would be appropriate for providing the necessary environmental documentation and clearance for any proposed project.

According to Section	15065, an EIR is deemed	I appropriate for a particular	proposal if the following	conditions
occur:				

- The proposal has the potential to substantially degrade quality of the environment.
- The proposal has the potential to achieve short-term environmental goals to the disadvantage of long-term environmental goals.
- The proposal has possible environmental effects that are individually limited but cumulatively considerable.
- The proposal could cause direct or indirect adverse effects on human beings.

According to Section 15070(a), a Negative Declaration is deemed appropriate if the proposal would not result
in any significant effect on the environment.

\times	According to Section 15070(b), a Mitigated Negative Declaration is deemed appropriate if it is determined
	that though a proposal could result in a significant effect, mitigation measures are available to reduce these
	significant effects to insignificant levels.

This Initial Study has determined that the proposed applications will not result in any potentially significant environmental impacts and therefore, a Negative Declaration is deemed as the appropriate document to provide necessary environmental evaluations and clearance as identified hereinafter.

This Initial Study and Negative Declaration are prepared in conformance with the California Environmental Quality Act of 1970, as amended (Public Resources Code, Section 21000 et. seq.); Section 15070 of the State & County of Imperial's Guidelines for Implementation of the California Environmental Quality Act of 1970, as amended (California Code of Regulations, Title 14, Chapter 3, Section 15000, et. seq.); applicable requirements of the County of Imperial; and the regulations, requirements, and procedures of any other responsible public agency or an agency with jurisdiction by law.

Pursuant to the County of Imperial <u>Guidelines for Implementing CEQA</u>, depending on the project scope, the County of Imperial Board of Supervisors, Planning Commission and/or Planning Director is designated the Lead Agency, in accordance with Section 15050 of the CEQA Guidelines. The Lead Agency is the public agency which has the principal responsibility for approving the necessary environmental clearances and analyses for any project in the County.

C. INTENDED USES OF INITIAL STUDY AND NEGATIVE DECLARATION

This Initial Study and Negative Declaration are informational documents which are intended to inform County of Imperial decision makers, other responsible or interested agencies, and the general public of potential environmental effects of the proposed applications. The environmental review process has been established to enable public agencies to evaluate environmental consequences and to examine and implement methods of eliminating or reducing any potentially adverse impacts. While CEQA requires that consideration be given to avoiding environmental damage, the Lead Agency and other responsible public agencies must balance adverse environmental effects against other public objectives, including economic and social goals.

The Initial Study and Negative Declaration, prepared for the project will be circulated for a period of 30 days for public and agency review and comments. At the conclusion, if comments are received, the County Planning & Development Services Department will prepare a document entitled "Responses to Comments" which will be forwarded to any commenting entity and be made part of the record within 10-days of any project consideration.

D. CONTENTS OF INITIAL STUDY & NEGATIVE DECLARATION

This Initial Study is organized to facilitate a basic understanding of the existing setting and environmental implications of the proposed applications.

SECTION 1

I. INTRODUCTION presents an introduction to the entire report. This section discusses the environmental process, scope of environmental review, and incorporation by reference documents.

SECTION 2

II. ENVIRONMENTAL CHECKLIST FORM contains the County's Environmental Checklist Form. The checklist form presents results of the environmental evaluation for the proposed applications and those issue areas that would have either a significant impact, potentially significant impact, or no impact.

PROJECT SUMMARY, LOCATION AND EVIRONMENTAL SETTINGS describes the proposed project entitlements and required applications. A description of discretionary approvals and permits required for project implementation is also included. It also identifies the location of the project and a general description of the surrounding environmental settings.

ENVIRONMENTAL ANALYSIS evaluates each response provided in the environmental checklist form. Each response checked in the checklist form is discussed and supported with sufficient data and analysis as necessary. As appropriate, each response discussion describes and identifies specific impacts anticipated with project implementation.

SECTION 3

- **III. MANDATORY FINDINGS** presents Mandatory Findings of Significance in accordance with Section 15065 of the CEQA Guidelines.
- IV. PERSONS AND ORGANIZATIONS CONSULTED identifies those persons consulted and involved in preparation of this Initial Study and Negative Declaration.
- V. REFERENCES lists bibliographical materials used in preparation of this document.

VI. NEGATIVE DECLARATION - COUNTY OF IMPERIAL

E. SCOPE OF ENVIRONMENTAL ANALYSIS

For evaluation of environmental impacts, each question from the Environmental Checklist Form is summarized and responses are provided according to the analysis undertaken as part of the Initial Study. Impacts and effects will be evaluated and quantified, when appropriate. To each question, there are four possible responses, including:

- 1. **No Impact:** A "No Impact" response is adequately supported if the impact simply does not apply to the proposed applications.
- 2. **Less Than Significant Impact:** The proposed applications will have the potential to impact the environment. These impacts, however, will be less than significant; no additional analysis is required.
- 3. **Less Than Significant With Mitigation Incorporated:** This applies where incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact".
- 4. **Potentially Significant Impact**: The proposed applications could have impacts that are considered significant. Additional analyses and possibly an EIR could be required to identify mitigation measures that could reduce these impacts to less than significant levels.

F. POLICY-LEVEL or PROJECT LEVEL ENVIRONMENTAL ANALYSIS

This Initial Study and Negative Declaration will be conducted under a \square policy-level, \bowtie project level analysis. Regarding mitigation measures, it is not the intent of this document to "overlap" or restate conditions of approval that are commonly established for future known projects or the proposed applications. Additionally, those other standard requirements and regulations that any development must comply with, that are outside the County's jurisdiction, are also not considered mitigation measures and therefore, will not be identified in this document.

G. TIERED DOCUMENTS AND INCORPORATION BY REFERENCE

Information, findings, and conclusions contained in this document are based on incorporation by reference of tiered documentation, which are discussed in the following section.

1. Tiered Documents

As permitted in Section 15152(a) of the CEQA Guidelines, information and discussions from other documents can be included into this document. Tiering is defined as follows:

"Tiering refers to using the analysis of general matters contained in a broader EIR (such as the one prepared for a general plan or policy statement) with later EIRs and negative declarations on narrower projects; incorporating by reference the general discussions from the broader EIR; and concentrating the later EIR or negative declaration solely on the issues specific to the later project."

Tiering also allows this document to comply with Section 15152(b) of the CEQA Guidelines, which discourages redundant analyses, as follows:

"Agencies are encouraged to tier the environmental analyses which they prepare for separate but related projects including the general plans, zoning changes, and development projects. This approach can eliminate repetitive discussion of the same issues and focus the later EIR or negative declaration on the actual issues ripe for decision at each level of environmental review. Tiering is appropriate when the sequence of analysis is from an EIR prepared for a general plan, policy or program to an EIR or negative declaration for another plan, policy, or program of lesser scope, or to a site-specific EIR or negative declaration."

Further, Section 15152(d) of the CEQA Guidelines states:

"Where an EIR has been prepared and certified for a program, plan, policy, or ordinance consistent with the requirements of this section, any lead agency for a later project pursuant to or consistent with the program, plan, policy, or ordinance should limit the EIR or negative declaration on the later project to effects which:

- (1) Were not examined as significant effects on the environment in the prior EIR; or
- (2) Are susceptible to substantial reduction or avoidance by the choice of specific revisions in the project, by the imposition of conditions, or other means."

2. Incorporation By Reference

Incorporation by reference is a procedure for reducing the size of EIRs/MND and is most appropriate for including long, descriptive, or technical materials that provide general background information, but do not contribute directly to the specific analysis of the project itself. This procedure is particularly useful when an EIR or Negative Declaration relies on a broadly-drafted EIR for its evaluation of cumulative impacts of related projects (*Las Virgenes Homeowners Federation v. County of Los Angeles* [1986, 177 Ca.3d 300]). If an EIR or Negative Declaration relies on information from a supporting study that is available to the public, the EIR or Negative Declaration cannot be deemed unsupported by evidence or analysis (*San Francisco Ecology Center v. City and County of San Francisco* [1975, 48 Ca.3d 584, 595]). This document incorporates by reference appropriate information from the "Final Environmental Impact Report and Environmental Assessment for the "County of Imperial General Plan EIR" prepared by Brian F. Mooney Associates in 1993 and updates.

When an EIR or Negative Declaration incorporates a document by reference, the incorporation must comply with Section 15150 of the CEQA Guidelines as follows:

- The incorporated document must be available to the public or be a matter of public record (CEQA Guidelines Section 15150[a]). The General Plan EIR and updates are available, along with this document, at the County of Imperial Planning & Development Services Department, 801 Main Street, El Centro, CA 92243 Ph. (442) 265-1736.
- This document must be available for inspection by the public at an office of the lead agency (CEQA Guidelines Section 15150[b]). These documents are available at the County of Imperial Planning & Development Services Department, 801 Main Street, El Centro, CA 92243 Ph. (442) 265-1736.
- These documents must summarize the portion of the document being incorporated by reference or briefly describe information that cannot be summarized. Furthermore, these documents must describe the relationship between the incorporated information and the analysis in the tiered documents (CEQA Guidelines Section 15150[c]). As discussed above, the tiered EIRs address the entire project site and provide background and inventory information and data which apply to the project site. Incorporated information and/or data will be cited in the appropriate sections.
- These documents must include the State identification number of the incorporated documents (CEQA Guidelines Section 15150[d]). The State Clearinghouse Number for the County of Imperial General Plan EIR is SCH #93011023.
- The material to be incorporated in this document will include general background information (CEQA Guidelines Section 15150[f]). This has been previously discussed in this document.

II. Environmental Checklist

- 1. Project Title: Truckhaven Geothermal Exploration Well Project
- 2. Lead Agency: Imperial County Planning & Development Services Department
- 3. Contact person and phone number: __David Black__, Planner _IV_, (442)265-1736, ext. 1746__
- 4. Address: 801 Main Street, El Centro CA, 92243
- 5. E-mail: davidblack@co.imperial.ca.us
- 6. **Project location**: The Proposed Project area is within the Truckhaven Geothermal Exploration Area in western Imperial County, California. The proposed geophysical survey would occur over a 23.5-square mile area within the USGS Geologic Survey 7.5' quadrangle for Kane Springs NW (Figure 3). The exploratory well sites would be located in six parcels, listed below (Figure 2).

Well Site	Assessor's Parcel Number (APN)
32-5	017-970-001 (209.4 acres)
47-5	017-970-012 (50 acres)
18-32	017-010-053 (520 acres)
47-32	017-010-053 (520 acres)
14-4	017-340-003 (213.6 acres)
17-4	017-340-003 (213.6 acres)

7. Project sponsor's name and address:

ORNI 5

6225 Neil Road

Reno, NV 89511

8. General Plan designation:

Recreation/Open Space

- 9. Zoning:
- S-1 Open Space/Recreational

10. Description of project:

The Applicant proposes to conduct a geophysical survey (survey) and drill and test up to six geothermal exploration wells (exploratory wells) on private and State lands in the Truckhaven Geothermal Exploration Area, located south-southwest of Salton City in western Imperial County, California. Each of the proposed geothermal exploration wells would be located on separate, individual well pads that would be constructed on lands under geothermal lease to the Applicant.

11. Surrounding land uses and setting: Briefly describe the project's surroundings:

Surrounding land uses include Light Industrial to the north and Open Space/Recreational to the east, south, and west.

12. Other public agencies whose approval is required (e.g., permits, financing approval, or participation agreement.):

California Department of Conservation, Division of Oil, Gas and Geothermal Resources (CDOGGR) Imperial County Air Pollution Control District

California Regional Water Quality Control Board, Colorado River Basin Region

California Department of Fish and Wildlife California State Parks

13. Have California Native American tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code section 21080.3.1? If so, is there a plan for consultation that includes, for example, the determination of significance of impacts to tribal cultural resources, procedures regarding confidentially, etc.? Yes, the County sent formal AB 52 consultation letters to Torres - Martinez Tribes and Quechan Tribes on August 7th, 2019. To date no responses have been received by the County.

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The environmental factors checked below would be potentially affected by this project, involving at lea	st one impact
that is a "Potentially Significant Impact" as indicated by the checklist on the following pages.	•

	Aesthetics		Agriculture and Forestry Reso	urces	Air Quality
×	Biological Resources		Cultural Resources		Energy
×	Geology /Soils		Greenhouse Gas Emissions		Hazards & Hazardous Materials
	Hydrology / Water Quality		Land Use / Planning		Mineral Resources
×	Noise		Population / Housing		Public Services
	Recreation		Transportation		Tribal Cultural Resources
	Utilities/Service Systems		Wildfire		Mandatory Findings of Significance
For DECLIPION FOR MITTING MITT	ARATION will be prepare bund that although the peant effect in this case be GATED NEGATIVE DECOUNTY TO BE TO	project (ed. roposed cause re CLARAT project N project nment, the tandards hed shee project addre	project could have a significant of the project at least one effect 1) of the project has been address. An ENVIRONMENT seed.	gnificant effect on gnificant effect on we been made by confect on the environment of the significant imparts and the seen adequates and the seen adequates and the seen adequates. The seen adequates and seen adequates and seen adequates and seen adequates.	the environment, and a <u>NEGATIVE</u> the environment, there will not be a or agreed to by the project proponent conment, and an <u>ENVIRONMENTAL</u> act" or "potentially significant unless tely analyzed in an earlier documen tion measures based on the earlie ORT is required, but it must analyzed
signific applica DECLA	ant effects (a) have been been been able standards, and (b	en analy) have	zed adequately in an e been avoided or miti	arlier EIR or NEG gated pursuant f	e environment, because all potentially ATIVE DECLARATION pursuant to that earlier EIR or NEGATIVE upon the proposed project, nothing
CALIF	ORNIA DEPARTMENT (OF FISH	AND WILDLIFE DE MII	NIMIS IMPACT FI	NDING: ☐ Yes ⊠ No
	EEC VOTES PUBLIC WORKS ENVIRONMENTAL	L HEAL		O ABSENT	
	SVCS OFFICE EMERGE	NCY			
	SERVICES APCD			¬ П	
	AFOD			⊣ ⊢	

ICPDS

SHERIFF DEPARTMENT

Jim Minnick, Director of Planning/EEC Chairman

10-26-19

Date:

PROJECT SUMMARY

The Applicant proposes to drill and test up to six geothermal exploration wells on private and State lands in the Truckhaven Geothermal Exploration Area, located south-southwest of Salton City in western Imperial County, California (see Figure 1). Each of the proposed geothermal exploration wells would be located on separate, individual well pads that would be constructed on lands under geothermal lease to the Applicant.

The purpose of the Proposed Project is to conduct a geophysical survey and drill, complete, test and monitor up to six proposed geothermal resource wells. The geophysical survey would construct a high-resolution image of the subsurface geologic features within the Truckhaven Geothermal Lease area to identify potential geothermal reservoirs of commercial quantity. The exploratory geothermal wells would drill into and flow test the anticipated underlying geothermal reservoir to confirm the characteristics of the geothermal reservoir and detect if the geothermal resource is commercially viable.

The well sites have been tentatively selected based on past geologic investigations going back to the 1980s, including geologic mapping, geophysical surveys and temperature gradient holes. Although the six geothermal exploration well targets have been selected as best as possible at the present time, as with all geothermal exploration, geothermal reservoir targets are often refilled (and geothermal exploration wells relocated) as more data are collected and analyzed. The proposed well sites are exploratory and may or may not identify a commercially viable geothermal resource area for future development.

A. Project Location:

The Proposed Project (see Figure 1) would be located in the "Truckhaven Geothermal Leasing Area" analyzed by the BLM in the "Final Environmental Impact Statement for the Truckhaven Geothermal Leasing Area" (October 2007). The proposed well sites (see Figures 2 and 3) are located in an area analyzed in the Geothermal Overlay Zone for Imperial County's "Final Programmatic Environmental Impact Report - Renewable Energy and Transmission Element Update" (July 2015). The six exploration wells would be built within the six parcels listed in Table 1. Each of the six exploration well pads would be approximately 400 feet by 400 feet, for a surface area of approximately 3.7 acres per well and a total surface area of approximately 22.2 acres. The geophysical survey would occur within a 23.5-square mile (15,040-acre) survey area in the Truckhaven Geothermal Leasing Area. The actual survey truck paths would be approximately 10 feet wide and 200 feet long, covering a total of approximately 189 acres.

Land uses surrounding the Proposed Project include Light Industrial to the north and Open Space/Recreational to the east, south, and west. The Ocotillo Wells State Vehicular Recreational Area borders the Proposed Project area on the southern and western edges. The proposed well sites are currently vacant, unirrigated, desert land that is sparsely vegetated and primarily flat. Tule Wash and Surprise Ditch flow northeast and eventually empty into the Salton Sea. The well sites were selected to minimize surface disturbance, reduce the potential for adverse environmental effects, and make the best use of existing access within the limitation of testing the targeted geothermal resource. To the degree possible existing roads, trails and disturbances are used for access.

Primary highway access to the proposed well sites are off State Highway 86 to Airpark Drive or County Dump Road (see Figure 2). Existing access roads would be utilized to the extent practical. The access roads would be constructed or improved with gravel and/or maintained as needed to safely accommodate the traffic required for the exploration well drilling activities. Road beds would typically be approximately twenty (20) feet across. Table 1 shows the land ownership and general information for access to each well site.

Table 1: Project Well Land Ownership and Access Information - Geothermal Wells

Well Site	Assessor's Parcel Number (APN)	Surface Land Owner	Geothermal Rights Owner	Well Site Access	Nearest Residence
32-5	017-970-001 (209.4 acres)	Burrtec Waste Industries	Burrtec Waste Industries	Airpark Drive to Dessert Air Court.	0.34 mile
47-5	017-970-012 (50 acres)	Burrtec Waste Industries	Burrtec Waste Industries	From Dump Road	0.44 mile
18-32	017-010-053 (520 acres)	ORNI 5	State of California	Airpark Drive to Skywalk Drive to La Guardia Ave to Starlight Drive	0.40 mile
47-32	017-010-053 (520 acres)	ORNI 5	State of California	Airpark Drive to Skywalk Drive	0.20 mile
14-4	017-340-003 (213.6 acres)	State of California	State of California	Airpark Drive to Skywalk Drive	0.28 mile
17-4	017-340-003 (213.6 acres)	State of California	State of California	New driveway from County Dump Road	0.58 mile

Additionally, the geophysical survey will occur within a 23.5-square mile (15,040-acre) survey area covering over 200 parcels in the Truckhaven Geothermal Leasing Area as shown in Figure 3, with township and range sections noted.

B. Project Summary:

The Proposed Project includes a geophysical survey and drilling and testing of up to six geothermal exploration wells on private and State lands.

Geophysical Survey

A 23.5-square-mile, three-dimensional (3D) geophysical survey would be conducted in conjunction with vibration monitoring and drilling activities, described below. The purpose of the geophysical survey is to construct a high-resolution image of the subsurface geologic features within the Truckhaven Geothermal Lease area. This image would allow ORNI 5 to effectively verify and/or supplement the existing geologic data to design a more predictive geologic model which could be used to identify potential geothermal reservoirs of commercial quantity. Additionally, the predictive geologic model would reduce future environmental impacts by minimizing "hit and miss" exploration activities.

The survey would include approximately 3,168 receiver points distributed over approximately 119.09 linear miles of receiver lines and 3,243 source points distributed over approximately 121.97 linear miles of source lines. Two approximately 60,000-pound peak force truck-mounted vibrators equipped with hydraulically lowered pads would be used as the energy source.

Two sets of two Vibroseis trucks (four in total) would operate in tandem to travel along the GPS-established geophysical lines, stopping at given points to lower the vibrator pads centered under each vehicle. The vibrator pad would lift the truck; and source generation would be triggered from a central control truck stationed at the Salton Sea Airport (Airport), causing all trucks to vibrate in unison; this creates the energy source, which sends selected vibration signals propagating though the ground. The resulting energy wave would be recorded by the receivers and transmitted wirelessly to the data collection point located at the Airport. Source generation from vibrators will occur between 3 and 5-minute intervals, depending on access, detours, and terrain. Approximately 301 receiver channels may be actively collecting data at any given time.

Placement of receivers, consisting of six geophones each, will occur by helicopter during the data acquisition operations. A helicopter would move cache bags containing four to six receivers along parallel receiver lines. The cache bags will be suspended from a helicopter with a long line and deposited one at a time to predetermined GPS locations provided by the civil surveyors. Field survey crew members will walk to the placed cache bags to prepare and connect the transmitter station and geophones. Cables and attached geophones will be laid out by hand around each station in a predetermined pattern. Each geophone will be mounted on a 3-inch spike and placed into the soil using

foot pressure. In areas of rock outcrops, battery-operated hand drills may be used to provide a pilot hole for the geophone spike if they cannot be coupled to the ground sufficiently. Staggered deployment and pick-up of receiving stations would occur as the source sequence proceeds during data acquisition.

Field data acquisition with the use of Vibroseis trucks and receiver equipment would take an estimated 12 to 14 days.

Vibration Monitoring

Similar seismic technology will be employed for vibration monitoring conducted prior to the drilling activities. Specifically, vibration monitoring services will be conducted to collect peak particle velocity (PPV) measurements while a Vibroseis truck vibrates the ground surface (referred to as a "sweep").

The vibration monitoring would use a Blastmate III vibration monitor (data logger) with a tricomponent (transverse, longitudinal, and vertical) sensor. The sensor would be installed at two locations during vibration monitoring: 25 feet and 50 feet from the Vibroseis truck vibration pad. The sensor would be secured to the ground surface with 3-inch long pins and leveled. The longitudinal axis would be oriented toward the Vibroseis truck (parallel to the length of the truck). Two different operating capacities of the Vibroseis truck would be tested; the Vibroseis truck operating at 70% capacity and at 35-percent capacity. This allows for a PPV comparison relative to operating capacities of the Vibroseis truck. Several Vibroseis sweeps, which would span approximately 12 seconds with a frequency bandwidth of 6 to 96 Hertz (Hz), would be conducted and monitored.

The vibration monitor is programmed to monitor, record, and save the data internally. The collected data would be later downloaded to a laptop computer. Several roughly 12-second long sweeps would be monitored at each station location. The PPV and corresponding frequency would be stored and the peak vector sum (PVS) calculated. The PVS is the resultant magnitude of the peak particle velocity for the three sensor components (calculated by squaring and adding the magnitudes of the individual components and taking the square root).

Results would be presented for the three components (transverse, vertical and longitudinal) during the multiple sweeps and the corresponding frequency, as well as the PVS. It should be noted that prior to conducting the sweeps, a sample of the background vibrations would be performed. It is assumed for a remote location that the background value would be very low.

The California Department of Transportation (Caltrans) Transportation and Construction Vibration Manual (September 2013) and the USBM OSMRE Blasting Guidance Manual (March 1987) provide velocity attenuation relationships that can be used to estimate PPV at various distances and site conditions. Also included in these Manuals are vibration criteria and standards related to potential impacts from vibrations on structures and people.

The vibration monitoring would be conducted in general accordance with current practice and the standard of care exercised by consultants performing similar tasks in the project area.

Restoration of the Geophysical Survey Area

Once seismic testing activities associated with the geophysical survey and vibration monitoring are complete, areas of disturbance will be restored to be consistent with conditions prior to the project activities. If any vegetation is removed during the seismic testing activities, it will be restored to match pre-project conditions.

Well Pad Layout and Construction

One well pad will be constructed for each of the six drill sites. Each exploration well pad will be approximately 400 feet by 400 feet for a surface area of about 3.7 acres per well pad and 22.2 acres for six wells total.

Well pad preparation activities would include clearing, earthwork, drainage and other improvements necessary for efficient and safe operation. The site selection process included minimizing cut and fill requirements. Additionally, the

applicant would implement Applicant Prepared Measure (APM) 1, which requires the preparation of an erosion control plan, which would identify site-specific best management practices to reduce erosion impacts, before grading to adequately control erosion during construction. However, it should be noted that the well pads would be constructed to conduct drainage to the cellar where it will be pumped to the containment basin. No off-site soil erosion is anticipated.

Construction of each well will occur sequentially so that wells are constructed one at a time. Each proposed well site would be prepared to create a level pad for the drill rig, and a graded gravel (if needed) surface for the support equipment. Runoff from undisturbed areas around the constructed sites would be directed into ditches and energy dissipaters (if needed) around the proposed well site, consistent with California Regional Water Quality Control Board, Colorado River Basin Region (CRWQCB) and Imperial County, as appropriate, best management practices for stormwater. All machinery, drilling platforms, and oil and fuel storage would be in areas tributary to the containment basin in order to prevent the movement of storm water from these areas off of the construction site. The proposed well site would be graded to direct runoff from the pad into the cellar which would be pumped to the containment basin.

The proposed well sites would be graded to direct runoff from the pad into the cellar which would be pumped to the containment basin. Containment basins would be constructed at each proposed well site for the containment and temporary storage of drilling mud and cuttings and stormwater runoff from the construction site. Each containment basin would be approximately 100 feet by 250 feet by 7 feet deep and would hold roughly 420,000 gallons with a 2-foot freeboard. Each containment basin would be lined with a 40-millimeter synthetic liner, in accordance with requirements of the CRWQCB. Compliance with California construction stormwater notification and permitting requirements would be performed for each proposed wellsite and new access road (Figure 2).

Well Drilling

The hole will be drilled with a mud rotary drilling rig, as previously used in the Imperial Valley. The rig will be equipped with diesel engines, storage tanks, mud pumps, and other typical auxiliary equipment. During drilling, if necessary)the top of the derrick will be approximately 175 feet above ground level.

The hole will be drilled using a gel- or polymer-based drilling fluid (drill mud). This fluid circulates the rock cuttings out of the bore hole and into the surface tanks or a reserve pit, where they are separated from the mud and collected. The mud is then recirculated. Underbalanced drilling may also be utilized in an effort to minimize water needs and to reduce risk of formation damage from drilling mud.

To construct the well, a 42-inch-diameter hole is first drilled to approximately ±80 feet below ground level (101 feet KB), and a 30-inch conductor is cemented in place. The rotary rig is then rigged up, a 30-inch rotating head is welded on the conductor, and a 26-inch hole is drilled to approximately ±360 feet KB. The 22-inch casing is cemented in place, and blowout prevention equipment (BOPE) is installed.

After testing the BOPE, a 20-inch hole will be drilled to approximately ±2,200 feet and 16-inch casing cemented in place. Following installation and testing of the BOPE, a 14-1/4-inch hole will be directionally drilled utilizing underbalanced drilling to a total depth of approximately 4,200 feet. A slotted 13-3/8-inch liner will be hung from ±2,200 feet to 4,150 feet.

At the conclusion of drilling, a short flow test will be conducted to clean the hole and provide reservoir information. Both reservoir temperature and pressure will be measured during and after this test. The collected cuttings and drill mud will then be tested prior to being transported off site for disposal. Depending on the analytical results, the materials will be disposed at either a landfill or another approved disposal site.

Geothermal well drilling would be conducted from the constructed well pads described above. Drilling operations would take place for 24 hours per day, 7 days per week. Each geothermal well would take approximately 30 days to complete. The drilling operation would employ about 25 people in 6-person shifts. Well pad construction and drilling would generate a small number of daily one-way vehicle trips (as many as 40 or more trucks and 12 to 16 small trucks/service vehicles/worker vehicles). It is assumed the Proposed Project would require four off-highway trucks (Vibroseis trucks)

operating eight hours per day, six vendor trucks per day to deliver equipment, and 20 worker trips per day.

The California Department of Conservation, Division of Oil, Gas and Geothermal Resources (CDOGGR) regulates geothermal well drilling operations on private and state lands in California. CDOGGR authorizes the drilling of the wells under a Notice of Intent. CDOGGR reviews and approves the drilling program for each well including the blowout prevention equipment (BOPE) to ensure the drilling operations are safe, protect the community, and protect land and water resources. BOPE includes a 30-inch weld-on rotating head (diverter) that would be used to drill the surface hole to ±360 feet. An API 2M CSO bilind ram, pipe rams, and annular preventer with rotating head will be used below ±360 feet to total depth. BOPE testing will be witnessed by the State of California's Division of Oil, Gas, and Geothermal Resources or their designated agent.

Standard geothermal well drilling equipment and well drilling operations (listed below) would be used for the Proposed Project. The wells would be drilled using a large rotary drilling rig whose diesel engines are permitted under the California Air Resources Board (CARB) Portable Equipment Registration Program (PERP). The wells would be drilled with water- or gel-based drilling mud to circulate the drill cuttings to the surface. During drilling, the top of the drill rig derrick would be as much as 175 feet above the ground surface (including non-LED aircraft safety lighting), and the rig floor could be 20 to 30 feet above the ground surface. The typical drill rig and associated support equipment (rig floor and pipe stands; draw works; derrick; drill pipe; trailers; drilling mud, fuel and water tanks; diesel generators; air compressors; etc.) would be brought to the prepared well pad on approximately 40 or more large tractor-trailer trucks. The placement of this equipment on each prepared well pad would depend on rig-specific requirements and site-specific conditions.

Standard Geothermal Well Drilling Equipment

- Rig floor and pipe stands
- Draw works
- Derrick

- Drill pipe
- Trailers
- Drilling mud

- Fuel and water tanks
- Diesel generators
- Air compressors

Each geothermal well would also be drilled and cased to the design depth of approximately 5,000 to 7,000 feet. A geothermal well drilling and completion program for each well would be submitted to CDOGGR. BOPE inspected and approved by CDOGGR would be utilized while drilling below the surface casing. Well casing (typically 20") would be cemented to a depth of approximately 1,800 feet below Kelly bushing (bkb). A slotted liner (typically 9 5/8 inch) would be hung from approximately 1,750 feet to near total depth. All these numbers are subject to change and would be formalized when the drilling programs are submitted to CDOGGR or BLM, as appropriate.

The well bore would be drilled using non-toxic, temperature stable gel-based drilling mud or gel and polymer drilling fluid to circulate the rock cuttings to the surface where they are removed from the drilling mud. The mud is then recirculated. A containment basin would be excavated and rock cuttings would be captured in the containment basin. Additives would be added to the drilling mud as needed to prevent corrosion, increase mud weight, and prevent mud loss. The inside diameter of the wells would be approximately 30 inches at the top and would telescope with depth. The typical design depth of both the production and injection wells is projected to be about 5,000 to 7,000 feet. Each geothermal well would be drilled and cased to the design depth or the depth selected by the project geologist. The final determination of well depth and well completion would be based on geological and reservoir information obtained as wells are drilled.

Drill Pad and Access Road Aggregate

Aggregate required for well pad (estimated at 5,926 cubic yards per well pad) and access road construction would likely be purchased from the Aggregate Products Inc. Salton Sea quarry facility, located approximately 2 miles west of the town of Salton Sea Beach and 10 miles north-northwest of the Proposed Project. It is assumed the Proposed Project would require four off-highway trucks (Vibroseis trucks) operating eight hours per day, six vendor trucks per day to deliver equipment, and 20 worker trips per day.

Water Requirements and Sources

Water required for well pad and access road construction and well drilling would typically average about 50,000 gallons per day. Water necessary for these activities would be purchased from the Coachella Valley Water District via a fire hydrant. Water would be picked up from the source and delivered over existing roads to each construction location or drilling site by a water truck which would be capable of carrying approximately 4,000 gallons per load. This includes the water needed for road grading, construction and dust control.

Well Testing

Wells would be initially flow tested while the drill rig is still over the well. The residual drilling mud and cuttings would be flowed from the well bore and discharged into the containment basin. This cleanout flow test may be followed by one or more short-term flow tests, each lasting from several hours to a day and also conducted while the drill rig is over the well. These tests typically consist of producing the geothermal well into portable steel tanks brought onto the well site while monitoring geothermal fluid temperatures, pressures, flow rates, chemistry and other parameters. Steam and noncondensable gasses, such as hydrogen sulfide and carbon dioxide, from the geothermal fluid would be discharged to the atmosphere. Produced fluid from the short-term flow test would be pumped back into the well.

An injectivity test could also be conducted by injecting the produced geothermal fluid from the steel tanks back into the well and the geothermal reservoir. The drill rig would likely be moved from the well site following completion of these short-term test(s). Following the short-term test(s), all equipment would be removed and the well shut in. Temperature profiles of the wellbore would be measured during the shut-in period.

After the rig has moved, a longer-term test could be conducted using a test facility consisting of approximately ten, 21,000-gallon steel tanks, injection pumps, coil tubing, nitrogen pumps, filtration units, flow meters, recorders, and sampling apparatus. This test could last for 30 days. Steam and noncondensable gasses from the geothermal fluid would typically be discharged to the atmosphere. The remaining geothermal fluid would be injected back into either the well from which it was produced or into a second well via temporary pipeline routed above ground along the well site access roads or, if following access roads is not feasible, along other previously disturbed routes (see Figure 2).

Geothermal Well Monitoring

Following completion of the short-term geothermal well testing, all of the drilling and testing equipment would be removed from the site. The surface facilities remaining on the site would typically consist of several valves on top of the surface casing; which would be chained and locked and surrounded by an approximately 12-foot by 6-foot high fence to prevent unauthorized access and vandalism. Pressure and temperature sensors may be installed in the hole at fixed depths to monitor any changes in these parameters over time. A temperature profile of the well may also be run. This monitoring may be continued indefinitely.

Abandonment Program

After drilling operations are completed on each well, the liquids from the containment basin would either be evaporated, pumped back down the well, and/or disposed of in accordance with the requirements of the CRWQCB or Imperial County Public Health Department, as applicable.

The solid contents remaining in each containment basin, typically consisting of non-hazardous, non-toxic drilling mud and rock cuttings, would be tested as required by the CRWQCB. The solids would be removed and disposed of in a waste disposal facility authorized by the CRWQCB to receive and dispose of these materials. If allowed they may be used as daily cover at the nearby landfill. After the materials in the containment basins have been removed the containment basin area may be reclaimed depending on if there may be a need for its use in the future.

Upon the completion of each well drilled and flow-tested, a decision would be made by the Applicant regarding the commercial potential of each well. If a well is judged by the Applicant to have any commercial potential, well operations

would likely be suspended pending application for and receipt of regulatory approvals to place the well into commercial service through a new pipeline to a new geothermal power plant or direct use facility. The well would likely continue to be monitored while these approvals are being processed. If a well is judged to not have commercial potential, it may continue to be monitored, or it may be abandoned in conformance with the well abandonment requirements of the CDOGGR. Abandonment of a geothermal well involves plugging the well bore with clean drilling mud and cement sufficient to ensure that fluids would not move across into different aquifers. The well head (and any other equipment) would be removed, and the casing cut off at least 6 feet below ground surface.

Following abandonment of the well, the well site itself would be reclaimed, typically by re-grading the entire well pad and access road area to approximately the same topography as existed prior to construction of the site, including the spreading the topsoil (if any) over the surface. Revegetation would be in conformance with the requirements of the surface managing agency.

Figure 1: Vicinity Map

Figure 2: Proposed Well Locations	

EVALUATION OF ENVIRONMENTAL IMPACTS:

- A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources a lead agency cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).
- 2) All answers must take account of the whole action involved, including offsite as well as onsite, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.
- Once the lead agency has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.
- 4) "Negative Declaration: Less Than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less than significant level (mitigation measures from "Earlier Analyses," as described in (5) below, may be cross-referenced).
- 5) Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration. Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:
 - a) Earlier Analysis Used. Identify and state where they are available for review.
 - b) Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.
 - c) Mitigation Measures. For effects that are "Less than Significant with Mitigation Measures Incorporated," describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.
- 6) Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances). Reference to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.
- 7) Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.
- 8) This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.
- 9) The explanation of each issue should identify:
 - a) the significance criteria or threshold, if any, used to evaluate each question; and
 - b) the mitigation measure identified, if any, to reduce the impact to less than significance

Significant Less Than Significant Significant Unless Mitigation Impact Incorporated Impact No Impact (PSUMI) (PSI) (LTSI) (NI) I. AESTHETICS Except as provided in Public Resources Code Section 21099, would the project: Have a substantial adverse effect on a scenic vista? X a) Imperial County includes over 4,597 square miles between Riverside County to the north, Arizona to the east, Mexico to the south, and San Diego County to the west. The County's visual character varies greatly and includes natural scenic visual resources such as deserts, sand dunes, mountains, and the Salton Sea. Visual character within Imperial County is defined as low, moderate, and high. Areas with a moderate to high value for maintenance of visual quality could represent opportunities for conservation and open space areas. Two scenic viewpoints along the Borrego Salton Sea Way (S-22) overlook the Proposed Project area: Badlands Viewpoint and Calcite Mine Road Look Out. These viewpoints are approximately 10 miles northwest of the Proposed Project. Geophysical Survey: Although the geophysical survey would occur within the viewsheds of two overlooks along S-22, the Imperial County General Plan identifies the proposed geophysical survey location as within an area of "Low Value" visual quality (County of Imperial 2016). Additionally, the survey is anticipated to deploy four vibrator trucks and a series of small, geophone sensors for a duration of 12 to 14 days; therefore, any visual impacts would be minor and temporary. All tire tracks generated by vibrator trucks would also be hand raked following the completion of the survey to blend the tracks into the surrounding soil surface. The geophysical survey associated with the Proposed Project would have a less than significant impact on a scenic vista. Exploratory Wells: Although the exploratory wells would be constructed within the viewsheds of two overlooks along S-22, the Imperial County General Plan identifies the proposed well locations as within an area of "Low Value" visual quality (County of Imperial 2016). The drilling rig derrick would be as much as 175 feet above the ground surface and the rig floor would be 20 to 30 feet above the ground surface, but there is an radio tower associated with the Salton Sea Airport currently in the viewshed; thus, the drilling rig would be consistent with the existing view. Therefore, the exploratory wells associated with the Proposed Project would have a less than significant impact on a scenic vista. Substantially damage scenic resources, including, but not limited to trees, rock outcroppings, and historic buildings within X a state scenic highway? b) The California Department of Transportation (Caltrans) manages the California Scenic Highway Program. The goal of the program is to preserve and protect scenic highway corridors from changes that would affect the aesthetic value of the land adjacent to the scenic Geophysical Survey: No State scenic highways have been designated in Imperial County; therefore, no impact associated with a scenic highway would occur. Exploratory Wells: No State scenic highways have been designated in Imperial County; therefore, no impact associated with a scenic highway would occur. In non-urbanized areas, substantially degrade the existing visual character or quality of public views of the site and its surrounding? (Public views are those that are experienced \boxtimes from publicly accessible vantage point.) If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality? c) Geophysical Survey: The geophysical survey associated with the Proposed Project would occur in an undeveloped area of Imperial County. As described above, the geophysical survey would be within the viewshed of two overlooks along S-22, but the Imperial County General Plan identifies the proposed geophysical survey location as within an area of "Low Value" visual quality (County of Imperial 2016). The survey would last 12 to 14 days and involve minor, temporary impacts to the public views due to the presence of four vibration trucks and receiving equipment. The existing visual character of the area is not anticipated to change in the long-term, as all equipment and waste would be cleaned up by the crew concurrent with survey operations and the survey area would be continuously spot-checked for waste removal throughout each day. Tire tracks from vibrator trucks would also be hand raked at the completion of the survey to blend the tracks with surrounding soil surface. Visual conditions following the completion of the geophysical survey would be substantially similar to initial visual conditions. Furthermore, no scenic resources are found on the Proposed Project site. The

geophysical survey associated with the Proposed Project would result in a less than significant impact to the existing visual character

Exploratory Wells: The Proposed Project involves the construction, drilling, and testing of six geothermal exploratory wells in an undeveloped area of Imperial County. As previously stated, the exploratory wells would be within the viewsheds of two overlooks along S-22, but the Imperial County General Plan identifies the proposed well locations as within an area of "Low Value" visual quality (County of Imperial 2016). The construction and drilling of the wells would involve temporary disturbance of the proposed well sites; however, these impacts would be short-term and are not anticipated to change the character of the area substantially. The Proposed Project

of the site.

Potentially

Potentially

		Potentially Significant	Potentially Significant Unless Mitigation	Less Than Significant	
		Impact (PSI)	Incorporated (PSUMI)	Impact (LTSI)	No Impact (NI)
	would result in a minor change in the existing visual character of property of the proposed Project area is located within the associated with the Proposed Project are currently active within the resources on the Proposed Project site. Therefore, the explorator than significant impact to the existing visual character or quality of	Truckhaven Ge he Proposed Pr y wells associat	othermal Leasing Area a oject area. In addition, t ed with the Proposed Pi	and wells similar here are no exis	to the wells sting scenic
ď)	Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?			\boxtimes	
	d) Geophysical Survey: The Proposed Project does not include the components of the geophysical survey include four trucks, a seri- lighting and glare in the nearby areas would not significantly incre- Proposed Project. The geophysical survey will occur during dayt occur over the duration of 12 to 14 days. Impact is less than signifi-	es of small, geo ase above existi ime hours, so n	phone sensors, and rec ng conditions due to the	eiving equipme survey associa	nt. Ambient ted with the
	Exploratory Wells: The Proposed Project does not include the addrilling, the top of the drill rig derrick would be as much as 175 febe located atop the drill rig derrick. Ambient lighting and glare in conditions. Additionally, temporary construction lighting would be Following construction, any construction lighting would be disasser.	et above the gro the nearby are used for illum	ound surface; non-LED a eas would not significan inating the proposed we	aircraft safety lig atly increase abo all sites during c	hting would ove existing onstruction.
	AGRICULTURE AND FOREST RESOURCES				
gricul se in nviror he sta	ermining whether impacts to agricultural resources are significan tural Land Evaluation and Site Assessment Model (1997) prepared assessing impacts on agriculture and farmland. In determining when imental effects, lead agencies may refer to information compiled by te's inventory of forest land, including the Forest and Range Asses measurement methodology provided in Forest Protocols adopted by	by the California other impacts to the California of sment Project a	a Department of Consent forest resources, including Department of Forestry and the Forest Legacy As	vation as an opti ing timberland, a and Fire Protec ssessment proje	ional model to are significant tion regarding ect; and forest
a)	Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use? a) Geophysical Survey: The geophysical survey area associated was a survey area.	with the Propose	d Project is not located in	an area identif	⊠ ied as Prime
	Farmland, Unique Farmland, of Farmland of Statewide Important occur.	ce (California D	epartment of Conservati	on 2019). No ir	mpact would
	Exploratory Wells: None of the proposed well sites are located in a of Statewide Importance (California Department of Conservation 2	an area identified 2019). No impad	d as Prime Farmland, Un t would occur.	ique Farmland,	of Farmland
b)	Conflict with existing zoning for agricultural use, or a Williamson Act Contract?				\boxtimes
	b) Geophysical Survey: The geophysical survey area associate Williamson Act Contract (California Department of Conservation 2	d with the Prop 2016). No impac	osed Project is not loca twould occur.	ited within an a	rea under a
	Exploratory Wells: None of the proposed well sites are located wit of Conservation 2016). No impact would occur.	thin an area und	er a Williamson Act Con	tract (California	Department
c)	Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Codo Soction 51104(g))? c) Geophysical Survey: The proposed geophysical survey area is County Geothermal Overlay Zone (County of Imperial 2016). Impering at any of the proposed well sites. No impact would occur.	s zoned Open S elementation of t	pace/Recreational and in the Proposed Project wo	s located within uld not result in	the Imperial a change to
	Exploratory Wells: The proposed well sites are zoned Open Space Overlay Zone (County of Imperial 2016). Implementation of the P proposed well sites. No impact would occur.	/Recreational a roposed Project	nd are located within the would not result in a ch	Imperial County ange to zoning	Geothermal at any of the

11.

			Potentially		
		Potentially	Significant	Less Than	
		Significant	Unless Mitigation	Significant	
		Impact	Incorporated	Impact	No Impost
		•	•		No Impact
		(PSI)	(PSUMI)	(LTSI)	(NI)
d)	Result in the loss of forest land or conversion of forest land to non-forest use?				\boxtimes
	d) Geophysical Survey: As described in Impact c) above, the proposed and designated Recreation/Open Space; the proposed geophysical land (Imperial County 2016). No impact would occur.	oosed geophysic al survey area is	cal survey area is zoned not located on land zon	f Open Space/R ned or designate	ecreational ed as forest
	Exploratory Wells: As noted above in Impact c), the proposed Recreation/Open Space; the proposed well sites are not located on No impact would occur.	well sites are on land zoned or	zoned Open Space/Re designated as forest la	creational and and (Imperial Co	designated unty 2016).
e)	Involve other changes in the existing environment which, due				
	to their location or nature, could result in conversion of				\square
	Farmland, to non-agricultural use or conversion of forest land to non-forest use?			Ш	
	e) Geophysical Survey: As noted above in Impact c) and d), the Pr the proposed geophysical survey area. Further, the proposed well s forest use. No impact would occur.				
	Exploratory Wells: As noted above in Impact c) and d), the Propose of the proposed well sites. Further, the proposed well sites are not No impact would occur.				

... AIR QUALITY

This section describes the existing air quality setting and potential effects from project implementation on the site and its surrounding area. Construction-related air quality modeling was performed through use of the California Emissions Estimator Model (CalEEMod) Version 2016.3.2. The model output is provided in Appendix A.

The proposed wells sites are located on the southwest side of Salton City, which is an unincorporated area located in the western portion of Imperial County. The proposed well sites are located within the Salton Sea Air Basin (Air Basin), and air quality regulation is administered by the Imperial County Air Pollution Control District (ICAPCD). The ICAPCD implements the programs and regulations required by the federal and state Clean Air Acts.

Atmospheric Setting

Air quality is a function of both the rate and location of pollutant emissions under the influence of meteorological conditions and topographical features. Atmospheric conditions such as wind speed, wind direction, and air temperature gradients interact with physical features of the landscape to determine their movement and dispersal, and consequently, their effect on air quality. The combination of topography and inversion layers generally prevents dispersion of air pollutants in the Air Basin. The following description of climate of Imperial County was obtained from Imperial County 2018 Redesignation Request and Maintenance Plan for Particulate Matter less than 10 Microns in Diameter, prepared by ICAPCD, October 23, 2018.

The climate of Imperial County is governed by the large-scale sinking and warming of air in the semi-permanent high-pressure zone of the eastern Pacific Ocean. The high-pressure ridge blocks out most mid-latitude storms, except in the winter, when it is weakest and located farthest south. The coastal mountains prevent the intrusion of any cool, damp air found in California coastal areas. Because of the barrier and weakened storms, Imperial County experiences clear skies, extremely hot summers, mild winters, and little rainfall. The sun shines, on the average, more in Imperial County than anywhere else in the United States.

Winters are mild and dry with daily average temperatures ranging between 65- and 75-degrees Fahrenheit (°F). During winter months it is not uncommon to record maximum temperatures of up to 80 °F. Summers are extremely hot with daily average temperatures ranging between 104 and 115 °F. It is not uncommon to record maximum temperatures of 120 °F during summer months.

The flat terrain of the valley and the strong temperature differentials created by intense solar heating, produce moderate winds and deep thermal convection. The combination of subsiding air, protective mountains, and distance from the ocean all combine to severely limit precipitation. Rainfall is highly variable with precipitation from a single heavy storm able to exceed the entire annual total during a later drought condition. The average annual rainfall is just over three inches with most of it occurring in late summer or mid-winter.

Humidity is low throughout the year, ranging from an average of 28 percent in summer to 52 percent in winter. The large daily oscillation of temperature produces a corresponding large variation in the relative humidity. Nocturnal humidity rises to 50 to 60 percent but drops to about 10 percent during the day.

Potentially Significant Unless Mitigation Incorporated (PSUMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

The wind in Imperial County follows two general patterns. Wind statistics indicate prevailing winds are from the west-northwest through southwest; a secondary flow maximum from the southeast is also evident. The prevailing winds from the west and northwest occur seasonally from fall through spring and are known to be from the Los Angeles area. Occasionally, Imperial County experiences periods of extremely high wind speeds. Wind speeds can exceed 31 miles per hour (mph) and this occurs most frequently during the months of April and May. However, speeds of less than 6.8 mph account for more than one-half of the observed wind measurements.

Regulatory Setting

The Proposed Project site lies within the Air Basin, which is managed by the ICAPCD. National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS) have been established for the following criteria pollutants: carbon monoxide (CO), ozone, sulfur dioxide (SO₂), nitrogen dioxide (NO₂), inhalable particulate matter (PM₁₀), fine particulate matter (PM_{2.5}), and lead. The CAAQS also set standards for sulfates, hydrogen sulfide, and visibility.

Areas are classified under the Federal Clean Air Act as either "attainment" or "nonattainment" areas for each criteria pollutant, based on whether the NAAQS have been achieved or not. Attainment relative to the state standards is determined by the California Air Resources Board (CARB). The Air Basin has been designated by the Federal Environmental Protection Agency (EPA) as a nonattainment area for ozone, PM₁₀, and PM_{2.5}. Currently, the Air Basin is in attainment with the NAAQS for CO, SO₂, and NO₂. Table 2 presents the designations and classifications applicable to the Proposed Project area.

Table 2: Designations/Classifications for the Project Area

Pollutant	National Classification	California Standards ²
Ozone (O ₃) - 2008 Standard	Non-Attainment (Moderate)	Non-Attainment
Particulate Matter (PM ₁₀)	Non-Attainment (Serious)	Non-Attainment
Fine Particulate Matter (PM _{2.5)}	Non-Attainment (Moderate)	Attainment
Carbon Monoxide (CO)	Attainment	Attainment
Nitrogen Dioxide (NO₂)	Attainment	Attainment
Sulfur Dioxide (SO ₂)	Attainment	Attainment

Sources: https://ww3.arb.ca.gov/desig/adm/adm.htm; and https://ww3.arb.ca.gov/planning/sip/planarea/imperial/staffreport121318.pdf

The ICAPCD has addressed each of three nonattainment pollutants in separate State Implementation Plans (SIPs). For ozone the most current SIP is the *Imperial County 2017 State Implementation Plan for the 2008 8-Hour Ozone Standard* (2017 Ozone SIP), prepared by IPACD, September 2017, which was prepared to detail measures to reduce ozone precursors (i.e. ROG and NOx) within the County in order to meet the 2008 NAAQS for 8-hour ozone standard of 0.075 parts per million (ppm) by July 20, 2018. Although the Ozone 2017 SIP demonstrates that the County met the 8-hour ozone standard 0.075 ppm by the July 20, 2018, requirement, it should be noted that in 2015 the EPA further strengthened its 8-hour ozone standard to 0.070 ppm, which will require an updated SIP for the County to meet the new ozone standard.

Since PM₁₀ in the County has met the 24-hour NAAQS other than for exceptional events that include storms as well as from substantial PM₁₀ concentrations blowing into the County from Mexico, the most current PM₁₀ plan is the *Imperial County 2018 Redesignation Request and Maintenance Plan for Particulate Matter less than 10 Microns in Diameter* (2018 PM₁₀ Plan), prepared by ICAPCD, October 23, 2018. The 2018 PM₁₀ Plan shows that the monitoring of PM₁₀ in the County found that other than exceptional events, no violation of the 24-hour PM₁₀ NAAQS of 150 µg/m³ occurred over the 2014 to 2016 time period. As such, the ICAPCD has requested the EPA to redesignate the Air Basin to maintenance. The redesignation is anticipated to occur sometime in the year 2020.

For PM_{2.5} the most current SIP is the *Imperial County 2018 Annual Particulate Matter less than 2.5 Microns in Diameter State Implementation Plan* (2018 PM_{2.5} SIP), prepared by ICAPCD, April 2018, which was prepared to detail measures to meet the 2012 NAAQS for annual PM_{2.5} standard of 12 µg/m³ by the end of 2021 for the portion of Imperial County (approximately from Brawley to Mexico border) that is designated nonattainment. The PM_{2.5} Plan found that the only monitoring station in the County that has recorded an exceedance of PM_{2.5} is the Calexico Monitoring Station that is likely caused by the transport of PM_{2.5} across the Mexico border. It is anticipated that the ICAPCD will submit a redesignation request for PM_{2.5} in the near future.

Although ICAPCD is responsible for air quality planning efforts in the County, it does not have the authority to directly regulate air quality issues associated with new development projects. Instead, this is controlled through local jurisdictions in accordance to CEQA. In order to assist local jurisdictions with air quality compliance issues, the ICAPCD has prepared the CEQA Air Quality Handbook (ICAPCD, 2017). The purpose of the Handbook is to assist lead agencies in evaluating a project's potential air quality impacts and provides direction on how to evaluate potential air quality impacts, how to determine whether these impacts are significant and how to mitigate these impacts. The Handbook provides the following standard measures for dust control and use of combustion equipment that all construction projects in the Air Basin are required to implement:

All disturbed areas, including Bulk Material storage which is not being actively utilized, shall be effectively stabilized and visible
emissions shall be limited to no greater than 20 percent opacity for dust emissions by using water, chemical stabilizers, dust

(PSI)	(PSUMI)	(LTSI)	(NI)
Impact	Incorporated	Impact	No Impact
Significant	Unless Mitigation	Significant	
Potentially	Significant	Less Than	
	Potentially		

suppressants, tarps, or other suitable material such as vegetative ground cover.

- All onsite and off-site unpaved roads will be effectively stabilized and visible emissions shall be limited to no greater than 20 percent opacity for dust emissions by paving, chemical stabilizers, dust suppressants and/or watering.
- All unpaved traffic areas one (1) acre or more with 75 or more average vehicle trips per day will be effectively stabilized and visible
 emission shall be limited to no greater than 20 percent opacity for dust emissions by paving, chemical stabilizers, dust suppressants
 and/or watering.
- The transport of Bulk Materials shall be completely covered unless 6 inches of freeboard space from the top of the container is maintained with no spillage and loss of Bulk Material. In addition, the cargo compartment of all Haul Trucks is to be cleaned and/or washed at delivery site after removal of Bulk Material.
- All Track-Out or Carry-Out will be cleaned at the end of each workday or immediately when mud or dirt extends a cumulative distance of 50 linear feet or more onto a paved road within an Urban area.
- Movement of Bulk Material handling or transfer shall be stabilized prior to handling or at points of transfer with application of sufficient water, chemical stabilizers or by sheltering or enclosing the operation and transfer line.
- The construction of any new Unpaved Road is prohibited within any area with a population of 500 or more unless the road meets the
 definition of a Temporary Unpaved Road. Any temporary unpaved road shall be effectively stabilized and visible emissions shall be
 limited to no greater than 20 percent opacity for dust emission by paving, chemical stabilizers, dust suppressants and/or watering.
- Use alternative-fueled or catalyst-equipped diesel construction equipment, including all off-road and portable diesel powered equipment.
- Minimize idling time either by shutting equipment off when not in use or reducing the time of idling to 5 minutes as a maximum.
- Limit, to the extent feasible, the hours of operation of heavy duty equipment and/or the amount of equipment in use.
- Replace fossil-fueled equipment with electrically driven equivalents (provided they are not run via a portable generator set)

Since the project site is located in an area that is known to experience high winds, the Proposed Project would also need to implement the fugitive dust reduction measures provided in the *High Wind Exceptional Event Fugitive Dust Mitigation Plan for Imperial County*, (ICAPCD, 2018). The High Wind Plan requires the implementation of various measures to limit fugitive dust emissions when sustained winds exceed 25 miles per hour.

Since the Proposed Project will utilize off-road diesel equipment that will emit air emissions, the Proposed Project will be required to obtain an ICAPCD permit under Rule 201. The Permit will require the applicant to demonstrate that all off-road equipment utilized are registered with CARB or the ICAPCD. The Permit also requires the applicant to quantify the emissions created from the specific equipment utilized during construction of the Proposed Project in order to ensure that the air emissions created from the off-road equipment utilized during construction activities are within the ICAPCD standards.

Monitored Air Quality

The air quality at any site is dependent on the regional air quality and local pollutant sources. The air quality at any location in the Air Basin is determined by the release of pollutants throughout the Air Basin as well as from air pollutants that travel from the coastal areas and Mexico to the Air Basin. The ICAPCD operates a network of monitoring stations throughout the County that continuously monitor ambient levels of criteria pollutants in compliance with federal monitoring regulations.

Since not all air monitoring stations measure all of the tracked pollutants, the data from the following two monitoring stations, listed in the order of proximity to the Proposed Project site have been used: Niland – English Road Monitoring Station (Niland Station) and El Centro – 9th Street Monitoring Station (El Centro Station).

The Niland Station is located approximately 23 miles east of the proposed well sites at 7711 English Road, Niland and the El Centro Station is located approximately 38 miles southeast of the proposed well sites at 150 9th Street, El Centro. It should be noted that due to the air monitoring stations distances from the proposed wells sites, recorded air pollution levels at the air monitoring stations reflect with varying degrees of accuracy local air quality conditions at the Proposed Project site. Table 3 below presents the composite of gaseous pollutants monitored from 2016 through 2018.

Potentially Significant Unless Mitigation Incorporated (PSUMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

Table 3: Ambient Air Quality Monitoring Summary Air Pollutant 2018 2016 2017 Ozone (O₃)1 0.079 0.072 0.060 Max 1 Hour (ppm) Days > CAAQS (0.09 ppm) 0 0 0 0.066 0.061 0,055 Max 8 Hour (ppm) Days > NAAQS (0.070 ppm) 0 0 0 Days > CAAQS (0.070 ppm) 0 0 0 Nitrogen Dioxide (NO₂)² 50.9 34.1 Max 1 Hour (ppb) 48.8 Days > NAAQS (100 ppb) 0 0 0 Days > CAAQS (180 ppb) 0 0 0 Particulate Matter (PM10)1 225.7 345.8 331.5 Max Daily California Measurement Days > NAAQS (150 µg/m3) 11 1 4 Days > CAAQS (50 µg/m³) ND 14 7 State Average (20 µg/m3) 40.7 ND ND Particulate Matter (PM_{2.5})² 31.3 23.2 22.4 Max Daily National Measurement Days > NAAQS (35 µg/m³) 0 0 0 National Average (12 µg/m³) 9.4 8.4 8.6 State Average (12 µg/m³) 9.5 8.4 8.7 Abbreviations: > = exceed ppm = parts per million ppb = parts per billion µg/m³ = micrograms per cubic meter CAAQS = California Ambient Air Quality Standard NAAQS = National Ambient Air Quality ND = Insufficient or No Data Bold = exceedance ¹ Measurement taken from Niland Mesa Station ² Measurement taken from El Centro Station Source: http://www.arb.ca.gov/adam/ Where available, the significance criteria established by the applicable air quality management district or air pollution control district may be relied upon to the following determinations. Would the Project: Conflict with or obstruct implementation of the applicable air X a) Geophysical Survey: The Proposed Project geographical survey would not conflict with the applicable air quality plans, which include the 2017 Ozone SIP, 2018 PM₁₀ Plan, and 2018 PM₂₅ SIP that are described above in the air quality regulatory setting. The CEQA Air Quality Handbook, prepared by ICAPCD, November 2007, requires large residential and commercial developments that are required to develop an EIR. Projects that have the potential to exceed the ICAPCD thresholds of significance for its operations are considered large developments and are required to demonstrate consistency with the regional air quality plans. The geographical survey consists of development of six exploratory wells and would not include any residential or commercial development, nor does the Project require the preparation of an EIR. Accordingly, the Proposed Project would not conflict with or obstruct implementation of the applicable air quality plan. Exploratory Wells: The exploratory wells would not conflict with the applicable air quality plans, which include the 2017 Ozone SIP, 2018 PM₁₀ Plan, and 2018 PM_{2.5} SIP that are described above in the air quality regulatory setting. The CEQA Air Quality Handbook, prepared by ICAPCD, November 2007, requires large residential and commercial developments to develop an EIR. Projects that have the potential to exceed the ICAPCD thresholds of significance for its operations are considered large developments and are required to demonstrate consistency with the regional air quality plans. The Proposed Project consists of development of six exploratory wells and would not include any residential or commercial development, nor does the project require the preparation of an EIR. Accordingly, the Proposed Project would not conflict with or obstruct implementation of the applicable air quality plan. Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment X under an applicable federal or state ambient air quality standard?

Potentially Significant Unless Mitigation Incorporated (PSUMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

b) As shown above in Table 3, the Proposed Project area is designated as a federal and/or state nonattainment area for ozone, PM₁₀, and PM₂₅. The ICAPCD has prepared the CEQA Air Quality Handbook (ICAPCD, 2017), in order to assist lead agencies in making a determination of significance for air quality impacts. The screening criteria in the CEQA Handbook can be used to demonstrate that a project's total emissions would not result in a significant impact as defined by CEQA. Table 4 shows the ICAPCD screening thresholds for both construction and operations.

Table 4: ICAPCD Thresholds of Significance

	Pollutant Emissions (Pounds/Day)								
	ROG	ROG NOx CO SO ₂ PM ₁₀							
Construction	75	100	550	150	150	550			
Operation	137	137	550	150	150	550			

Notes:

Source: ICAPCD, http://www.co.imperial.ca.us/AirPollution/PlanningDocs/CEQAHandbk.pdf

Geophysical Survey: The geographical survey would create air emissions primarily from on-road vehicle emissions and helicopter exhaust. The helicopter exhaust emissions were calculated through use of the FAA's EDMS 5.1.2 model for a Bell 407 helicopter based on 16 landings and takeoffs per day for 14 days (see Appendix A). The on-road vehicle emissions were analyzed through use of the CalEEMod model (see Appendix A) and included four off-highway trucks (Vibroseis trucks) operating eight hours per day, six vendor trucks per day to deliver equipment, and 20 worker trips per day. Table 5 shows the estimated worst-case summer or winter daily emissions that would be predicted from each phase of the Proposed Project for one well site, which is based on the construction equipment provided by the applicant of what is anticipated to be used during construction activities.

Table 5: Construction-Related Criteria Pollutant Emissions from the Geophysical Survey

WW.196		Pollutant Emissions in pounds/day								
Activity	ROG	NOx	CO	SO ₂	PM ₁₀	PM2.5				
On-Road Vehicles	2.82	26.07	16.44	0.05	30.42	3.82				
Helicopter	27.08	2.62	115.94	1.56						
Total Daily Emissions	29.90	28.69	132.38	1.61	30.42	3.82				
ICAPCD Construction Thresholds	75	100	550	150	150	550				
Exceed Thresholds?	No	No	No	No	No	No				

Source: CalEEMod Version 2016.3.2; EDMS Version 5.1.2.

As shown in Table 5, the geophysical survey emissions for one well site would not exceed ICAPCD's construction-related criteria pollutant thresholds. In addition, construction emissions would be short-term, limited only to the period when construction activity is taking place and all construction activities are required to comply with ICAPCD regulations for controlling fugitive dust emissions, including the standard regulations for all projects provided in the CEQA Handbook and summarized above in the Regulatory Section as well as Rule 800 – General Requirements for Control of PM10; Rule 802; Rule 802 – Bulk Materials; Rule 803 – Carry-Out and Track-Out; Rule 804 – Open Areas; and Rule 805 – Unpaved Roads. As such, construction-related emissions would be less than significant for the geophysical survey.

Exploratory Wells:

Construction Emissions

Construction of the exploratory wells would create air emissions primarily from equipment exhaust and fugitive dust. The air emissions from the exploratory wells were analyzed through use of the CalEEMod model (see Appendix A). Construction activities for the Proposed Project are anticipated to begin in early 2020 and each well would take approximately two months to complete, or approximately one year for all six wells as it is anticipated that after a well is completed the crew would move to the next well location, so no concurrent well construction activities are anticipated. It should also be noted that the project applicant is also proposing four additional exploratory wells on federal land that is being processed under a separate environmental analysis; however, similar to the Proposed Project, the same well crew that would complete the proposed six wells would also complete the four wells on federal land and will complete one well at a time. As such, no cumulative construction emission impacts are anticipated to occur from both projects. The anticipated construction phases for each well location would include: (1) Well pad preparation; (2) Well drilling; (3) Well testing; and (4) Well cleanup.

¹ Since the ICAPCD does not provide a construction threshold for SO₂ and PM_{2.5}, the operation threshold has been utilized to provide a conservative analysis.

Potentially Significant Unless Mitigation Incorporated (PSUMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

Table 6 shows the estimated worst-case summer or winter daily emissions that would be predicted from each phase of the Proposed Project for one well site, which is based on the construction equipment provided by the applicant of what is anticipated to be used during construction activities.

Table 6: Construction-Related Criteria Pollutant Emissions from One Well Site

		Pollutant Emissions in pounds/day								
Activity	ROG	NOx	CO	SO ₂	PM ₁₀	PM _{2.5}				
Well Pad Preparation	2.07	22.61	11.20	0.02	22.67	4.35				
Well Drilling	3.75	33.21	30.92	0.07	108.06	12,18				
Well Testing	1.99	18.35	16.15	0.03	12.25	2.09				
Well Clean-Up	0.87	9.35	6.78	0.01	19.90	3,57				
Maximum Daily Construction Emissions	3.75	33.21	30.92	0.07	108.06	12.18				
ICAPCD Construction Thresholds	75	100	550	150	150	550				
Exceed Thresholds?	No	No	No	No	No	No				

Source: CalEEMod Version 2016.3.2.

As shown in Table 6, the Proposed Project's emissions for one well site would not exceed ICAPCD's construction-related criteria pollutant thresholds. In addition, construction emissions would be short-term, limited only to the period when construction activity is taking place and all construction activities are required to comply with ICAPCD regulations for controlling fugitive dust emissions, including the standard regulations for all projects provided in the CEQA Handbook and summarized above in the Regulatory Section as well as Rule 800 – General Requirements for Control of PM₁₀; Rule 802; Rule 802 – Bulk Materials; Rule 803 – Carry-Out and Track-Out; Rule 804 – Open Areas; and Rule 805 – Unpaved Roads. As such, construction-related emissions would be less than significant for the Proposed Project.

Operational Emissions

The Proposed Project consists of development of six exploratory geothermal wells, which would be tested after completion of the well drilling phase in order to determine the commercial potential of each well. If a well is judged to have commercial potential, well monitoring may be continued indefinitely until the applicant proceeds with the approval process to place the well into commercial service. Therefore, the operational emissions would be limited to well monitoring activities that may be limited to weekly or monthly vehicle trips to the well sites to obtain pressure and temperature measurements. The air emissions associated with the Proposed Project have been calculated through use of the CalEEMod model and are based on the year 2020, which is the anticipated opening year of the Proposed Project. Table 7 shows the estimated worst-case daily emissions from operation of the Proposed Project.

Table 7: Exploratory Wells Operations-Related Criteria Pollutant Emissions

A relicitor	Pollutant Emissions in pounds/day								
Activity	ROG	NOx	CO	SO ₂	PM ₁₀	PM _{2.5}			
Area Sources ¹	0.08	0.02	0.00	0.00	0.00	0,00			
Energy Usage ²	0.00	0.00	0.00	0.00	0.00	0.00			
Mobile Sources ³	0.01	0.07	0.10	0.00	5.96	0,60			
Total Project Emissions	0.09	0.09	0.10	0.00	5.96	0.60			
ICAPCD Operational Thresholds	137	137	550	150	150	550			
Exceed Thresholds?	No	No	No	No	No	No			

Notes

- Area sources consist of emissions from consumer products, architectural coatings, and landscape equipment.
- ² Energy usage consists of emissions from natural gas usage (no natural gas appliances would be utilized as part of the Proposed Project).
- Mobile sources consist of emissions from vehicles and road dust.

Source: CalEEMod Version 2016.3.2.

As shown in Table 7, the exploratory wells operations-related emissions would not exceed ICAPCD thresholds. As such, operations-related emissions would be less than significant for the Proposed Project. Due to the nominal operational emissions created from operation of the Proposed Project, it is also anticipated that the cumulative operational emissions created from both the Proposed Project and from the project for the four additional exploratory wells on federal land that is being processed under a separate environmental analysis would also result in a less than significant impact.

Potentially
Potentially
Significant Less Than
Significant Unless Mitigation Significant
Impact Incorporated Impact No Impact
(PSI) (PSUMI) (LTSI) (NI)

Accordingly, the Proposed Project would not result in a cumulative considerable net increase of any criteria pollutant. Expose sensitive receptors to substantial pollutants \boxtimes concentrations? c) The nearest sensitive receptor to the exploratory wells is a single-family home located on Skyway Drive that is as near as 0.20 mile to the southeast of proposed well site 47-32. As discussed above in (b), the criteria pollutant emissions have been calculated for construction activities, which were found to be within the ICAPCD's allowable construction thresholds. Due to the limited amount of criteria pollutants created from construction activities and the distances to the nearest sensitive receptors to the Proposed Project. construction emissions would not expose sensitive receptors to substantial concentrations of criteria pollutants. In addition, to the criteria pollutant emissions, construction activities have the potential to expose nearby sensitive receptors to toxic air contaminants (TACs), which would be created from the operation of diesel-powered equipment in the form of diesel particulate matter (DPM). According to SCAQMD methodology, health effects from TACs are usually described in terms of "individual cancer risk". "Individual Cancer Risk" is the likelihood that a person exposed to concentrations of toxic air contaminants over a 70-year lifetime will contract cancer, based on the use of standard risk-assessment methodology. Given the relatively limited number of heavy-duty construction equipment, the varying distances that construction equipment would operate to the nearby sensitive receptors, and the short-term construction schedule, the Proposed Project would not result in a long-term (i.e., 70 years) substantial source of toxic air contaminant emissions and corresponding individual cancer risk. In addition, California Code of Regulations Title 13, Article 4.8, Chapter 9, Section 2449 regulates emissions from off-road diesel equipment in California. This regulation limits idling of equipment to no more than five minutes, requires equipment operators to label each piece of equipment and provide annual reports to CARB of their fleet's usage and emissions. This regulation also requires systematic upgrading of the emission Tier level of each fleet, and currently no commercial operator is allowed to purchase Tier 0 or Tier 1 equipment and by January 2023, no commercial operator is allowed to purchase Tier 2 equipment. In addition to the purchase restrictions, equipment operators need to meet fleet average emissions targets that become more stringent each year between years 2014 and 2023. Therefore, no significant short-term toxic air contaminant impacts would occur during construction of the Proposed Project. Operational emissions would be limited to weekly or monthly vehicle trips to obtain pressure and temperature measurements well monitoring activities. As discussed above in (b), the criteria pollutant emissions have been calculated for operational activities, which were found to be within the ICAPCD's allowable operational thresholds. Due to the limited amount of criteria pollutants created from operational activities and the distances to the nearest sensitive receptors to the proposed exploratory wells, operational emissions would not expose sensitive receptors to substantial concentrations of criteria pollutants that are anticipated to create nominal levels of emissions and would not result in a substantial increase in traffic volumes, which have the potential to create CO hotspots. As such, operation of the Proposed Project would result in a less than significant exposure of sensitive receptors to substantial pollutant Therefore, implementation of the Proposed Project would not expose sensitive receptors to substantial pollutant concentrations, and impacts would be less than significant. Result in other emissions (such as those leading to odors \boxtimes adversely affecting a substantial number of people? d) Geophysical Survey: Any diesel equipment used during the geophysical survey associated with the Proposed Project would consist of mobile equipment that would be changing locations, allowing the odors to disperse rapidly and not impact any nearby receptors. The survey is anticipated to be limited to 12 to 14 days, thus odor impacts will be temporary and would be likely not be noticeable at the

Exploratory Wells: Any diesel equipment used during construction of the Proposed Project would consist of mobile equipment that would be changing locations, allowing the odors to disperse rapidly and not impact any nearby receptors. Should diesel equipment be required during maintenance at the proposed well sites, it would also change locations, allowing the odors to disperse rapidly and not impact any nearby receptors. Well construction activities would also result in the discharge of drilling mud that will be stored onsite in the containment basins. It is anticipated that the due to the climate of the project site, any drilling mud would evaporate and harden quickly, which upon hardening will cease the release of odors. In addition, well testing activities have the potential to release geothermal gases that are a known source of odors. Since most well testing activities are anticipated to be limited to less than a day, the well testing odors would be temporary and the odor impacts would be likely not be noticeable at the nearest sensitive receptors that are located 0.2 mile or farther from the proposed well sites. Therefore, construction and operation of the Proposed Project would not create objectionable odors affecting a substantial number of people, and impacts would be less than significant.

nearest sensitive receptors that are located 0.2 mile or farther from the proposed well sites. Therefore, construction and operation of the Proposed Project would not create objectionable odors affecting a substantial number of people, and impacts would be less than

significant.

Potentially
Potentially Significant Less Than
Significant Unless Mitigation Significant
Impact Incorporated Impact No Impact
(PSI) (PSUMI) (LTSI) (NI)

IV. BIOLOGICAL RESOURCES Would the project:

The following section is based on the Biological Resources Evaluation Report (2018) and the Botanical Survey Report (2017) prepared by Power Engineers for the Proposed Project. These reports are included as Appendix B and Appendix C respectively.

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?

a) Surveys to document special status flora and fauna species were conducted in 2016, 2017, and 2018 by Power Engineers. Power Engineers provided a wildlife biologist and a botanist for the surveys. The role of the wildlife biologist was to record observations of wildlife species, with emphasis on special- status species such as flat-tailed horned lizard (*Phrynosoma mcallii*) and burrowing owl (Athene cunicularia), and record active or potential burrows for a variety of wildlife species.

The botanist was tasked with creating a vegetation map of the corridors that were surveyed, extending as far as they could reliably determine using line-of-sight and aerial imagery, and identifying and recording plant species encountered, with emphasis on special-status plant species. Botanists also recorded occurrences of seeps encountered.

All detected wildlife and botanical species were recorded, as were observed vegetation communities within and adjacent to the survey corridors. Wildlife species were detected either by observation, by vocalization, or by sign (e.g., tracks, burrows, scat). The botanical inventory was floristic in nature, meaning that all plants observed were identified to the taxonomic level needed to determine whether they were special- status plant species. Vegetation communities were classified according to Holland (1986).

Vegetation communities consisted primarily of Sonoran creosote bush scrub and desert saltbush scrub. Seven special- status plant species were observed within the Proposed Project area during the surveys. A list of plant species observed during the field surveys is provided in Appendix A. One special- status, wildlife species, flat-tailed horned lizard, was detected within the Proposed Project area. Few wildlife species were observed within the Proposed Project area, but wildlife sign was observed more frequently. Burrows of varying sizes were present intermittently throughout the Proposed Project area, including rodent and potential burrowing owl burrows. A small number of unoccupied bird nests were also observed.

Special Status Plant Species

A total of 38 plant species have the potential to occur within the Proposed Project area. Of the 38 plant species considered to have a potential to occur, seven were observed during the survey. Three species were determined to have a moderate potential for occurrence within the Proposed Project area, and seven had a low potential, while the remaining were determined to be absent. Potential for occurrence was based on habitat, elevation, soil, and proximity to known recorded occurrences of a species. Table 8 (located in Attachment A) provides the potential for occurrence of special-status plant species. A plant was considered to be of special-status if it met one or more of the following criteria:

- Listed, proposed for listing, or candidates for listing as threatened or endangered under the Federal Endangered Species Act (50 Code of Federal Regulations Part 17.12 [listed plants]);
- Listed or proposed for listing by the State of California as threatened or endangered under the California Endangered Species Act (CDFW 2017);
- Identified by the CDFW as species of concern or fully protected species, including fish and wildlife that do not have State
 or federal threatened or endangered status, but may still be threatened with extinction (CDFW 2017);
- Included in the CNPS Rare Plant Inventory (CNPS 2017);
- Otherwise defined as rare, threatened, or endangered under the California Environmental Quality Act;
- Identified by State Parks Ocotillo Wells Field Office as a sensitive species; or
- Identified by the BLM or the BLM El Centro Field Office as a sensitive species.

Special Status Wildlife Species

A total of 12 wildlife species have the potential to occur within the Proposed Project area. Of the 12 wildlife species, one species had a high potential for occurrence within the Proposed Project area, two had a moderate potential, five had a low potential, and the remainder were determined to be absent. Their habitat description, status, and potential for occurrence within the Proposed Project area are provided in Table 7.9 (located in Attachment A). Additionally, American badgers and Colorado Desert fringe-toed lizards may be present within the project area and auditory detections of wester mastiff bats have occurred in Tule Wash (Alvarez 2015).

One special- status, wildlife species, flat-tailed horned lizard, was detected within the Proposed Project area. Additionally, small mammal burrows occur throughout the Proposed Project area that can provide suitable cover for a variety of wildlife species, including

Potentially Significant Unless Mitigation Incorporated (PSUMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

flat-tailed horned lizard and burrowing owls.

The Applicant will secure all the necessary permits, memorandums of understanding, or permissions identified in Section II of this document. Impacts to special-status species would be avoided where feasible, and where not feasible, impacts would be reduced via implementation of the mitigation measures identified below.

Due to the potential for the Proposed Project to impact special- status species, the following mitigation measures would be implemented to ensure that impacts to special- status species would be reduced to a level below significant. Following implementation of the mitigation measures identified below would result in a less than significant impact associated with special- status species.

MM-BIO-1: A qualified biologist(s) will monitor all construction activities to ensure that standard and special-status species-specific avoidance and minimization recommendations are adhered to. The monitor will retain stop work authority in the event there is the likelihood of eminent take of special-status species. The biological monitor will conduct a general preconstruction survey no more than 14 days prior to the start of construction to verify that no special-status species are in the Proposed Project area or its buffers. The monitor shall also conduct a daily survey in and around work areas before activities start.

MM-BIO-2: A worker education program (WEAP) will be prepared and presented to all employees working on the Proposed Project in sensitive species habitat. The education program will include identification of target species and their habitats, any project mitigation measures and stipulations, reporting requirements, and penalties for failure of compliance.

MM-BIO-3: Should construction activities occur between February 15 and August 15, the time period typically referenced in California for the general bird nesting season, preconstruction nesting surveys will be conducted in the Proposed Project area by a qualified biologist within two weeks of the start of construction. If no active bird nests are found within this area, no further mitigation is required. If an active nest is found, a buffer shall be instated around the nest if it belongs to a non-listed or migratory bird in coordination with USFWS and CDFW. If the nest belongs to a listed or fully-protected species, a larger buffer shall be instated around the nest, at a distance approved prior to construction activities.

MM-BIO-4: Avoid burrows that may be utilized by special-status wildlife species with a minimum buffer of 20-feet from burrows suitable for flat-tailed horned lizard and a minimum buffer of 30- feet from burrows suitable for burrowing owls. If burrows cannot be avoided, MM-BIO-5 and MM-BIO-6 would be implemented.

MM-BIO-5: If flat-tailed horned lizards are observed within the construction area, the qualified biological monitor, with prior approval through project acquired permits or permissions and in consultation with CDFW, will notify CDFW and relocate the individual out of the construction area, adjacent to where it was moved from.

MM-BIO-6: If burrowing owls are observed within the Project area prior to or during construction activities, occupied burrows shall not be disturbed during the owl nesting season, February 1 and August 31. If burrows are found, the appropriate CDFW-recommended buffer, or a buffer deemed appropriate by the qualified biological monitor, shall be instated in consultation with CDFW until occupancy status is determined. If the buffer cannot be maintained during the non-breeding season, owls may be evicted from the burrows using accepted methodology as approved by resource agencies. Eviction will not occur during the breeding season.

MM-BIO-7: Avoid special- status plant species with a minimum buffer of 5 to 10 feet, depending on the root structure and as determined by the biological monitor.

MM-BIO-8: Access to proposed well sites and geophysical survey truck paths will be via pre-existing access routes, to the greatest extent possible, and the work area boundaries will be delineated with staking, flagging, or other comparable markings to minimize surface disturbance associated with vehicle straying. Signs and/or fencing will be placed around the Proposed Project area to restrict access to project-related vehicles.

MM-BIO-9: Project-related equipment will be washed prior to entering the project area for the first time to reduce the chance of transporting noxious weed seeds from outside the area.

b)	Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of				\boxtimes
	Fish and Wildlife or U.S. Fish and Wildlife Service?				
	b) Geophysical Survey: The Biological Resources Evaluation Re	port (2018) prepa	red for the aeophysic	al survey associa	ted with th

b) Geophysical Survey: The Biological Resources Evaluation Report (2018) prepared for the geophysical survey associated with the Proposed Project did not identify any riparian habitat throughout the survey area. The survey area is within the boundary of the BLM Desert Renewable Energy Conservation Plan (DRECP), which identifies sensitive natural communities; though, the geophysical survey area is not classified in the DRECP as an Area of Critical Environmental Concern, California Desert National Conservation Lands, or Wildlife Allocation (BLM 2016). Coordination with the BLM would occur to ensure that the geophysical survey is consistent with the conservation goals of the DRECP. No impact would occur.

Potentially Significant Less Than Potentially Significant Unless Mitigation Significant Impact Incorporated Impact No Impact (PSI) (PSUMI) (LTSI) (NI) Exploratory Wells: The Botanical Survey Report (2017) prepared for the Proposed Project did not identify any riparian habitat throughout the well sites associated with the Proposed Project; therefore, the Proposed Project would not result in any impacts to riparian habitat. The wells sites are within the boundary of the BLM DRECP, which identifies areas with sensitive natural communities; though, the exploratory well sites are not classified in the DRECP as Areas of Critical Environmental Concern, California Desert National Conservation Lands, or Wildlife Allocation (BLM 2016). Coordination with the BLM would occur to ensure that the well construction is consistent with the conservation goals of the DRECP. No impact would occur. Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal \bowtie pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means? c) Geophysical Survey: Some of the 200-foot long receiver lines implemented during the geophysical survey would be deployed in the vicinity of federally protected wetlands (USFW 2019). The geophysical survey associated with the Proposed Project is temporary, lasting an anticipated 12 to 14 days, and does not require removal, filling, or hydrological interruption. No wetland or riparian vegetation will be removed during the survey and geophone sensors will enter, at maximum, the top 3 inches of soil using only foot pressure. Preoperational meetings would occur daily to inform crew personnel on expectations for protecting riparian areas. Impacts would be less than significant.

Exploratory Wells: The exploratory wells associated with the Proposed Project have the potential to impact state and/or federally protected wetlands. The Proposed well sites 18-32, and 47-32 would require access roads that are located within a 100-year Federal Emergency Management Administration (FEMA) floodplain. As identified in the biological resources studies, these washes may be considered to be jurisdictional waters of the United States or Sate. Potential impacts would include potential upgrades to thise access paths to allow for vehicle travel to the well pads. If the features are found to be state or federally protected wetlands and project activities will require dredge or fill within these areas, the Proposed Project would require compliance with Section 401 and 404 of the Clean Water Act (CWA) and Fish and Game Code 1600. If it is determined the Proposed Project would result in impacts to jurisdictional waters, the appropriate permits will be secured prior to impacts to the waters. This impact is potentially significant unless mitigation is incorporated.

Due to potential impacts associated with construction of the access roads for proposed well pads 47-32 and 18-32, the Proposed Project would implement Mitigation Measures MM-BIO-10 to reduce impacts associated with state or federally protected wetlands.

MM-BIO-10: If the California Department of Fish and Wildlife (CDFW), Regional Water Quality Control Board (RWQCB), or U.S. Army Corps of Engineers (USACE) determine that access roads associated with well sites 47-32 and 18-32 are located within waters of the State/United States, prior to impacts the Applicant or its contractor shall obtain, and shall comply with all mitigation and conditions associated with, one or more of the following permits, as applicable: a CDFW Lake and Streambed Alteration Agreement; RWQCB Section 401 Water Quality Certification; or Section 404 USACE permit. Permit compliance shall be met through the purchase of in-lieu credits for non-vegetated streams at an approved mitigation bank, implementation of in-kind or out-of-kind restoration, or a combination of these actions. The mitigation replacement ratio shall be determined by the regulatory agencies during the permitting process.

d)	Interfere substantially with the movement of any resident or				
	migratory fish or wildlife species or with established native		\boxtimes		
	resident or migratory wildlife corridors, or impede the use of	ш			ш
	native wildlife nursery sites?				
	d) Geophysical Survey: The geophysical survey area associated	d with the Proposed	Project area is curren	tly undeveloped. A	s identified
	in the Biological Resources Evaluation Report (2018) prepared	by Power Engineer	rs, nesting birds have	the potential to o	occur within
	the survey area; a potential exists for avian species covered by the				
	for the Biological Resources Evaluation Report no active avian	nests were observe	ed, and only abandon	ed bird nests were	observed.

Exploratory Wells: The well sites associated with the Proposed Project area are currently vacant. The well sites do not provide for any substantial movement of wildlife species through a land-based corridor. However, as identified in the Biological Resources Evaluation Report (2018) prepared by Power Engineers, there is potential for nesting birds to occur within the well sites; a potential exists for avian species covered by the Migratory Bird Treaty Act (MBTA) to nest onsite. During the surveys for the Biological Resources Evaluation Report no active or old avian nests were observed. If construction activities are to occur during bird breeding season, nesting bird surveys will be required in accordance with the MBTA, as described in Mitigation Measure MM-BIO-3, above.

If construction activities are to occur during bird breeding season, nesting bird surveys will be required in accordance with the MBTA,

	outroje viii se required in accordance mar are n	, .,	in the golden mee		
,	Conflict with any local policies or ordinanc biological resource, such as a tree preservation ordinance?			\boxtimes	

e) The County of Imperial General Plan Open Space Conservation Policy requires detailed investigations to be conducted to determine

as described in Mitigation Measure MM-BIO-3, above.

Potentially Significant Unless Mitigation Incorporated (PSUMI)

Less Than Significant Impact

(LTSI)

No Impact (NI)

the significance, location, extent, and condition of natural resources in the County. If any rare, sensitive, or unique plant or wildlife habitat will be impacted by a project, the County must notify the agency responsible for protecting plant and wildlife before approving the project.

Geophysical Survey: The geophysical survey associated with the Proposed Project is not anticipated to conflict with any local policies or ordinances protecting biological resources during construction of the Proposed Project. Implementation of the survey would be consistent with the County's Open Space Conservation Policy because appropriate studies have been prepared for the survey area.

Exploratory Wells: Construction of the well sites is not anticipated to conflict with any local policies or ordinances protecting biological resources during construction of the Proposed Project. Consistent with the County's Open Space Conservation Policy, appropriate studies have been prepared for the well sites. Additionally, implantation of Mitigation Measures MM-BIO-1 through MM-BIO-9 would reduce any potential impacts to rare, sensitive, or unique plant or wildlife habitat to less than significant; therefore, this impact is potentially significant unless mitigation is incorporated.

f)	Conflict	with	the	provisions	of	an	adopted	Habitat
	Conserva	ation F	lan, N	Vatural Com	muni	ty Co	nservation	Plan, or
	other ap	proved	loca	l, regional, d	or sta	ate ha	abitat cons	ervation
	plan?							

f) The Proposed Project area overlaps with the boundaries of the Ocotillo Wells SVRA Research Area designated within the Flat-tailed Horned Lizard Rangewide Management Strategy. This document was written by the members of the Flat-tailed Horned Lizard Interagency Coordinating Committee in 1997, and updated in 2003, with the purpose of guiding conservation and management of sufficient habitat to maintain extant populations of flat-tailed horned lizards in five management areas near the California-Arizona border (ICC 2003).

Geophysical Survey: The geophysical survey area overlaps with the Ocotillo Wells SVRA Research Area designated within the Flat-Tailed Horned Lizard Rangewide Management Strategy (ICC 2003). Coordination with the BLM and California Department of Parks and Recreation (CDPR) would occur to ensure the geophysical survey activities comply with the goals of the Flat-Tailed Horned Lizard Rangewide Management Strategy. Impacts would be less than significant.

Exploratory Wells: The well sites overlap with the Ocotillo Wells SVRA Research Area designated within the Flat-Tailed Horned Lizard Rangewide Management Strategy (ICC 2003). Coordination with the BLM and CDPR would occur to ensure the proposed well site construction complies with the goals of the Flat-Tailed Horned Lizard Rangewide Management Strategy. Impacts would be less than significant.

V. CULTURAL RESOURCES Would the project:

This section is based on the Class III Archaeological Survey prepared by Power Engineers, Inc (POWER) for the Proposed Project in August 2019; this report in included as Appendix D.

a)	Cause a substantial adverse change in the significance of a		
	historical resource pursuant to §15064.5?		

\boxtimes	

a) A Class III Archaeological Survey for the Proposed Project was prepared by Power Engineers, Inc (POWER) in August 2019. A record search with the South Coast Information Center (SCIC) for the Proposed Project determined a total of 31 cultural resource studies have been conducted in and within one-half mile of the Proposed Project area. Three of the previous surveys identified by the SCIC occurred in the past 10 years, and the rest occurred between 11 and 45 years ago. The earliest studies were associated with the widening of State Route 86 and represent the first modern archaeological studies in this region.

The records search identified 219 archaeological sites and 183 historic-era isolates within one-half mile of the Proposed Project area. In 2017, POWER recorded 12 sites and 12 isolates during the 2017 field season as part of the Proposed Project. Seven of these sites are in the Proposed Project area. Because the Proponents' geophysical contractor and POWER archaeological staff were tasked with moving Proposed Project features away from archaeological sites listed by the SCIC, no cultural resources are located within a feature of the Proposed Project.

The archaeological sites previously recorded in and within one-half mile from the geophysical survey area and well sites associated with the Proposed Project consist mainly of artifact scatters, although sites bearing stacked rock features and what appears to be habitation foundations are plentiful near large washes, especially the wash banks just west of State Route 86. No sites have been recorded on the floor of any wash, although a few isolates are known. Sites bearing the remnants of prehistoric fish traps or weir foundations, which in this area take the form of V-or J-shaped single-coursed cobble alignments (Dice et.al. 2018) are also recorded in the Proposed Project area. Many of these can be seen on high-resolution aerial photographs. Historic trash and metal debris do occur near older roads, including dummy bombs and rounds that may have been dropped by World War II training planes between approximately 1940 and 1943 within the Proposed Project area. Trash litters both sides of the State Route 86 right-of-way and some of this is mixed with debris that may be more than 50 years old.

Potentially Potentially Significant Less Than Unless Mitigation Significant Significant Impact Incorporated Impact No Impact (PSI) (PSUMI) (LTSI) (NI)

Attempts were made before any fieldwork began to move projected location of project features into locations where no sites had been previously located. Nonetheless, the inventory encountered 175 archaeological resources and 91 isolated artifacts. Proposed Project features have been moved to positions that would avoid the recorded site boundaries; however, construction of the access road associated with proposed well site 87-6 has the potential to impact a historic resource. To minimize impacts to historic resources associated with the construction of the access road for proposed well site 87-6, the mitigation measures listed below would be implemented, the resulting impact would be reduced to less than significant.

MM-CUL-1: A temporary track will be placed over the historic site within the geophysical survey vibroseis path in the three different locations the Applicant would like to cross over the historic resource. Once the need to cross the area associated with the historic resource has concluded, the temporary cover can be removed. MM-CUL-2: Prior to construction, the Applicant shall prepare a mitigation and monitoring plan specific to Cultural resources. The mitigation and monitoring plan shall identify procedures for monitoring and the implementation of a discovery plan in coordination with affected Tribal groups. The mitigation and monitoring plan will incorporate a worker awareness program, stop work authority and all avoidance recommendations from the Class III report. Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5? b) As noted above, POWER prepared a Class III Archaeological Survey for the Proposed Project. Prior to any fieldwork associated with the Class III Archaeological Survey, the Applicant relocated project features into locations where no sites had been previously located. Although all archaeological sites have been avoided, aside from the site located within the geophysical survey vibroseis path at the western end of the Salton Sea Airport landing strip, there remains potential to impact unknown archaeological resources. Implementation of the mitigation measures below would reduce any potential impacts associated with an archaeological resource to less than significant. MM-CUL-3: The Applicant shall retain qualified archaeological monitors (and Tribal monitors, if requested) for all ground-disturbing activities associated with the geophysical survey and development of access roads and construction of the drill pads. If a significant cultural resource site is found during ground-disturbing activities associated with well pad or access road construction the Project features will either be moved, or the resource will be protected in place, or data recovery will be initiated, consistent with the mitigation and monitoring plan required by MM-CUL-2. The final disposition of archaeological or historical, resources recovered on state land under the jurisdiction of the California State Lands Commission must be approved by the Commission. Disturb any human remains, including those interred outside of dedicated cemeteries? c) No publicly available information indicates that human remains may occur within the Proposed Project area and the geophysical survey vibroseis paths and well sites were chosen in coordination with POWER to avoid potential impacts to cultural resources; however, given the cultural sensitivity of the area, it remains possible to uncover human remains. In the event that the discovery of human remains occurs during ground-disturbing activities, the following regulations must be followed to reduce the impact to less than significant. MM-CUL-4: California State law (California Health and Safety Code 7050.5) and federal law and regulations (Archaeological Resources Protection Act [ARPA], 16 United States Code [U.S.C.] 470 and 43 Code of Federal Regulations, [CFR] 7, Native American Graves Protection and Repatriation Act [NAGPRA] 25 U.S.C. 3001 and 43 CFR 10, and Public Lands, Interior 43 CFR 8365.1-7) require a defined protocol if human remains are discovered in the state of California regardless if the remains are modern or archaeological. Upon discovery of human remains, all work within a minimum of 200 feet of the remains must cease immediately, and the County Coroner must be notified. The appropriate land manager/owner or the site shall also be notified of the discovery. If the remains are located on federal lands, the federal land manager(s), federal law enforcement, and/or federal archaeologist should also be notified. If the human remains are determined by the Coroner to be prehistoric, the appropriate federal archaeologist must be called. The archaeologist will initiate the proper procedures under ARPA and/or NAGPRA. If the remains can be determined to be Native American, the steps as outlined in NAGPRA 43 CFR 10.6 Inadvertent Discoveries must be followed. VI. ENERGY Would the project: Result in potentially significant environmental impact due to

a) Geophysical Survey: Performing the geophysical survey associated with the Proposed Project would not require the use of energy sources beyond rechargeable battery packs for wireless receiving equipment and small portable generators. Additionally, the survey is anticipated to last 12 to 14 days, so energy consumption would be minor and temporary. Completion of the survey would not result

in wasteful, inefficient, or unnecessary consumption of energy resources because the Proposed Project would not include the Imperial County Planning & Development Services Department

wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?

X

Potentially
Potentially
Significant Less Than
Significant Unless Mitigation Significant
Impact Incorporated Impact No Impact
(PSI) (PSUMI) (LTSI) (NI)

tt would require daily usage of energy resources. Impacts would be

construction of structures (residential, commercial, or industrial) that would require daily usage of energy resources. Impacts would be less than significant.

Exploratory Wells: Construction of the exploratory wells associated with the Proposed Project would result in the need for energy resources. The amount of energy resources required for the construction of the exploratory wells would be contingent on the well location because the total acreage of disturbance would vary; therefore, the energy requirements for each site is unknown at this time. However, energy use for the exploratory wells would be temporary in nature and minimal. Operation of the well sites would not result in wasteful, inefficient, or unnecessary consumption of energy resources because the exploratory wells associated with the Proposed Project would not involve the construction of structures (residential, commercial, or industrial) that would require daily usage of energy resources. This impact is less than significant.

Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

Geophysical Survey: The geophysical survey associated with the Proposed Project would not conflict or obstruct a renewable energy or energy efficiency plan because the survey would occur within the Truckhaven Geothermal Leasing area, consistent with the Element. Therefore, impacts would be less than significant with regard to energy usage and renewable energy plans.

b) The County of Imperial prepared a Renewable Energy and Conservation Element (Element) that provides objectives in innovating

Exploratory Wells: The exploratory wells associated with the Proposed Project would not conflict or obstruct a renewable energy or energy efficiency plan because implementation of the well sites would occur within the Truckhaven Geothermal Leasing area, consistent with the Element. Therefore, impacts would be less than significant with regard to energy usage and renewable energy plans.

VII. GEOLOGY AND SOILS Would the project:

Directly or indirectly cause potential substantial adverse

renewable energy systems within the County.

effe	cts, including risk of loss, injury, or death involving:				Ш
1)	Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42? 1) In accordance with the Alquist-Priolo Special Studies Zone California, effective May 4, 1975) the Office of State Geologist recently active traces of four major faults (San Andreas, Cale Zone Act is enforced by the County to assure that homes, occupancy which are built on or near active faults, or if the compliance with the County of Imperial Codified Ordinance.	st delineated Spo averas, Hayward offices, hospital	ecial Study Zones which I and San Jacinto). The s, public buildings, and	ch encompass poi e Alquist-Priolo Sp d other structures	tentially and becial Study of for human

Geophysical Survey: The geophysical survey associated with the Proposed Project would not result in the construction of any structure intended for human occupancy, and human presence in the area would be limited to 12 to 14 days. Additionally, the Proposed Project area is not located within or adjacent to any earthquake fault as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map (County of Imperial 1997). There would be no impacts relating to the rupture of a known earthquake fault.

Exploratory Wells: Construction of the exploratory wells associated with the Proposed Project would not result in the construction of any structure intended for human occupancy. Additionally, the Proposed Project area is not located within or adjacent to any earthquake fault as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map (County of Imperial 1997). There would be no impacts relating to the rupture of a known earthquake fault.

2) Strong Seismic ground shaking?

2) California rests on the boundary between the North American Plate and the Pacific Plate. The San Andreas Fault system is located where the northwesterly drifting Pacific Plate grinds along and is subducted by the southwesterly drifting North American Plate. Baja, and California west of the fault system, are part of the Pacific Plate and move northwest compared to the rest of California and North America.

Geophysical Survey: As described in the Project Summary section above, a geophysical survey would be conducted as part of

M

Potentially
Potentially Significant Less Than
Significant Unless Mitigation Significant
Impact Incorporated Impact No Impact
(PSI) (PSUMI) (LTSI) (NI)

the Proposed Project. Because Southern California is a seismically active region, it is highly likely that regional earthquakes would occur that could affect the survey area (County of Imperial 1997); however, as noted above, no active faults are underlaying or adjacent to the survey area. The California Department of Transportation (Caltrans) Transportation and Construction Vibration Manual (September 2013) and the USBM OSMRE Blasting Guidance Manual (March 1987) provide vibration criteria and standards related to potential impacts from vibrations on structures and people. The survey would be conducted in general accordance with current practice and the standard of care exercised by consultants performing geophysical survey tasks within the survey area. Further, no onsite structures or facilities would be constructed as a result of the survey, and the survey would occur over an anticipated 12 to 14 days. Since the survey does not involve structure building and is temporary in nature, the potential impacts due to strong seismic ground shaking are a less than significant impact.

Exploratory Wells: Southern California is a seismically active region, therefore it is highly likely that regional earthquakes would occur that could affect the exploratory well sites (County of Imperial 1997); though, as noted in section a) 1), no active faults are underlaying or adjacent to the well sites. As noted above in the Project Summary Section of this document, vibration monitoring would be conducted prior to construction to determine areas appropriate for drilling. The California Department of Transportation (Caltrans) Transportation and Construction Vibration Manual (September 2013) and the USBM OSMRE Blasting Guidance Manual (March 1987) provide velocity attenuation relationships that can be used to estimate PPV at various distances and site conditions. Also included in these Manuals are vibration criteria and standards related to potential impacts from vibrations on structures and people. The vibration monitoring would be conducted in general accordance with current practice and the standard of care exercised by consultants performing vibration monitoring tasks within the exploratory well sites. Additionally, all structures and onsite facilities would be designated in accordance with the California Building Code (CBC) for the peak site ground acceleration. Since the design and construction of the wells associated with the Proposed Project would be required to conform to the specific mandated structural design requirements to protect against strong seismic shaking, the potential impacts due to strong seismic ground shaking are a less than significant impact.

	acceleration. Since the design and construction of the wells associated with the Proposed Project would be required to conform to the specific mandated structural design requirements to protect against strong seismic shaking, the potential impacts due to strong seismic ground shaking are a less than significant impact.
3)	Seismic-related ground failure, including liquefaction and seiche/tsunami? 3) The geology that makes up imperial County includes young, unconsolidated sediments of the Salton Trough that are subject to failure during earthquakes, especially throughout the irrigated portions of Imperial Valley where the soil is generally saturated. Liquefaction, and related loss of foundation support, is a common hazard in these areas (County of Imperial 1997).
	A seiche is a to and from vibration of a body of water like the slopping of water in a jolted basin. Once initiated, the water body continues to oscillate independently. Seiches can be triggered by seismic events such as earthquakes. The most likely location for a significant seiche to occur is the Salton Sea. While there have been a number of seismic events since the formation of the Salton Sea, no significant seiches have occurred to date (County of Imperial 1997).
	Geophysical Survey: The geophysical survey associated with the Proposed Project is not located within an irrigated portion of Imperial Valley, thus the risk of liquefication in the area is low. Additionally, despite the survey area being close proximity to the Salton Sea, seiches in the area are unlikely. Furthermore, the survey area is approximately 80 miles from the closest ocean, the Pacific Ocean, and therefore is too far to be at risk of experiencing a tsunami. Due to these factors, the impacts regarding seismic-related ground failure, including liquefaction and seiche/tsunami are less than significant.
	Exploratory Wells: The exploratory wells associated with the Proposed Project are not located within an irrigated portion of Imperial Valley, causing the risk of liquefication in the area to be low. Additionally, despite the survey area being close proximity to the Salton Sea, seiches in the area are unlikely. Additionally, the well sites are approximately 80 miles from the nearest ocean, the Pacific Ocean, and therefore are too far to be at risk of experiencing a tsunami. Impacts associated with seismic-related ground failure, including liquefaction and seiche/tsunami are less than significant.
4)	Landslides? A) A landslide refers to slowly to very rapidly descending rock or debris caused by the pull of gravity. Landslides affect humans in many ways. A very rapid landslide could result in casualties and devastating property damage while a slow landslide could result in the nuisance of having a fence slowly pulled apart. The cost in lives and property from landslides is surprisingly high. According to the U.S. Geological Survey, more people in the United States died from landslides during the last three months of 1985 than were killed by all other geologic hazards, such as earthquakes and volcanic eruptions. The damage to property from landslides each year exceeds the cost of earthquake damage for the last twenty years (County of Imperial 1997).
	Geophysical Survey: The geophysical survey area is located in a relatively flat portion of Imperial County and is not identified as an area at risk of landslide (County of Imperial 1997); therefore, impacts associated with landslides are considered less than

significant.

		Potentially Significant	Potentially Significant Unless Mitigation	Less Than Significant	No lesson
		Impact (PSI)	Incorporated (PSUMI)	Impact (LTSI)	No Impact (NI)
b)	Result in substantial soil erosion or the loss of topsoil? b) Erosion is the removal of rock fragments or soil by the action of erosion. The areas in Imperial County that are most subject to ero Superstition Mountain, and the Chocolate, Picacho, Cargo Muchacis generally flat and experiences low levels of natural erosion (Cou	sion are the Algoho, and Coast R	odones Sand Dunes par lange Mountains. The re	alleling the Eas	t Mesa and
	Geophysical Survey: The geophysical survey area is relatively fla 1997). Moreover, the survey does not entail any major soil disturl sensors will be deployed into the top three inches of soil at maximu on vibration trucks to reduce ground depression. Vibrator trucks wo and the survey would last up to 12 to 14 days. Therefore, impact is	oing activities the um on a thin spik ould also drive on	at would expose highly on and wide, low pressure and wide, low pressure ally along approved routes	erodible subsoil e flotation tires a	; geophone are installed
	Exploratory Wells: Although the exploratory wells are located in a of Imperial 1997), the preparation of a SWPPP would be require SWPPP would identify best management practices (BMPs) that topsoil; therefore, this impact is less than significant.	ed due to the size	ze of the disturbed area	exceeding one	acre. The
	MM-GEO-1: Applicant will prepare a SWPPP consistent with the re (SWRCB) to reduce the potential for water pollution and sedimen specific and expressly address site runoff, assuring that project runoff.	tation from prope	osed Project activities. 1	The SWPPP wil	l be project
c)	Be located on a geologic unit or soil that is unstable or that would become unstable as a result of the project, and potentially result in on- or off-site landslides, lateral spreading, subsidence, liquefaction or collapse? c) Subsidence is the gradual, local settling or sinking of the earth	s's surface with I	ittle or no horizontal mo		e is usually
	the result of gas, oil, or water extraction, hydrocompaction, or peat surface effects related to subsidence are generally restricted to lor sensitive to slight changes in elevation. Subsidence from ea development, can disrupt drainage systems and cause localized flor	coxidation, and r ng surface structo rthquakes and	not the result of a landsli ures such as canals, dra	de or slope failu ins, and sewers	re. Ground , which are
	Geophysical Survey: As noted above, the geophysical survey at liquefaction. No gas, oil, or water extraction, hydrocompaction, or of subsidence is low. As mentioned in Impact b), no major soil distuits less than significant.	peat oxidation w	ould occur as a result o	f the survey; the	erefore risk
	Exploratory Wells: Well field programs covering production and inject and the California Division of Oil and Gas (CDOG) for each madevelopment would be avoided through careful permit review by Cand through impact mitigation and monitoring programs. Compestablished via coordination with CDOG and the County would red is less than significant.	ajor geothermal DOG and the Colliance with the	project. Detrimental sul ounty, establishment of well field program and	bsidence from (standards for ea d adherence to	geothermal ach project, standards
d)	Be located on expansive soil, as defined in the latest Uniform Building Code, creating substantial direct or indirect risk to life or property?			\boxtimes	
	 Expansive soils are soils that expand when water is added an can cause structures built on this soil to move unevenly and crack; 				
	Geophysical Survey: The soils underlaying the geophysical surve establishment of permanent structures; therefore, impacts associa	y site are sedim ted with expansi	entary rock and the sun ve soils are less than sig	vey would not re prificant.	esult in the
	Exploratory Wells: The soils underlaying the well sites are sediment of result in the establishment of permanent structures, unless a via with expansive soils are less than significant.				
e)	Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?				\boxtimes
	e) Geophysical Survey: The geophysical survey associated with the	e Proposed Proj	ject would not require th	e use of septic:	systems or

Potentially
Potentially
Significant
Significant
Unless Mitigation
Impact
Impact
Incorporated
Impact
(PSI)
(PSUMI)
(LTSI)
Vision
Impact

alternative wastewater systems to accommodate wastewater needs. No impact would occur.

The 2017 Paleontological Resource Assessment and Survey Report assessment included a comprehensive review of published and unpublished literature and museum collections records maintained by the Natural History Museum of Los Angeles County. The purpose of the literature review and museum records search was to identify the geologic units underlying the Proposed Project area and to determine whether previously recorded paleontological localities occur either within the Proposed Project boundaries or within the same geologic units elsewhere. The museum records search was supplemented by a search of the University of California Museum of Paleontology's online collections database. Using the results of museum records search and literature review, the paleontological resource potential and Potential Fossil Yield Classification (PFYC) of geologic units within the Project area was recommended in accordance with the Society of Vertebrate Paleontology (2010) and BLM (2008) guidelines, respectively.

As a result of the 2017 study, the Pliocene to Holocene geologic units underlying the Proposed Project area consist of undifferentiated younger alluvium, older alluvium, lacustrine (Lake Cahuilla), and terrace deposits of Quaternary age. These deposits have a recommended paleontological sensitivity of low (PFYC Class 2) to very high (PFYC Class 5). Consequently, the likelihood of impacting scientifically significant vertebrate fossils as a result of Proposed Project development is high. Although a review of available online museum records indicated that no paleontological resources have been found within the Proposed Project area, geologic units underlying the Project area have been known to yield significant fossils nearby. Concretions, sandstone bars, and visible Lake Cahuilla remnants are also considered unique geologic features within the Proposed Project area.

The 2018 Addendum to the Paleontological Resource Assessment and Survey Report was prepared to summarize the results of Rincon's supplemental paleontological field survey, discuss the potential for impacts to paleontological resources, and provide additional mitigation measures, as necessary. The findings of the paleontological field survey described in the addendum are consistent with the results of the 2016 paleontological survey described in the paleontological resource assessment and survey for the project (Applied EarthWorks 2017). The report determined the Proposed Project area is underlain by geologic units with PFYC 2 to 5 (low to very high paleontological sensitivity), in accordance with SVP (2010) and BLM (2016) guidelines.

In general, the potential for a given project to result in adverse impacts to paleontological resources is directly proportional to the amount of ground disturbance associated with the project. The Proposed Project entails a geophysical survey and the drilling, completion, testing and monitoring of the proposed wells and construction of associated access roads. Each of the proposed geothermal exploration wells would be located on separate, individual well pads. Ground disturbing activities are anticipated and the likelihood of impacting fossils is related to both the type and extent of disturbance and the geologic unit in which the disturbance occurs. Ground disturbances are proposed along areas underlain by previously undisturbed Arroyo Diablo Formation, Borrego Formation, Brawley Formation, Lake Cahuilla deposits, and Quaternary older alluvium, which have proven to yield vertebrate remains throughout the western Colorado Desert, including Imperial County, eastern San Diego County, and southern Riverside County. Ground disturbance planned for portions of the Proposed Project area that are underlain Quaternary alluvium will also likely impact previously undisturbed lithology in those deposits. Significant fossils have not been reported within these deposits, but they may shallowly overlie older sensitive units at an unknown depth. Implementation of the mitigation measures below would reduce impacts associated with paleontological resources to a less than significant level and would also be consistent with other federal and local laws and regulations. This impact is less than significant with mitigation incorporated.

MM-PAL-1: All Project personnel and other onsite workers shall receive environmental awareness training on paleontological resources prior to the start or continuation of any elements of the Project that include ground-disturbing activities. The training will be conducted by a qualified, BLM- and DPR-permitted paleontologist and will provide a description of the fossil resources that may be encountered in the Project area, outline steps to follow in the event that a fossil discovery is made, and provide contact information for the Project Paleontologist. The training may be conducted concurrent with other environmental training (e.g., cultural and natural resources awareness training, safety training, etc.) and may also be videotaped or presented in an informational brochure for future uso by fiold personnel not present at the start of the Project. The workers should be informed that any unlawful collection of paleontological resources may be subject to a misdemeanor, a fine, or both.

MM-PAL-2: Prior to the commencement of ground-disturbing activities, a qualified professional paleontologist shall be retained to prepare and implement a Paleontological Resource Mitigation Plan (Plan) for the Project. The Plan should address the recommended approach to additional specimen collection, the specific locations and intensity of monitoring recommended for each geologic unit, and monitoring intensity.

Potentially
Potentially Significant Less Than
Significant Unless Mitigation Significant
Impact Incorporated Impact No Impact
(PSI) (PSUMI) (LTSI) (NI)

Paleontological monitoring will be required for all ground-disturbing activities within the previously undisturbed Arroyo Diablo Formation, Borrego Formation, Brawley Formation, Lake Cahuilla deposits, and Quaternary older alluvium, which underlies the Project area. Monitoring will entail the visual inspection of excavated or graded areas and trench sidewalls. In the event that a paleontological resource is discovered, the monitor will have the authority to temporarily divert the construction equipment around the find until it is assessed for scientific significance and collected. The final disposition of paleontological resources recovered on state land under the jurisdiction of the California State Lands Commission must be approved by the Commission.

MM-PAL-3: Upon completion of fieldwork, all significant fossils collected will be prepared in a properly equipped paleontology laboratory to a point ready for curation. Preparation will include the careful removal of excess matrix from fossil materials and stabilizing and repairing specimens, as necessary. Following laboratory work, all fossils specimens will be identified to the lowest taxonomic level, cataloged, analyzed, and curated. Fossil specimens collected from BLM managed land remain the property of the Federal government and they must be placed in the approved museum repository identified on the Paleontological Resource Use Permit. Fossil specimens collected from DPR-managed land remain the property of the State of California and must also be delivered to an accredited regional museum repository for permanent curation and storage. The cost of curation is assessed by the repository and is the responsibility of 8nb.

At the conclusion of laboratory work and museum curation, a final report will be prepared to describe the results of the paleontological mitigation monitoring efforts associated with the Project. The report will include a summary of the field and laboratory methods, an overview of the Project area geology and paleontology, a list of taxa recovered (if any), an analysis of fossils recovered (if any) and their scientific significance, and recommendations. If the monitoring efforts produced fossils, then a copy of the report will also be submitted to the curation facility.

VIII. GREENHOUSE GAS EMISSION

Introduction

This section describes the regulatory setting and potential global climate change effects from implementation of the Proposed Project. GHG emission modeling was performed through use of the CalEEMod Version 2016.3.2. The CalEEMod model output files are provided in Appendix G.

Regulatory Setting

Significant legislative and regulatory activities directly and indirectly affect climate change and GHGs in California. The primary climate change legislation in California is AB 32, the California Global Warming Solutions Act of 2006. AB 32 focuses on reducing greenhouse gas emissions in California, and AB 32 requires that GHGs emitted in California be reduced to 1990 levels by the year 2020. In addition to AB 32, Executive Order B-30-15 was issued on April 29, 2015 that aims to reduce California's GHG emissions 40 percent below 1990 levels by 2030. In September 2016, AB 197 and SB 32 codified into statute the GHG emission reduction targets provided in Executive Order B-20-15.

CARB is the state agency charged with monitoring and regulating sources of emissions of GHGs in California that contribute to global warming in order to reduce emissions of GHGs. The CARB Governing Board approved the 1990 GHG emissions level of 427 million tons of CO₂ equivalent (MtCO₂e) on December 6, 2007. Therefore, in 2020, annual emissions in California are required to be at or below 427 MtCO₂e. The CARB Board approved the Climate Change Scoping Plan (Scoping Plan) in December 2008, the First Update to the Scoping Plan in May 2014, and California's 2017 Climate Change Scoping Plan in November 2017. The Scoping Plans define a range of programs and activities that will be implemented primarily by state agencies but also include actions by local government agencies. Primary strategies addressed in the Scoping Plans include new industrial and emission control technologies; alternative energy generation technologies; advanced energy conservation in lighting, heating, cooling, and ventilation; reduced-carbon fuels; hybrid and electric vehicles; and other methods of improving vehicle mileage. Local government will have a part in implementing some of these strategies. The Scoping Plans also call for reductions in vehicle-associated GHG emissions through smart growth that will result in reductions in vehicle miles traveled (CARB 2008, 2014, 2017).

Would the project:

a)	Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?			\boxtimes	
	a) Neither the County of Imperial nor the ICAPCD has estable context in which to consider the GHG emissions created from public agencies in California and found the most conservative GH by California Air Pollution Control Officers Association (CAPCO (MTCO ₂ e) per year from any project. It should also be noted to thresholds would not be appropriate, since construction emission.	the Proposed Pr HG emissions thre DA, 2008), which hat a direct comp	oject, this analysis reveshold is detailed in CE recommends a threst parison of construction	riewed guidelines uf EQA & Climate Char hold of 900 metric GHG emissions w	used by other nge, prepared tons of CO2e with long-term

Potentially Significant Less Than Potentially Significant Unless Mitigation Significant Impact Incorporated Impact No Impact (PSUMI) (LTSI) (PSI) (NI)

construction. Other Air Districts, including the SCAQMD, recommend that GHG emissions from construction activities be amortized over 30 years, when construction emissions are compared to operational-related GHG emissions thresholds.

The CalEEMod model used to calculate the criteria pollutant emissions for the air quality analysis was also utilized to calculate the GHG emissions associated with construction of the Proposed Project (see Appendix G). The CalEEMod model calculated GHG emissions generated from the construction of one of the six exploratory wells that would be constructed as part of the proposed project, and the completion of the geophysical survey as well as from the on-going geothermal well monitoring. Table 10 shows the estimated CHC emissions from each phase of construction of geophysical survey, one well site and the total construction-related GHG emissions from all six exploratory well sites.

Table 8: Proposed Project Greenhouse Gas Emissions

	Greenho	tons/year			
Activity	CO ₂	CH ₄	N₂O	CO ₂ e	
Geophysical Survey					
Exploratory Well Construction	34.41	0.01	0.00	34.67	
Well Pad & Access Road Construction	10.54	0.00	0.00	9.47	
Well Drilling	148.41	0.02	0.00	149.02	
Well Testing	2.51	0.00	0.00	2.52	
Well Clean-Up	3.28	0.00	0.00	3.31	
Total Construction Emissions for One Well Site	164.74	0.03	0.00	165.46	
Total Construction Emissions for Six Well Sites	988.46	0.18	0.00	992.77	
Total Geographical Survey and Exploratory Well Construction Emissions	1,022.87	0.20	0.00	1,027.44	
Total Construction Emissions Amortized over 30 years	34.10	0.01	0.00	34.25	
Geothermal Well Monitoring	0.56	0.00	0.00	0.56	
Total Project GHG Emissions	34.66	0.01	0.00	34.81	
GHG Emissions Threshold of Significance ¹				900	
Exceed Threshold?					

Notes:

As shown in Table 10, construction and operation of the Proposed Project would generate 34.81 MtCO2e per year, which would not exceed the annual GHG emissions threshold of 900 MtCO2e. As such, it could be concluded that the Project's construction-related GHG contribution is not "cumulatively considerable" and is therefore less than significant under CEQA.

Therefore, implementation of the Proposed Project would not generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment, and impacts would be less than significant.

,	Conflict with an applicable plan or policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?		\boxtimes	
	b) The California State Legislature adopted AB 32 in 2006, that received created in 1990 and adopted AB 197 and SB 32 in 2016, the levels by 2030.			

Neither the County of Imperial nor the ICAPCD has adopted a climate action plan to reduce GHG emissions in the Proposed Project area. As such, the only applicable plans for reducing GHG emissions for the Proposed Project area are statewide plans that include AB 32, AB 197, and SB 32. As shown above in impact (a), the Proposed Project would generate 33.09 MTCO2e per year from construction of the Proposed Project and as discussed above in impact (a), only negligible GHG emissions would be created from operation of the

¹ GHG emissions threshold from CAPCOA, 2008. Source: CalEEMod Version 2016.3.2 (see Appendix B).

Potentially Significant Unless Mitigation Incorporated (PSUMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

Proposed Project. In addition, it should be noted that the Proposed Project has the potential to assist the State in meeting its GHG reduction goals provided in AB 32, AB 197, and SB 32, as the project consists of six exploratory geothermal wells that have the potential of creating a carbon-free electricity in the future, if any of the wells are found to be commercially viable.

Therefore, the Proposed Project would not conflict with any applicable plan, policy, or regulation adopted for reducing the emissions of GHGs. A less than significant impact would occur.

HA	ZARDS AND HAZARDOUS MATERIALS	Would the pro	oject:			
a)	Create a significant hazard to the public or the enthrough the routine transport, use, or disposal of materials? a) Material that is to be transported, stored, or dihazardous materials and could present a hazard to	hazardous sposed of durir				
	Geophysical Survey: Vehicles and equipment used of potentially hazardous substances, such as fuels transportable containment trailers at locations within spills. No other hazardous or potentially hazardous Project would be required to comply with all applic California CCR Title 23 Health and Safety Regu requirements, the Hazardous Waste Control Act, th Health and Safety Code. Compliance with these muse, or disposal of hazardous materials. This impact	for the geophysis, lubricating oil the construction materials will lead to the cable rules and lations, the California Acceptage would	sical survey would co ls, and hydraulic flui on staging area to mi be brought to the ge regulations involvin difornia Division of c cidental Release Pre reduce any potentia	ontain or require the d. Hazardous subs nimize potential for ophysical survey ar g hazardous materi Occupational Safet vention (CalARP) P	temporary, short tances would be accidental releas rea. Further, the ials, including the y and Health (C trogram, and the	t-term use stored in ses and/or Proposed e State of al/OSHA) California
	Exploratory Wells: Vehicles and equipment used fo use of potentially hazardous substances, such as fu transportable containment trailers at locations withir spills. No other hazardous or potentially hazardous r would be required to comply with all applicable rule CCR Title 23 Health and Safety Regulations, the Ca Hazardous Waste Control Act, the California Accide Code. Compliance with these measures would redinazardous materials. This impact is less than significant control actions.	els, lubricating in the construction materials will be es and regulationalifornia Divisior ental Release P uce any potenti	oils, and hydraulic flion staging area to mit brought to the exploins involving hazardon of Occupational Sarevention (CalARP) I	uid. Hazardous subsinimize potential for ratory well sites. Fullous materials, included the program, and the C	stances would be accidental releas rther, the Propose ding the State of I/OSHA) requiren alifornia Health a	e stored in ses and/or ed Project California nents, the and Safety
b)	Create a significant hazard to the public or the en through reasonable foreseeable upset and accident involving the release of hazardous materials environment? b) Geophysical Survey: As described in Impact a) storage of hazardous materials; however, hazardou within the construction staging area to minimize p hazardous materials will be brought to the geophys all applicable rules and regulations involving hazar Regulations, the California Division of Occupational the California Accidental Release Prevention (CalA measures would reduce any potential risk or impact impact is less than significant.	conditions into the , the geophysic us substances totential for acc ical survey area dous materials, I Safety and He RP) Program, a	would be stored in to cidental releases and a. Further, the Propo- including the State ralth (Cal/OSHA) requand the California He	ransportable containd/or spills. No other sed Project would It of California CCR uirements, the Hazalth and Safety Cod	nment trailers at r hazardous or poe required to co Title 23 Health an ardous Waste Code. Compliance v	locations cotentially mply with and Safety control Act, with these
	Exploratory Wells: As noted above, the exploratory we materials; however, hazardous substances would be staging area to minimize potential for accidental relebrought to the well sites. Further, the Proposed Proj hazardous materials, including the State of Califo Occupational Safety and Health (Cal/OSHA) requi Prevention (CalARP) Program, and the California potential risk or impact associated with the release of	ne stored in traneases and/or spect would be recornia CCR Tithirements, the Health and Sa	nsportable containmentalis. No other hazard equired to comply with e 23 Health and Si- dazardous Waste Co afety Code. Complia	ent trailers at location trailers at location or potentially he hall applicable rules afety Regulations, control Act, the Calince with these me	ons within the con azardous materia s and regulations the California D fornia Accidental asures would rea	nstruction als will be involving ivision of Release duce any
c)	Emit hazardous emissions or handle hazardous of hazardous materials, substances, or waste within or					\boxtimes

IX.

		Impact (PSI)	Incorporated (PSUMI)	Impact (LTSI)	No Impact (NI)
	mile of an existing or proposed school? c) Geophysical Survey: The nearest school to the geophysical survey northeast. The Proposed Project would not result in a release of haz substances within 0.25 mile of an existing or proposed school. No im	ardous emissions	s, hazardous or acutely		
	Exploratory Wells: The nearest school to the exploratory wells assort approximately 3 miles to the northeast to the closest well site. The emissions, hazardous or acutely hazardous materials, or substance would occur.	Proposed Proje	ect would not result in	a release of	hazardous
d)	Be located on a site, which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment? d) Geophysical Survey: A review of federal and state standard and area is not located within any identified hazardous material site p materials sites are located within 0.25 mile of the Proposed Project not create a significant hazard to the public or environment. No impact	ursuant to Gove area (DTSC 210	rnment Code Section	65962.5. No	hazardous
	Exploratory Wells: A review of federal and state standard and supple located within any identified hazardous material site pursuant to Gove located within 0.25 mile of the Proposed Project area (DTSC 2109; SV hazard to the public or environment. No impacts would occur.	rnment Code Se	ction 65962.5. No haza	ardous materia	als sites are
e)	For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area? e) Geophysical Survey: The geophysical survey area is within 2 miles in nature, lasting an anticipated 12 to 14 days. Following constructio such, the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exposure to a safety hazard or exceeding the project will not result in exceeding the project will not result in exceeding the project will not result in e	n, no permanent	workers or structures	would remain	on site. As
	Exploratory Wells: The exploratory well sites are located within 2 mexploratory wells associated with the Proposed Project would not resucconstruction, no permanent workers would be located on site and wo sites that are determined to have a viable geothermal resource; the contraction of the result in exposure to a safety hazard or excessive noise from pro-	It in people permark in the area wou exploratory wells	anently residing or work uld be restricted to main do not involve housing	king in the are ntenance activ g. As such, the	a. Following vities at well e project will
f)	Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan? f) Geophysical Survey: The geophysical survey associated with the access routes. The geophysical survey would not interfere with emimpacts are expected.				
	Exploratory Wells: The construction of the exploratory wells associates and access routes. The exploratory wells would not interesties. No impacts are expected.	ciated with the P iere with emerge	roposed Project would ncy response plans or	not involve operations n	blocking or ear the well
g)	Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires? g) Geophysical Survey: The potential for a wildfire in the unincorpora and the survey area is not located within a fire hazard severity zor features that directly or indirectly increase the risk of wildfire through	ne (CalFire 2007). The geophysical su	rvey would n	

Exploratory Wells: The potential for a wildfire in the unincorporated areas of the County is generally low (County of Imperial 1997) and the exploratory well sites are not located within a fire hazard severity zone (CalFire 2007). The exploratory wells would not introduce features that directly or indirectly increase the risk of wildfire throughout the Proposed Project area. No impact would occur.

Potentially Significant Unless Mitigation

Potentially Significant Less Than

Significant

.=				Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
Χ.	НҮ	DROI	LOGY AND WATER QUALITY Would the project	; ;			
	a)	requi	te any water quality standards or waste discharge rements or otherwise substantially degrade surface or and water quality?			\boxtimes	
		the late the to	eophysical Survey: The geophysical survey associated with ack of ground-disturbing activities incorporated and the temps 3 inches of soil at maximum, and flotation tires will previor trucks will avoid drainage crossings to the extent possil meters) of springs, water wells, and stock ponds. The succe and ground water following the geophysical survey shottions; thus, impacts would be less than significant.	porary nature of the ent vibration trucks ble and vibrational rvey is also anticip	ne survey. Geophone se is from causing major so source generation wou pated to last only 12 to	ensors will be de bil compaction. A ld not occur with 14 days. The o	eployed into Additionally, hin 328 feet character of
		explo devel to a d huma	oratory Wells: No known or reasonably expected surface wa ratory wells; however, because ground-disturbing activiti oped that implements BMPs (as previously discussed) that rill pad or access road. In addition, the SWPPP will be imple in health or the environment, nor contribute to any exceeda (Lahontan Regional Water Quality Control Board). This imp	es will occur in a t sufficiently contro emented such that ances of any applic	n area greater than or I degradation of water stormwater discharges cable water quality stand	ne acre, a SWF quality on site a would not adve	PPP will be nd adjacent rsely impact
	b)	subst may	tantially decrease groundwater supplies or interfere antially with groundwater recharge such that the project impede sustainable groundwater management of the			\boxtimes	
		100-g water	? eophysical Survey: The geophysical survey associated witl allon bucket available as a fire safety precaution for the h purchased from the Coachella Valley Water District; thereformundwater recharge and impacts would be less than significant.	elicopter. This war fore, the survey wo	ter bucket would be fille	ed using a fire h	ydrant with
		of wa these in a d	ratory Wells: Construction of the exploratory wells associat ter per day; however, the use of water would be temporary activities would be purchased from the Coachella Valley Vecrease in groundwater supplies and would not interfere with a significant impacts associated with groundwater dep	v in nature (30 day Vater District via a th groundwater rec	s per proposed well site fire hydrant. The explor	e), and water ne atory wells wou	ecessary for ld not result
	c)	area, or riv	cantially alter the existing drainage pattern of the site or including through the alteration of the course of a stream er or through the addition of impervious surfaces, in a er which would:				
		(i)	result in substantial erosion or siltation on- or off-site;				
		(ii)	substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or offsite;			\boxtimes	
		(iii)	create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or;				
		c) Ge would result avoid	impede or redirect flood flows? sophysical Survey: As previously discussed, the geophysical not substantially change the character of surface or group of vibrator trucks despite flotation tires; although, trucks with drainage crossings to the extent possible. Additionally, the sing is unavoidable, the drainage will be reconstructed to approximate the sing is unavoidable.	nd waters in the si ould both avoid pa SWPPP would ider	urvey area. Minor soil of assing over the same g ntify BMPs which would	compaction may round more tha minimize draina	occur as a nonce and ge impacts.

Potentially Significant Potentially Less Than Significant Unless Mitigation Significant Impact Incorporated Impact No Impact (PSUMI) (LTSI) (PSI) (NI)

source generation would not occur within 328 feet (100 meters) of springs, water wells, and stock ponds and the survey is anticipated to last only up to 14 days. Therefore, impacts would be less than significant.

Exploratory Wells: As previously discussed, the construction of the exploratory wells would result in ground-disturbing activities in an area greater than one acre; therefore, a SWPPP would be required. The SWPPP would be developed to identify BMPs that sufficiently avoid any onsite or offsite erosion and runoff from areas proposed for ground disturbance. Operation of the exploratory wells would not have an impact of a stormwater drainage system as the wells would not result in an increase in the amount of runoff from any proposed well site. Impacts would, therefore, be less than significant.

It should be noted that proposed well sites 18-32, and 47-32 would require access roads that are located within a 100-year Federal Emergency Management Administration (FEMA) floodplain. Prior to construction, a Waters of the US determination would be required

	401 and 404 of the Clean Water Act (CWA) and Fish and Game Code 1600. If it is determined the exploratory wells associated with the Proposed Project would result in impacts to jurisdictional waters, the appropriate permits will be secured prior to impacts to the waters. This impact is less than significant.
	Due to potential impacts associated with construction of the access roads for proposed well pads 47-32 and 18-32, the Proposed Project would implement Mitigation Measures MM-BIO-10 to reduce impacts associated with state or federally protected wetlands.
d)	In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation? d) Geophysical Survey: The geophysical survey associated with the Proposed Project area is not located in an area at risk of tsunami or seiche (Count of Imperial 1997). No impact would occur.
	Exploratory Wells: The exploratory wells associated with the Proposed Project are not located in an area at risk of tsunami or seiche (Count of Imperial 1997). No impact would occur.
e)	Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan? e) Geophysical Survey: As noted previously, the geophysical survey would not substantially alter the water quality or groundwater in the area; therefore, the survey would be in compliance with all city, state, and federal regulations including active water quality control plans and groundwater management plans. No impact would occur.
	Exploratory Wells: As discussed above, the exploratory wells would be compliant with all city, state, and federal regulations, including compliance with the NPDES permits with the implementation of BMPs; compliance with the referenced regulations would reduce any potential impact associated with a water quality control plan to a less than significant. Additionally, as discussed above, implementation of the exploratory wells would not require water supplies beyond the supplies purchased from Coachella Valley Water District. No impact would occur.
LAI	ND USE AND PLANNING Would the project:
a)	Physically divide an established community? a) Geophysical Survey: The geophysical survey associated with the Proposed Project would require four vibration trucks and receiving equipment that would not physically divide an established community. Temporary signage would be placed to close off the survey area for an anticipated 12 to 14 days, but the area is predominantly vacant currently and no facilities or structures are proposed that would prohibit travel through the survey area long-term. Moreover, land use designations within the survey area would remain the same. Thus, no impact would occur.
	Exploratory Wells: The Proposed Project includes the drilling, testing, and monitoring of the proposed geothermal resource wells. The exploratory wells would not physically divide an established community, as no facilities are proposed that would prohibit travel throughout the Proposed Project area. Components of the exploratory wells associated with the Proposed Project would not physically divide or block residents from accessing public areas or facilities. Land use designations within the well sites would remain the same. No impact would occur.
b)	Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect? b) Geophysical Survey: The geophysical survey area associated with the Proposed Project is located within the Truckhaven

XI.

Potentially
Potentially Significant Less Than
Significant Unless Mitigation Significant
Impact Incorporated Impact No Impact
(PSI) (PSUMI) (LTSI) (NI)

Geothermal Leasing Area of Imperial County (County of Imperial 2015); the land uses associated with the Proposed Project are allowable under the Imperial County Renewable Energy and Transmission Element (2015). The Proposed Project is not in conflict with the County adopted land use plans or policies. It is consistent with the County's General Plan, the Renewable Energy and Transmission Element Update and the applicable sections of the Imperial County Land Use Ordinance (Title 9); therefore, no impact would occur.

Exploratory Wells: The exploratory wells associated with the Proposed Project are located within the Truckhaven Geothermal Leasing Area of Imperial County (County of Imperial 2015); the land uses associated with the Proposed Project are allowable under the Imperial County Renewable Energy and Transmission Element (2015). The Proposed Project is not in conflict with the County adopted landuse plans or policies. It is consistent with the County's General Plan, the Renewable Energy and Transmission Element Update, and the applicable sections of the Imperial County Land Use Ordinance (Title 9); therefore, no impact would occur.

MII	IERAL RESOURCES	Would the project:				
a)	that would be of value to the state? a) A number of mineral restone, kyanite, limestone, sin Imperial County, including	ability of a known mineral resource the region and the residents of the sources in Imperial County are curresericite, mica, tuff, salt, potash, and ming the location of geologic deposition of mineral resources is limited to a reliable.	anganese. Several , the potential for it	issues influence the empacts to the environr	extraction of mine ment, and land u	eral deposits
	resources or mineral reso throughout the Proposed P	geophysical survey associated with the purce recovery sites. Additionally, the project area. No impacts would occur.	ne survey would r	not preclude future m	nineral resource	exploration
	mineral resources or mine	ction of the exploratory wells associat ral resource recovery sites. Additiona Proposed Project area. No impacts w	illy, the exploratory			
b)	resource recovery site de specific plan or other land to b) Geophysical Survey: A result in any impacts to kn	bility of a locally-important mineral lineated on a local general plan, use plan? s noted above, implementation of the own mineral resources or mineral resource exploration throughout the Pro	source recovery sit	es. Additionally, the go	eophysical surve	
	in any impacts to known m	d in Impact a), implementation of the e ineral resources or mineral resource ploration throughout the Proposed Pro	recovery sites. Add	ditionally, the explorate		

XIII. NOISE

XII.

This section describes the existing noise setting and potential noise and vibration effects from project implementation on the site and its surrounding area. Construction noise modeling was performed through use of the Roadway Construction Noise Model (RCNM) Version 1.1. The model output is provided in Appendix H.

Environmental Setting

The proposed wells sites are located on the southwest side of Salton City, which is an unincorporated area located in the western portion of Imperial County. The primary sources of noise within the study area consists of vehicle noise on State Route 86 and the local roads, aircraft noise from Salton Sea Airport (Airport), and from off-road equipment operating at the Salton City Landfill. It should be noted that due to the distances these sources are located from the proposed well sites, these noise sources only provide nominal increases to the very low ambient noise levels at the proposed well sites.

County of Imperial Noise Standards

The General Plan Noise Element (County of Imperial, 2015) provides the applicable noise standards for the Proposed project. The Noise Element limits the noise level from any noise generating property to 50 dBA between 7 a.m. and 10 p.m. and to 45 dBA between 10 p.m. and 7 a.m. at the property line of the nearest home. The Noise Element exempts construction noise from these standards, provided construction activities

Potentially
Potentially
Significant
Significant
Unless Mitigation
Impact
(PSI)
(PSUMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

occur between 7 a.m. and 7 p.m. Monday thru Friday and between 9 a.m. and 5 p.m. on Saturday and construction noise does not exceed 75 dBA Leg averaged over 8 hours.

Would the project result in:

in excess of standards established in the local general plan \to	a)	Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project		
		in excess of standards established in the local general plan	\boxtimes	
		or noise ordinance, or applicable standards of other		

a) Geophysical Survey: The Proposed Project involves a geophysical survey that requires equipment that would have the potential to generate noise in excess of standards. The General Plan Noise Element exempts construction activities from the applicable noise standards, provided that construction activities are limited to between 7 a.m. and 7 p.m. Monday thru Friday and between 9 a.m. and 5 p.m. on Saturday and do not exceed 75 dBA Leq at the nearby homes. The geophysical survey would adhere to the allowable times for construction activities as detailed in the General Plan.

The geophysical survey would map a 23.5-square-mile area that includes several sensitive receptors within the survey area. The geophysical survey would utilize two sets of two Vibroseis trucks that produce a noise level as high as 84.5 dBA at 20 meters (66 feet) (Schlumberger 2014), that would exceed the County's 75-dBA construction noise standard, if the Vibroseis trucks are operated in close proximity to the homes located within the survey area. This would be considered a significant impact.

Mitigation measure MM-NOI-1 is proposed that would require the Vibroseis trucks to be located a minimum of 200 feet away from any occupied home. Implementation of MM-NOI-1 would reduce the noise from the Vibroseis trucks to 74.8 dBA, which is based on the standard noise propagation rate of 6 dB of noise reduction per doubling of the distance between noise source and receptor. Impacts would be less than significant with implementation of MM NOI-1.

Exploratory Wells: The Proposed Project would consist of development of six exploratory geothermal wells. Both construction and operation of the exploratory wells would have the potential to generate noise in excess of standards and have been analyzed separately below.

Construction-Related Noise

Construction activities for the exploratory wells associated with the Proposed Project are anticipated to begin in early 2020 and each well would take approximately two months to complete, or approximately one year for all six wells as it is anticipated that after a well is completed the crew would move to the next well location, so no concurrent well construction activities are anticipated. The anticipated construction phases for each well location would include: (1) Well pad and access road construction; (2) Well drilling; (3) Well testing; and (4) Well clean-up.

The General Plan Noise Element exempts construction activities from the applicable noise standards, provided that construction activities are limited to between 7 a.m. and 7 p.m. Monday thru Friday and between 9 a.m. and 5 p.m. on Saturday and do not exceed 75 dBA Leq at the nearby homes. The well pad and access road construction, well testing, and well clean-up activities will adhere to these time limits, as such the construction noise level threshold for these activities is 75 dBA Leq at the property lines of the nearest homes. However, the well drilling phase of construction is required to operate 24-hours per day in order to minimize a risk of cave-in of the borehole. As such, the noise level threshold for the well drilling phase of construction is 45 dBA at the property line of the nearest home, which is based on the most restrictive nighttime residential noise standard.

The Federal Highway Administration (FHWA) compiled noise level data regarding the noise generating characteristics of several different types of construction equipment used during the Central Artery/Tunnel project in Boston. Table 11 below provides a list of the construction equipment measured, along with the associated measured noise emissions and measured percentage of typical equipment use per day. From this acquired data, FHWA developed the Roadway Construction Noise Model (RCNM). The RCNM, which uses the Spec 721.560 L_{max} at 50 feet, has been used to calculate the construction equipment noise emissions (see Appendix H).

Potentially Significant Unless Mitigation Incorporated (PSUMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

Table 9: Construction Equipment Emissions and Usage Factors

Equipment	Acoustical Use Factor ¹ (Percent)	Spec 721.560 L _{max} @ 50 Feet ² (dBA, slow ³)	Actual Measured L _{max} @ 50 feet ⁴ (dBA, slow)
Auger Drill Rig	20	85	N/A
Backhoe	40	80	78
Compressor (air)	40	80	78
Concrete Mixer Truck	40	85	79
Concrete Pump	20	82	81
Concrete Saw	20	90	90
Crane	16	85	81
Dozer	40	85	82
Dump Truck	40	84	76
Excavator	40	85	81
Flatbed Truck	40	84	74
Front End Loader	40	80	79
Generator	50	82	81
Gradall (Forklift)	40	85	83
Mounted Impact Hammer	20	90	90
Paver	50	85	77
Roller	20	85	80
Tractor	40	84	N/A
Welder/Torch	40	73	74

- 1 Acoustical use factor is the percentage of time each piece of equipment is operational during a typical workday.
- Spec 721.560 is the equipment noise level utilized by the Roadway Construction Noise Model program.
- The "slow" response averages sound levels over 1-second increments. A "fast" response averages sound levels over 0.125-second increments.
- 4 Actual Measured is the average noise level measured of each piece of equipment during the Central Artery/Tunnel project in Boston, Massachusetts primarily during the 1990s.

Source: Federal Highway Administration, 2006.

The anticipated areas of construction and construction equipment that will be utilized during development of each area were obtained from the Project applicant. For each proposed well pad area, all equipment was placed at the shortest distance of the proposed well pad area to the nearest home. The results are shown below in Table 12.

Potentially Significant Unless Mitigation Incorporated (PSUMI)

Less Than Significant Impact (LTSI)

No Impact

Table 10: Proposed Project Construction Noise Levels at Nearby Homes Prior to Mitigation

	Distance to	Construction	on Noise Level during: (dBA Leq)			
Sensitive Receptor Location	Receptor (mile)	Well Pad & Access Road Construction	Well Drilling	Well Testing	Well Cleanup	
Nearest Home to Well 32-5	0.34	53	53	51	53	
Nearest Home to Well 47-5	0.44	51	51	51	51	
Nearest Home to Well 18-32	0.4	52	52	52	52	
Nearest Home to Well 47-32	0.2	58	58	56	56	
Nearest Home to Well 14-4	0.28	55	55	55	55	
Nearest Home to Well 17-4	0.58	49	49	49	49	
Construction Noise Threshold¹ Exceed Threshold?		75	45	75	75	
		No	Yes	No	No	

Notes:

Table 12 shows that construction noise created during well pad and access road construction, well testing, and well cleanup and abandonment would be below the County's 75 dBA noise standard that is applicable when construction activities are exempt from the County's residential noise standards. Table 12 also shows that well drilling activities that would occur 24-hours per day until completion of the well, would exceed the County's residential nighttime noise standard of 45 dBA at the nearest home to each of the six proposed well sites. This would be considered a significant impact.

The mitigation measure MM-NOI-2 is proposed that would require the implementation of various sound control measures during well drilling phase of construction that are anticipated to reduce nighttime noise levels by up to 15 dB.

The well drilling phase of construction has been recalculated based on implementation of MM-NOI-2 and the results are shown in Table 13. As shown in Table 13 with implementation of MM-NOI-2, the well drilling noise levels would be lowered to within the County's residential nighttime noise standard of 45 dBA at the nearest home to each of the six proposed well sites. Impacts would be less than significant with implementation of MM NOI-2.

Table 11: Mitigated Proposed Project Construction Noise Levels at Nearby Homes

	Distance to	Construction Noise Level during: (dBA L _{eq})					
Sensitive Receptor Location	Receptor (mile)	Well Pad & Access Road Construction	Well Drilling ¹	Well Testing	Well Cleanup		
Nearest Home to Well 32-5	0.34	53	38	51	53		
Nearest Home to Well 47-5	0.44	51	36	51	51		
Nearest Home to Well 18-32	0.4	52	37	52	52		
Nearest Home to Well 47-32 0.2 Nearest Home to Well 14-4 0.28 Nearest Home to Well 17-4 0.58		58	43	56	56		
		55	40	55	55		
		49	34	49	49		
Construction Noise Threshold ²		75	45	75	75		
Exceed Threshold?		No	No	No	No		

Notes:

Source: RCNM Version 1.1 (see Appendix C).

¹ Construction Noise Thresholds from the General Plan Noise Element (County of Imperial, 2015). Source: RCNM Version 1.1 (see Appendix C).

Well Drilling noise levels includes implementation of MM NOI-2.

² Construction Noise Thresholds from the General Plan Noise Element (County of Imperial, 2015).

Potentially Significant Unless Mitigation Incorporated (PSUMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

Operation-Related Noise

The Proposed Project consists of development of six exploratory geothermal wells, which would be tested after completion of the well drilling phase in order to determine the commercial potential of each well, and a geophysical survey to better model geothermal reservoirs in the area. If a well is judged to have commercial potential, well monitoring may be continued indefinitely until the applicant proceeds with the approval process to place the well into commercial service. Therefore, the operational emissions would be limited to well monitoring activities that may be limited to weekly or monthly vehicle trips to the well sites to obtain pressure and temperature measurements. As such, only nominal operational noise levels would be created from the on-going operation of the Proposed Project and operations-related noise would be less than significant for the Proposed Project.

Accordingly, with implementation of MM-NOI-1 and MM-NOI-2, the Proposed Project would not expose persons to noise levels in excess of standards established by Imperial County.

MM-NOI-1: During the geophysical survey, the project applicant shall require that the Vibroseis trucks are operated a minimum of 200 feet away from any occupied home.

MM-NOI-2: During construction of the exploratory wells, the project applicant shall require the well drilling contractor to implement the following noise reduction measures:

- All construction equipment shall use noise-reduction features (e.g., mufflers and engine shrouds that are no less effective than those originally installed by the manufacturer;
- All non-essential well drilling equipment and truck deliveries shall be limited to operating during the allowable construction times of between 7 a.m. and 7 p.m. Monday thru Friday and between 9 a.m. and 5 p.m. on Saturday;

	ne portable office and any storage containers used during the well drilling phase shall be placed between the drilling equipment and nearest home, in order to effectively act as a sound wall and provide attenuation to the nearest home.
b)	Generation of excessive groundborne vibration or groundborne noise levels? b) Construction activities would require the operation of off-road equipment and trucks that are known sources of vibration. Construction activities may occur as near as 0.2 mile (1,060 feet) from the home located in the proximity of proposed Exploratory Well 47-32.
	A vibration monitoring study was prepared for the proposed project by Southwest Geophysics, Inc., January 17, 2018. However, it should be noted that the vibration study was limited to calculating the vibration propagation rates of the existing geological conditions of the project study area and does not provide any information about the proposed project vibration levels at the nearby sensitive homes, however the average attenuation rate of 1.28 calculated by the vibration study has been utilized to calculate the vibration levels at the nearby homes.
	Since neither the County's General Plan nor the Municipal Code provide any thresholds related to vibration, Caltrans guidance has been utilized, which defines the threshold of perception from transient sources at 0.25 inch-per-second peak particle velocity (PPV). Table

14 shows the typical PPV produced from some common construction equipment.

Potentially Significant Unless Mitigation Incorporated (PSUMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

Table 12: Typical Construction Equipment Vibration Emissions

Equipment	Peak Particle Velocity in inches per second at 25 feet	Vibration Level (L _v) at 25 feet
Pile Driver (impact)	0.644	104
Pile Driver (sonic)	0.170	93
Clam Shovel Drop	0.202	94
Hydromill		
- in soil	0.008	66
- in rock	0.017	75
Vibratory Roller	0.210	94
Hoe Ram	0.089	87
Large Bulldozer	0.089	87
Caisson Drill	0.089	87
Loaded truck (off road)	0.076	86
Jackhammer	0.035	79
Small Bulldozer	0.003	58

Source: Federal Transit Administration 2006.

From the list of equipment shown in Table 14, a large bulldozer with a vibration level of 0.089 inch-per-second PPV would be the source of the highest vibration levels of all equipment utilized during construction activities for the Proposed Project. Based on typical propagation rates this would result in a vibration level of 0.001 inch-per-second PPV at the nearest home to construction activities. The construction-related vibration levels would be within the 0.25 inch-per-second PPV threshold detailed above. Construction-related vibration impacts would be less than significant.

The ongoing operation of the Proposed Project would not result in the creation of any known vibration sources. Therefore, a less than

	significant vibration impact is anticipated from the operation of the Proposed Project.
	Accordingly, the Proposed Project would not expose persons to excessive groundborne vibration or groundborne noise levels.
c)	For a project located within the vicinity of a private airstrip or an airport land use plan or where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels? c) Geophysical Survey: The closest receiving line required for the geophysical survey would be deployed as near as 400 feet from the
	runway for Salton Sea Airport, and an 8-foot by 8-foot staging area would be set up at the Airport. It should be noted that Noise Element of the General Plan (Imperial County, 2015) states that current airport activity at Salton Sea Airport is negligible; and, due to the low levels of activity, the County did not prepare noise contours for Salton Sea Airport. Therefore, it is likely that Salton Sea Airport does not have activity to create 65-dBA CNEL noise contours. It should also be noted that the geophysical survey is anticipated to last 12 to 14 days, and airport noise levels are typically calculated based on annual average activity noise levels; therefore, airport and airstrip noise impacts would be less than significant.
	Exploratory Wells: The proposed well sites are located as near as 400 feet from the runway for Salton Sea Airport. It should be noted that Noise Element of the General Plan (Imperial County, 2015) states that current airport activity at Salton Sea Airport is negligible and due to the low levels of activity, the County did not prepare noise contours for Salton Sea Airport. Therefore, it is likely that Salton Sea Airport does not have activity to create 65-dBA CNEL noise contours. It should also be noted that the Proposed Project would consist of the development of six exploratory wells, where the operation of the proposed wells would be limited to well monitoring activities that may be limited to weekly or monthly vehicle trips to the well sites to obtain pressure and temperature measurements. The Proposed Project would consist of a very limited increase in people working in the project area and the only source of airport noise is Salton Sea Airport that produces noise levels below County noise standards. As such, airport and airstrip noise impacts would be less than significant.
P	OPULATION AND HOUSING Would the project:
a)	Induce substantial unplanned population growth in an area,

either directly (for example, by proposing new homes and

XIV.

(PSI) (PSUMI) (LTSI) (NI) business) or indirectly (for example, through extension of roads or other infrastructure)? a) Geophysical Survey: The geophysical survey associated with the Proposed Project would not induce unplanned population growth or displace existing people or housing. No residential units are in the survey area that would require relocation, and access roads associated with the Proposed Project would be used only for accessing the survey area. No development of new roads or infrastructure is proposed that would introduce new populations to the survey area. No impact would occur. Exploratory Wells: The exploratory wells associated with the Proposed Project would not induce unplanned population growth or displace existing people or housing. The Proposed Project consists of the installation of exploratory wells within a predominantly undeveloped, vacant area of Imperial County. No residential units are on the proposed well sites that would require relocation, and access roads associated with the Proposed Project would be used only for accessing the proposed well sites. No development of new roads or infrastructure is proposed that would introduce new populations to the Proposed Project area. No impact would occur. Displace substantial numbers of existing people or housing, X necessitating the construction of replacement housing elsewhere? b) Geophysical Survey: The geophysical survey associated with the Proposed Project does not include any activities that would displace people or housing with the Proposed Project area. No impact would occur. Exploratory Wells: The exploratory wells associated with the Proposed Project do not include any activities that would displace people or housing within the Proposed Project area. No impact would occur. PUBLIC SERVICES Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services: Fire Protection? 1) Geophysical Survey: The geophysical survey associated with the Proposed Project would not result in substantial adverse physical impacts to fire protection. The survey would not involve the modification of any fire protection services or their facilities. The survey also would not invite new populations to the survey area that would result in the permanent, and increased need of fire protection services. No impact would occur. Exploratory Wells: The exploratory wells associated with the Proposed Project would not result in substantial adverse physical impacts to fire protection. The exploratory wells would not involve the modification of any fire protection services or their facilities. The exploratory wells would not invite new populations to the proposed well locations that would result in the permanent, and increased need of fire protection services. No impact would occur. 2) Police Protection? 2) Geophysical Survey: The geophysical survey associated with the Proposed Project would not result in substantial adverse physical impacts to fire protection. The survey would not involve the modification of any fire protection services or their facilities. The survey also would not invite new populations to the survey area that would result in the permanent, and increased need of fire protection services. No impact would occur. Exploratory Wells: The exploratory wells associated with the Proposed Project would not result in substantial adverse physical impacts to police protection. The Proposed Project would not involve the modification of any police protection services or their facilities. The Proposed Project would not invite new populations to the proposed well locations that would result in the permanent, and increased need of police protection services. No impact would occur. 3) Schools? X 3) Geophysical Survey: The geophysical survey associated with the Proposed Project would not result in substantial adverse physical impacts to school facilities. The survey would not involve the modification of any schools or their facilities. In addition, the survey would not invite new populations to the survey area that would result in the permanent, and increased need for schools. No impact would

occur.

XV.

Potentially

Significant

Unless Mitigation

Incorporated

Potentially

Significant

Impact

Less Than

Significant

Impact

No Impact

			Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
-		Exploratory Wells: The exploratory wells associated with the Prop to school facilities. The exploratory wells would not involve the movells would not invite new populations to the proposed well loc schools. No impact would occur.	odification of any	schools or their facilities	s. Additionally, th	ne proposed
		4) Parks?				\boxtimes
		4) Geophysical Survey: The geophysical survey would not resu survey would not involve the modification of any parks or their far survey area that would result in the permanent and increased need.	cilities. Moreover,	the survey would not in		
		Exploratory Wells: The exploratory wells would not result in substanct involve the modification of any parks or their facilities. Further proposed well locations that would result in the permanent and in	rmore, the exploi	ratory wells would not in	nvite new popula	
		5) Other Public Facilities?				\boxtimes
		5) Geophysical Survey: The geophysical survey associated with impacts to public facilities. The survey would not involve the mo- new populations to the survey area that would result in the permanent.	dification of any p	oublic facilities. Further,	the survey wou	ld not invite
		Exploratory Wells: The exploratory wells associated with the Prop to public facilities. The exploratory wells would not involve the more new populations to the proposed well locations that would result would occur.	dification of any p	ublic facilities. The explo	oratory wells wou	ıld not invite
XV	'I. RE	ECREATION				
	a)	Would the project increase the use of the existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? a) Geophysical Survey: Implementation of the geophysical survey of existing neighborhood parks, campgrounds, trails, or other recreational facilities. The survey would not induce new proferereational facilities or require new facilities. Trails within the vibrational trucks may cross-paths with recreational vehicles during off-trail, signage will be placed to clarify that the tracks are not opsimulate undisturbed soil. No impact would occur.	eational facilities populations that we Ocotillo Wells Song the survey. To	and would not include the would result in the subst VRA would be used to discourage public trave	ne construction of tantial physical of access source el on vibroseis p	or expansion deterioration points, thus aths located
		Exploratory Wells: Construction of the exploratory wells associat neighborhood parks, campgrounds, trails, or other recreational frecreational facilities. The exploratory wells would not induce new of recreational facilities or require new facilities. No impact would	acilities and woul	d not include the const	ruction or expan	sion of new
	b)	Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse effect on the environment? b) Geophysical Survey: Implementation of the geophysical survey facilities or require the construction or expansion of recreational result in the substantial physical deterioration of recreational facilities. Exploratory Wells: Construction of the exploratory wells associat or require the construction or expansion of recreational facilities, result in the substantial physical deterioration of recreational facilities.	facilities. The suities or require ne ed with the Propo The exploratory	rvey would not induce by facilities. No impact v osed Project would not i wells would not induce	new populations would occur. include recreation new populations	s that would
XVII.	TR	ANSPORTATION Would the project:	isso or rogalio no	W Idolikido. No impuet i	Notice 555511	
1=	a)	Conflict with a program plan, ordinance or policy addressing				

		Impact (PSI)	Incorporated (PSUMI)	Impact (LTSI)	No Impact (NI)
	the circulation system, including transit, roadway, bicycle and pedestrian facilities? a) Geophysical Survey: Primary highway access to the Project vicin	nity is provided by	State Highway 86.	a four-lane high	way running
	north-south through Imperial County on the west side of the Salton 86 to a number of two-way, paved roads in the survey area, includ Drive. All existing designated roads and trails that bisect eligible site geophysical survey is short-term and temporary and the traffic volum for the geophysical survey to cause an increase in traffic which is sustreet system is negligible. This impact is less than significant.	Sea. Immediate a ing the Borrego S es would be availa es generated by t	ccess to the survey Salton Sea Way, Ha able to be used as a he survey consists o	area is from St rvard Avenue, a ccess; though, of four vehicles,	ate Highway and Air Park because the the potential
	Exploratory Wells: Primary highway access to the Project area and so Drive. Access to the rest of the proposed well sites is from State Highway Boad are two-lane roads with very low traffic volume. Because and the traffic volumes generated by construction and well drilling so in traffic which is substantial in relation to the existing traffic load are than significant.	ghway 86 to Cour e the drilling of the minor, the potenti	nty Dump Road. Bot e exploratory wells it al for the Proposed I	h Airpark Drive s short-term and Project to cause	and County d temporary, an increase
b)	Would the project conflict or be inconsistent with the CEQA Guidelines section 15064.3, subdivision (b)?			\boxtimes	
	b) Geophysical Survey: As noted above, any increase in traffic wou by the geophysical survey would be so minor, the potential for the geo in relation to the existing traffic load and capacity of the street systen	physical survey to	cause an increase	in traffic which is	
	Exploratory Wells: As noted in Impact a), any increase in traffic would by construction and well drilling so minor, the potential for the explincrease in traffic which is substantial in relation to the existing traffic operation of the Proposed Project would not increase vehicle miles required during operation. This impact is less than significant.	oratory wells ass load and capacit	ociated with the Pro y of the street syste	posed Project m is negligible.	to cause an Additionally,
c)	Substantially increases hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?			\boxtimes	
	c) Geophysical Survey: The geophysical survey associated with the public road network. The access roads to the geophysical survey designated roadways. To discourage public OHV travel on source ro of the survey, entry and exit points would be broomed or hand raked	would be limite outes and reduce	d to approved trave the visual appearan	el corridors, ma	any of them
	Exploratory Wells: The exploratory wells associated with the Propose network. The access roads to the exploratory wells associated with delivering heavy drill equipment to each proposed well site. The acmaintained as long as the proposed well site is being constructed access road would be return to the existing condition. This impact is	the Proposed Pro ccess roads would r in use. Once a	ject would be desigr d not be open to the proposed well site i	ned to accomme e public and wo	odate trucks ould only be
d)	Result in inadequate emergency access? d) Geophysical Survey: The geophysical survey associated with th access routes. The geophysical survey would not interfere with emimpacts would occur.				
	Exploratory Wells: The construction of the exploratory wells associates and access routes. The exploratory wells would not interproposed Project area. No impacts would occur.				
TR	MBAL CULTURAL RESOURCES				
a)	Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code Section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place or object with cultural				

XVIII.

Potentially Significant Unless Mitigation

Less Than Significant

Potentially Significant

				Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
		value to a Calif	ornia Native American tribe, and that is: Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as define in Public Resources Code Section 5020.1(k), or			\boxtimes	
		(ii)	A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth is subdivision (c) of Public Resource Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American Tribe.				
		mile of the recorded Proposed moving P	sussed in Section V, the records search identified 2 be Proposed Project area, which includes both the goal 12 sites and 12 isolates during the 2017 field seas Project area. Because the Proponents' geophysi roposed Project features away from historic sites I the Proposed Project.	eophysical surve on as part of the cal contractor ar	y area and exploratory of Proposed Project, Sevend POWER archaeolog	well sites. In 20 ven of these site gical staff were	17, POWER as are in the tasked with
		scatters, washes, e a few isol of V-or J-these car dummy b within the	aeological sites previously recorded in and within on although sites bearing stacked rock features and especially the wash banks just west of State Route ates are known. Sites bearing the remnants of prehishaped single-coursed cobble alignments (Dice et a be seen on high-resolution aerial photographs. Hombs and rounds that may have been dropped by Proposed Project area. Trash litters both sides of the more than 50 years old.	what appears to 86. No sites have storic fish traps of al. 2018) are als istoric trash and World War II train	be habitation foundation be been recorded on the province weir foundations, which to recorded in the Prop metal debris do occur ning planes between ap	ons are plentifu floor of any was ch in this area to osed Project ar near older road proximately 194	Il near large sh, although ake the form rea. Many of ds, including 40 and 1943
		been pre Proposed of the acc	were made before any fieldwork began to move proviously located. Nonetheless, the inventory encountry project features have been moved to positions the sess road associated with proposed well site 87-6 has build reduce the impact to less than significant.	untered 175 are at would avoid th	chaeological resources ne recorded site bounda	and 91 isolateries; however,	ed artifacts. construction
			lly, the County sent formal AB 52 consultation lette no formal consultation has been requested.	ers to Torres - M	artinez Tribes and Que	chan Tribes on	August 7th,
XIX.	UTI	LITIES AND	SERVICE SYSTEMS Would the project:				
	a)	expanded wadrainage, electricities, the environmental a) Geophysical would not requisively. Water needed to fight geophysical suof public utilitie accommodate	Il Survey: The geophysical survey area does not cur uire the construction of any water, wastewater, sto use associated with the survey would be limited to the fire in the area; this water would be purchased from the geophysical survey these impacts are less than	rmwater, or ene to the 100-gallon on the Coachella ed to be treated oject area and to significant.	rgy facilities to accomr water bucket kept on s Valley Water District vi by a wastewater treatn he lack of need to pro	nodate the derr ite should the h a a nearby fire h nent facility. Du vide expanded	nands of the nelicopter be nydrant. The e to the lack services to
		would not requ	ells: The proposed exploratory well sites do not cu uire the construction of any water, wastewater, sto ells associated with the Proposed Project. Water	rmwater, or ene	rgy facilities to accomm	nodate the dem	nands of the

Unless Mitigation Impact Incorporated Impact No Impact (PSI) (PSUMI) (LTSI) (NI) construction phase, and no infrastructure would be required to provide water to the proposed well sites; water for dust control and drilling would be purchased from the Coachella Valley Water District via a nearby fire hydrant. The exploratory wells would not generate wastewater that would need to be treated by a wastewater treatment facility. Storm water control would be implemented for each well pad and access road. Due to the lack of public utilities and services available within the Proposed Project area, and the lack of need to provide expanded services to accommodate the exploratory wells, these impacts are less than significant. Have sufficient water supplies available to serve the project from existing and reasonably foreseeable future development \boxtimes during normal, dry and multiple dry years? b) Geophysical Survey: As described above, the geophysical survey associated with the Proposed Project would not require a significant amount of water. Water use associated with the survey would be limited to fire prevention measures and purchased from the Coachella Valley Water District via a nearby fire hydrant. This impact is less than significant. Exploratory Wells: As noted in Impact a), the exploratory wells associated with the Proposed Project would not require a significant amount of water. Water use associated with the exploratory wells would be limited to drilling and dust control measures. Water for dust control and drilling would be purchased from the Coachella Valley Water District via a nearby fire hydrant. Operation of the exploratory wells would not require significant amount of water and would be limited to general maintenance activities. This impact is less than significant. Result in a determination by the wastewater treatment provider which serves or may serve the project that it has M adequate capacity to serve the project's projected demand in addition to the provider's existing commitments? c) Geophysical Survey: As described above, the geophysical survey associated with the Proposed Project would not generate wastewater that would need to be treated by a wastewater treatment facility. Onsite wastewater needs will be accommodated by the use of portable toilets that would be removed from the site once construction is complete. No impact would occur. Exploratory Wells: As noted in Impact b), the exploratory wells associated with the Proposed Project would not generate wastewater that would need to be treated by a wastewater treatment facility. Onsite wastewater needs will be accommodated by the use of portable toilets that would be removed from the site once construction is complete. No impact would occur. Generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals? d) Solid wastes generated by the Proposed Project would be handled in conformance with all applicable statutes and regulations. The potential for the small amount of waste generated by the Project to exceed the available landfill disposal capacity is negligible. Geophysical Survey: All solid waste or trash created during the geophysical survey associated with the Proposed Project will be transported for disposal at an approved solid waste disposal facility. All survey debris, including flagging, stakes, and pin flags, will be gathered on cleared pathways daily and disposed of at an approved site or landfill. Impact is therefore less than significant. Exploratory Wells: Small amounts drilling mud and cuttings would be generated from drilling operations associated with the Proposed Project. These wastes would be temporarily stored in the onsite containment basin or tanks. The solid contents remaining in each containment basin, typically consisting of non-hazardous, non-toxic drilling mud and rock cuttings, will be tested as required by the CRWQCB. The solids will be removed and disposed of in a waste disposal facility authorized by the CRWQCB to receive and dispose of these materials. If allowed they may be used as daily cover at the nearby landfill. This impact is less than significant. Comply with federal, state, and local management and reduction statutes and regulations related to solid waste? e) Geophysical Survey: The Proposed Project would comply with all applicable statutes and regulations related to solid waste, as described above. Solid waste generated from the survey is expected to be minimal. This impact is less than significant. Exploratory Wells: As noted in Impact d), the exploratory wells associated with the Proposed Project would comply with all applicable

XX. WILDFIRE

If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the Project:

statutes and regulations related to solid waste. Solid waste generated from the exploratory wells is expected to be minimal. This impact

is less than significant.

Potentially

Significant

Less Than

Significant

Potentially

Significant

		Potentially Significant Impact (PSI)	Potentially Significant Unless Mitigation Incorporated (PSUMI)	Less Than Significant Impact (LTSI)	No Impact (NI)
a)	Substantially impair an adopted emergency response plan or emergency evacuation plan?				\boxtimes
	a) Geophysical Survey: As described in Section IX, the geophy within a fire hazard severity zone (CalFire 2007). As previously not any emergency access routes. The geophysical survey would no Proposed Project area. No impact would occur.	ed, construction of	f the survey would not in	nvolve blocking o	or restricting
	Exploratory Wells: As noted above in Section IX, the exploratory fire hazard severity zone (CalFire 2007). As previously noted, or restricting any emergency access routes. The well site construction near the Proposed Project area. No impact would occur.	construction of th	e exploratory wells wo	ould not involve	blocking or
b)	Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?				\boxtimes
	b) Geophysical Survey: The geophysical survey would not involved new populations to the Proposed Project area that could result in and policies identified in the County of Imperial General Plan Seist to protect residents within the Proposed Project area. No impact we have the proposed Project area.	n impacts involvin mic and Public Sa	ng wildfires. The survey	would comply f	to the goals
	Exploratory Wells: The exploratory wells associated with the F infrastructure that would introduce new populations to the Propos exploratory wells would comply to the goals and policies identifie Element to provide adequate safety measures to protect residents	sed Project area to d in the County o	that could result in imp of Imperial General Plar	acts involving war Seismic and P	ildfires. The ublic Safety
: c)	Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?		D. Brinder		
	c) Geophysical Survey: As noted above, the geophysical survey a of structures of infrastructure that would introduce new population wildfires. No impact would occur.				
	Exploratory Wells: As noted in Impact b), the exploratory wells as of structures of infrastructure that would introduce new population wildfires. No impact would occur.				
d)	Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes? d) Geophysical Survey: As noted above, the geophysical survey would introduce new populations to the Proposed Project area that	y would not invol	ve development of stru	uctures of infrast	tructure that
	Exploratory Wells: As noted throughout this section, the explorato that would introduce new populations to the Proposed Project all occur.	ry wells would no	t involve development o	of structures of ir	nfrastructure

Note: Authority cited: Sections 21083 and 21083.05, Public Resources Code. Reference: Section 65088.4, Gov. Code; Sections 21080(c), 21080.1, 21080.3, 21083.3, 21083.21083.3, 21093, 21094, 21095, and 21151, Public Resources Code; Sundstrom v. County of Mendocino, (1988) 202 Cal. App. 3d 296; Leonoff v. Monterey Board of Supervisors, (1990) 222 Cal. App. 3d 1337; Eureka Citizens for Responsible Govt. v. City of Eureka (2007) 147 Cal. App. 4th 357; Protect the Historic Amador Waterways v. Amador Water Agency (2004) 116 Cal. App. 4th at 1109; San Franciscans Upholding the Downtown Plan v. City and County of San Francisco (2002) 102 Cal. App. 4th 656.

Revised 2009- CEQA

Potentially Significant Unless Mitigation Incorporated (PSUMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

Revised 2011- ICPDS Revised 2016 – ICPDS Revised 2017 – ICPDS Revised 2019 – ICPDS

Potentially
Significant
Unless Mitigation
Incorporated
(PSUMI)

Less Than Significant Impact (LTSI)

No Impact (NI)

SECTION 3

III. MANDATORY FINDINGS OF SIGNIFICANCE

The following are Mandatory Findings of Significance in accordance with Section 15065 of the CEQA Guidelines.

a)	Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal, eliminate tribal cultural resources or eliminate important examples of the major periods of California history or prehistory?		\boxtimes		
	a) As identified in Section IV of this IS, the Proposed Project has reduce the habitat of a fish or wildlife species, cause a fish or wildlife species	Idlife population to dr er or restrict the rang bugh MM-BIO-10 to r ermined to result in p rough MM-CUL-4 wo	rop below self-sustain e of a rare or endang reduce any potentiall potentially significant and reduce these imp	ning levels, threa gered plant or an y significant impa impacts associa pacts to less thar	aten to imal. acts to ted with
b)	Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.)				
	 b) Implementation of the Proposed Project would not result in a to less than significant vie the implementation of mitigation meas are less than significant. 				
c)	Does the project have environmental effects, which will cause substantial adverse effects on human beings, either directly or indirectly?				
	c) As noted above, all environmental impacts associated with implementation of the Proposed Project can be reduce to less than significant via implementation of mitigation measures. The Proposed Project would not result in significant impacts on human beings. This impact is less than significant				
	 c) As noted above, all environmental impacts associated with im significant via implementation of mitigation measures. The Proporties This impact is less than significant. 				

IV. PERSONS AND ORGANIZATIONS CONSULTED

This section identifies those persons who prepared or contributed to preparation of this document. This section is prepared in accordance with Section 15129 of the CEQA Guidelines.

A. COUNTY OF IMPERIAL

- Jim Minnick, Director of Planning & Development Services
- Michael Abraham, AICP, Assistant Director of Planning & Development Services
- David Black, Project Planner
- Imperial County Air Pollution Control District
- Department of Public Works
- Fire Department
- Ag Commissioner
- Environmental Health Services
- Sheriff's Office

B. OTHER AGENCIES/ORGANIZATIONS

- Bureau of Land Management
- California State Parks
- California State Lands Commission
- California Department of Conservation

٧. **REFERENCES**

Applied Earthworks, Inc. 2017 Paleontological Resource Assessment and Survey for the Ormat Nevada, Inc. Truckhaven 3D Geophysical Project, Imperial County, California Association of Environmental Professionals (AEP) Beyond 2020 and Newhall: A Field Guide to New CEQA Greenhouse Gas Thresholds and 2016 California. Available online at: Climate Action Plan Targets for https://www.califaep.org/images/climate-change/AEP-2016_Final_White_Paper.pdf. Bureau of Land Management (BLM) Desert Renewable Energy Conservation Plan: Land Use Amendment. Figure 5. DRECP LUPA 2016 Conservation Designations. Available Online https://www.drecp.org/maps/LUPA_maps/Figure5_DRECP_LUPA_Conservation.pdf California Air Pollution Control Officers Association (CAPCOA) Health Risk Assessments for Proposed Land Use Projects. Available Online at: 2009 http://www.capcoa.org/wp-content/uploads/2012/03/CAPCOA_HRA_LU_Guidelines_8-6-2008 Recommended Approaches for Setting Interim Significance Thresholds for Greenhouse Gases under the California Environmental Quality Act, on October 24, 2008. California Air Resources Board (CARB) Designations State Available Online at: 2018 Area Maps / National. https://ww3.arb.ca.gov/desig/adm/adm.htm 2016 Ambient Air Quality Standards. Available Online at: https://ww3.arb.ca.gov/research/aags/aags2.pdf. California Department of Conservation Online California Important Farmland Finder. Available at: 2019 https://maps.conservation.ca.gov/DLRP/CIFF/ 2016 County Williamson Act FY 2016/2017. Available Online at: Imperial file:///C:/Users/tstrand/Downloads/Imperial 16_17_WA%20(1).pdf California Department of Forestry and Fire Protection Online Hazard SRA. Available at: 2007 Fire Severity Zones https://osfm.fire.ca.gov/media/6680/fhszs_map13.pdf California Department of Transportation (Caltrans) Transportation and Construction Vibration Guidance Manual. Available Online at: 2013 http://www.dot.ca.gov/hq/env/noise/pub/TCVGM_Sep13_FINAL.pdf County of Imperial 2016 County of Imperial General Plan EIR. Available Online at: http://www.icpds.com/?pid=571. County of Imperial Renewable Energy and Transmission Element. Available Online at: 2105 http://www.icpds.com/CMS/Media/Renewable-Energy-and-Transmission-Element-2015.pdf. County of Imperial General Plan Geophysical and Public Safety Element. Available Online at: 1997 http://www.icpds.com/CMS/Media/Ceophysical-and-Public-Safety-Element.pdf. Department of Toxic Substances Control (DTSC) EnviroStor Database. Available Online at: http://www.envirostor.dtsc.ca.gov/public/ Flat-tailed Horned Lizard Interagency Coordinating Committee (ICC) 2003 Flat-tailed Horned Lizard Rangewide Management Strategy, 2003 Revision. Available Online at: https://www.fws.gov/carlsbad/TEspecies/Documents/Flattailed_horned_lizard/PDFs /RMS%20-%20Final%202003.pdf Federal Transit Administration (FTA) Transit Noise and Vibration Impact Assessment Manual. Available Online at: 2018 https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-

noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf

Imperial County Air Pollution Control District (ICAPCD)

High Wind Exceptional Event Fugitive Dust Plan for Imperial County. Available Online at: https://www.co.imperial.ca.us/AirPollution/otherpdfs/MitigationPlan.pdf

CEQA Air Quality Handbook. Available Online at:

https://www.co.imperial.ca.us/AirPollution/PlanningDocs/CEQAHandbk.pdf

State Water Resources Control Board (SWRCB)

2017 GeoTracker Database. Available online at: https://geotracker.waterboards.ca.gov/

Trinity Consultants

2017 California Emissions Estimator Model (CalEEMod) version 2016.3.2. Available Online at:

http://www.caleemod.com/

¥1.	1 11	DNGG				
determ	ine If the	se that the County of Imperial, acting as the lead agency, has conducted an Initial Study to a project may have a significant effect on the environmental and is proposing this Negative sed upon the following findings:				
	The Initial Study shows that there is no substantial evidence that the project may have a significant effect on the environment and a NEGATIVE DECLARATION will be prepared.					
\boxtimes		The Initial Study identifies potentially significant effects but:				
	(1)	Proposals made or agreed to by the applicant before this proposed Mitigated Negative Declaration was released for public review would avoid the effects or mitigate the effects to a point where clearly no significant effects would occur.				
	(2)	There is no substantial evidence before the agency that the project may have a significant effect on the environment.				
	(3)	Mitigation measures are required to ensure all potentially significant impacts are reduced to levels of insignificance.				
		A NEGATIVE DECLARATION will be prepared.				
to supp availab	ort this t le for rev	Regative Declaration means that an Environmental Impact Report will not be required. Reasons finding are included in the attached Initial Study. The project file and all related documents are view at the County of Imperial, Planning & Development Services Department, 801 Main Street, 2243 (442) 265-1736.				
		NOTICE				
The pu	blic is in	vited to comment on the proposed Negative Declaration during the review period.				
Date of	- 24 Determin	nation Jim Minnick, Director of Planning & Development Services				
	The Applicant hereby acknowledges and accepts the results of the Environmental Evaluation Committee (EEC) and hereby agrees to implement all Mitigation Measures, if applicable, as outlined in the MMRP.					
		Applicant Signature Date				

ATTACHMENT A - TABLES

Table 13: Potential for Occurrence - Special Status Plant Species

	Table 13:	Potential for Occurrence - Special Status Plant Sp	ecies	
Species	Status	Habitat	Blooming Period	Potential for Occurrence
Abronia villosa var. aurita chaparral sand-verbena	Fed: None State: None CNPS: 1B.1 BLM: S	Annual herb occurring in chaparral, Coastal scrub, and Desert dunes, on sandy soils. From 245 to 5,250 feet in elevation.	March – September	Moderate Suitable habitat occurs within the Proposed Project area, and observed within 0.5-miles.
Astragalus crotalariae Salton milk-vetch	Fed: None State: None CNPS: 4.3	Perennial herb occurring in desert wash and Sonoran desert scrub, on sandy or gravelly soils. From 195 to 820 feet in elevation.	January – April	Present. Observed within the Proposed Project area during the survey.
Astragalus insularis var, harwoodii Harwood's milk-vetch	Fed: None State: None CNPS: 2B.2	Annual herb occurring on desert dunes, desert wash, and Mojavean desert scrub, on sandy or gravelly soils. From 0 to 2,330 feet in elevation.	January – May	Moderate. Suitable habitat occurs within the Proposed Project area.
Astragalus magdalenae var. peirsonii Peirson's milk-vetch	Fed: THR State: END CNPS: 1B.2	Perennial herb occurring on desert dunes. From 195 to 740 feet in elevation.	December – April	Absent. No suitable habitat occurs within the Proposed Project area.
Bursera microphylla littleleaf elephant tree	Fed: None State: None CNPS: 2B.3	Perennial deciduous tree occurring in desert wash, Sonoran desert scrub, on rocky soils. From 655 to 2,300 feet in elevation.	June – July	Absent. The Proposed Project area is below the known elevation range for the species.
Castela emoryi crucifixion thorn	Fed: None State: None CNPS: 2B.2	Perennial deciduous shrub occurring on alkali playa, desert wash, Mojavean desert scrub and Sonoran desert scrub, on gravelly soils. From 300 to 2,380 feet in elevation.	June – July	Low. Suitable habitat occurs on site, but the Proposed Project area is below the known elevation range for the species.
Chaenactis carphoclinia var. peirsonii Peirson's pincushion	Fed: None State: None CNPS: 1B.3	Annual herb occurring in Sonoran desert scrub, on sandy soils. From 10 to 1,640 feet in elevation.	March – April	Moderate Suitable habitat occurs within the Proposed Project area, and observed within 0.5-miles.
Chaenactis glabriuscula var. orcuttiana Orcutt's pincushion	Fed: None State: None CNPS: 1B.1 BLM: S	Annual herb occurring in coastal bluff scrub and coastal dunes. From 0 to 330 feet in elevation.	January – August	Absent. No suitable habitat occurs within the Proposed Project area.
Chorizanthe polygonoides var. longispina long-spined spineflower	Fed: None State: None CNPS: 1B.2 BLM: S	Annual herb occurring in chaparral, coastal scrub, meadows and seeps, valley and foothill grassland, ultramafic soils, and vernal pools in clay soils. From 100 to 5,020 feet in elevation.	April – June	Absent. No suitable habitat occurs within the Proposed Project area.
Croton wigginsii Wiggin's croton	Fed: None State: Rare CNPS: 2B.2 BLM: S	Perennial shrub occurring on desert dunes and Sonoran desert scrub, on sandy soils. From 165 to 330 feet in elevation.	March – May	Moderate. Suitable habitat occurs within the Proposed Project area.
Cylindropuntia fosbergii pink teddy-bear cholla	Fed: None State: None CNPS: 1B.3 BLM: S	Perennial stem succulent occurring in Sonoran desert scrub. From 280 to 2,790 feet in elevation.	March – May	Low. Suitable habitat occurs on site, but the Proposed Project area is below the known elevation range for the species.
Cylindropuntia munzii Munz's cholla	Fed: None State: None CNPS: 1B.3 BLM: S	Perennial stem succulent occurring Sonoran desert scrub, on sandy or gravelly soils. From 490 to 1,970 feet in elevation.	May	Low. Suitable habitat occurs on site, but the Proposed Project area is below the known elevation range for the species.

Species	Status	Habitat	Blooming Period	Potential for Occurrence
Dieteria asteroids var. lagunensis Mount Laguna aster	Fed: None State: Rare CNPS: 2B.1 BLM: S	Perennial herb occurring in cismontane woodland and lower montane coniferous forest. From 2,590 to 7,875 feet in elevation.	July – August	Absent. The Proposed Project area is below the known elevation range for the species.
Euphorbia abramsiana Abram's spurge	Fed: None State: None CNPS: 2B.2	Annual herb occurring in Mojavean desert scrub and Sonoran desert scrub, on sandy soils. From - 15 to 4,300 feet in elevation.	August November	Moderate. Suitable habitat occurs within the Proposed Project area.
Euphorbia platysperma flat-seeded spurge	Fed: None State: None CNPS: 1B.2 BLM: S	Annual herb occurring in desert dunes and Sonoran desert scrub, on sandy soils. From 215 to 330 feet in elevation.	February – September	Low. Suitable habitat occurs on site, but the Proposed Project area is below the known elevation range for the species, and there are no known occurrences within 10 miles.
Fremontodendron mexicanum Mexican flannelbush	Fed: END State: Rare CNPS: 1B.1	Perennial evergreen shrub occurring in chaparral, cismontane woodlands, and closed-cone coniferous forest, on gabbroic, metavolcanic, or serpentinite soils. From 30 to 2,350 feet in elevation.	March – June	Absent. No suitable habitat occurs within the Proposed Project area.
<i>Grindelia hallii</i> San Diego sunflower	Fed: None State: None CNPS: 1B.2 BLM: S	Perennial herb occurring in chaparral, lower montane coniferous forest, meadows and seeps, and valley and foothill grassland. From 605 to 5,725 feet in elevation.	May – October	Absent. No suitable habitat occurs within the Proposed Project area, and is below the known elevation range for the species.
Helianthus niveus ssp. tephrodes Algodones Dunes sunflower	Fed: None State: END CNPS: 1B.2 BLM: S	Perennial herb occurring on desert dunes. From 165 to 330 feet in elevation.	September – May	Absent. No suitable habitat occurs within the Proposed Project area.
Hulsea californica San Diego sunflower	Fed: None State: None CNPS: 1B.3 BLM: S	Perennial herb occurring in chaparral, lower montane coniferous forest, and upper montane coniferous forest in openings and burned areas. From 3,000 to 9,560 feet in elevation.	April – June	Absent. No suitable habitat occurs within the Proposed Project area, and is below the known elevation range for the species.
Johnstonella costata (=Cryptantha costata) ribbed cryptantha	Fed: None State: None CNPS: 4.3 BLM: S	Annual herb occurring in desert dunes, Mojavean desert scrub, and Sonoran desert scrub, on sandy soils. From -195 to 1,640 feet in elevation.	February – May	Moderate Suitable habitat occurs within the Proposed Project area, and observed within 0.5-miles.
Lepidium flavum var. felipense Borrego Valley pepper- grass	Fed: None State: None CNPS: 1B.2 BLM: S	Annual herb occurring in pinon and juniper woodlands and Sonoran desert scrub, on sandy soils. From 1,490 to 2,755 feet in elevation.	March – May	Absent. The Propose Project area is below the known elevation range for the species.
Lupinus excubitus var. medius Mountain Springs bush lupine	Fed: None State: None CNPS: 1B.3	Perennial shrub occurring in pinyon and juniper woodlands and Sonoran desert scrub. From 1,395 to 4,495 feet in elevation.	March – May	Absent. The Propose Project area is below the known elevation range for the species.
Lycium parishii Parish's desert-thorn	Fed: None State: None CNPS: 2B.3	Perennial shrub occurring in coastal scrub and Sonoran desert scrub. From 440 to 3,280 feet in elevation.	March – April	Absent. The Propose Project area is below the known elevation range for the species.

Species	Status	Habitat	Blooming Period	Potential for Occurrence
Malperia tenuis brown turbans	Fed: None State: None CNPS: 2B.3	Annual herb occurring in Sonoran desert scrub, on sandy or gravelly soils. From 50 to 1,100 feet in elevation.	March – April	Low. Suitable habitat occurs within the Proposed Project area, but there are no known occurrences within 10 miles.
Monardella nana ssp. leptosiphon San Felipe monardella	Fed: None State: None CNPS: 1B.2 BLM: S	Perennial rhizomatous herb occurring in chaparral and lower montane coniferous forest. From 3,940 to 6,085 feet in elevation.	June – July	Absent. No suitable habitat occurs within the Proposed Project area, and is below the known elevation range for the species.
Monardella robisonii Robison's monardella	Fed: None State: None CNPS: 1B.3 BLM: S	Perennial rhizomatous herb occurring in pinon & juniper woodlands. From 2,000 to 4,920 feet in elevation.	April – September	Absent. No suitable habitat occurs within the Proposed Project area, and is below the known elevation range for the species.
Palafoxia arida var. gigantea giant Spanish needle	Fed: None State: None CNPS: 1B.3 BLM: S	Annual to perennial herb occurring on desert dunes. From 50 to 330 feet in elevation.	February – May	Absent. No suitable habitat occurs within the Proposed Project area.
Pholisma sonorae	Fed: None State: None CNPS: 1B.2 BLM: S	Perennial parasitic herb occurring on desert dunes and Sonoran desert scrub on sandy soils. From 0 to 655 feet in elevation.	April – June	Moderate. Suitable habitat occurs within the Proposed Project area.
Pilostyles thurberi Thurber's pilostyles	Fed: None State: None CNPS: 4.3	Perennial parasitic herb occurring on Psorothamnus in Sonoran desert scrub. From 0 to 1,120 feet in elevation.	December – April	Moderate Suitable habitat occurs within the Proposed Project area, and observed within 1-mile.
Salvia greatae Orocopia sage	Fed: None State: None CNPS: 1B.3 BLM: S	Perennial evergreen shrub occurring in desert wash, Mojavean desert scrub, and Sonoran desert scrub. From -130 to 2,705 feet in elevation.	March – April	Low. Suitable habitat occurs within the Proposed Project area, but all known populations occur on northeastern portion of the Salton Sea.
Schoenoplectus americanus Olney's three-square bulrush	Fed: None State: None CNPS: None State Parks: S	Perennial rhizomatous herb occurring in mineral- rich or brackish marshes, shores, fens, seeps, and springs. Up to 7,220 feet in elevation.	May - August	Absent. No suitable habitat occurs within the Proposed Project area.
Senna covesii Cove's senna	Fed: None State: None CNPS: 2B.2	Perennial herb occurring in sandy desert washes and slopes, and in Sonoran desert scrub. From 740 to 4,250 feet in elevation.	March – June	Absent. The Proposed Project area is below the known elevation range for the species.
Streptanthus campestris Southern jewel-flower	Fed: None State: None CNPS: 1B.3 BLM: S	Perennial rhizomatous herb occurring in chaparral, lower montane coniferous forest, and pinon and juniper woodlands, on rocky soils. From 2,950 to 7,545 feet in elevation.	May – July	Absent. No suitable habitat occurs within the Proposed Project area, and is below the known elevation range for the species.
Symphyotrichum defoliatum San Bernardino aster	Fed: None State: None CNPS: 1B.2 BLM: S	Perennial rhizomatous herb occurring in cismontane woodland, coastal scrub, lower montane coniferous forest, marsh and swamps, meadows and seeps, and valley and foothill grassland. From 5 to 6,690 feet in elevation.	July – November	Absent. No suitable habitat occurs within the Proposed Project area.

Species	Status	Habitat	Blooming Period	Potential for Occurrence
Thermopsis californica var. semota velvety false lupine	Fed: None State: None CNPS: 1B.2 BLM: S	Perennial rhizomatous herb occurring in cismontane woodland, lower montane coniferous forest, meadows and seeps, valley and foothill grassland, and wetlands. From 3,280 to 6,150 feet in elevation	March – June	Absent. No suitable habitat occurs within the Proposed Project area, and is below the known elevation range for the species.
Thysanocarpus rigidus	Fed: None State: None CNPS: 1B.2 BLM: S	Annual herb occurring in pinon and juniper woodlands, often on dry rocky slopes. From 1,970 to 7,220 feet in elevation.	February May	Absent. No suitable habitat occurs within the Proposed Project area, and is below the known elevation range for the species.
Xylorhiza cognata Mecca aster	Fed: None State: None CNPS: 1B.2 BLM: S	Perennial herb occurring in Sonoran desert scrub. From 65 to 1,310 feet in elevation.	January – June	Low. Suitable habitat occurs within the Proposed Project area, but all known populations occur on northeastern portion of the Salton Sea.
Xylorhiza orcuttii Orcutt's woody aster	Fed: None State: None CNPS: 1B.2 BLM: S	Perennial herb occurring in desert wash and Sonoran desert scrub. From 0 to 1,200 feet in elevation.	March – April	Moderate Suitable habitat occurs within the Proposed Project area, and observed within 0.5-miles.

Absent: Species or sign not observed on the site, outside of the known range, and conditions unsuitable for occurrence.

Low: Species or sign not observed on the site, but conditions marginal for occurrence.

Moderate: Species or sign not observed on the site, but conditions suitable for occurrence and/or an historical record exists in the vicinity.

High: Species or sign not observed on the site, but reasonably certain to occur on the site based on conditions, species ranges, and recent records.

Present: Species or sign of their presence recently observed on the site.

Federal status

END = listed as Endangered under the federal Endangered Species Act

Delisted = previously listed under the federal Endangered Species Act but now removed

State status

END = listed as Endangered under the California Endangered Species Act

BLM status

S = designated as a Sensitive species

State Parks status

S = designated as a Sensitive species

SRPR State Rare Plant Rank

- 1A: Plants presumed extirpated in California and either rare or extinct elsewhere.
- 1B: Considered rare, threatened, or endangered in California and elsewhere.
- 2A: Plants presumed extirpated in California, but more common elsewhere
- 2B: Plants Rare, Threatened, or Endangered in California, But More Common Elsewhere
- 3: Plants About Which More Information is Needed A Review List
- 4: Plants of Limited Distribution A Watch List

Threat Ranks/ Decimal notations: A California Native Plant Society extension added to the SSRPR

- .1 Seriously threatened in California (over 80 percent of occurrences threatened / high degree and immediacy of threat)
- .2 Moderately threatened in California (20-80 percent occurrences threatened / moderate degree and immediacy of threat)
- .3 Not very threatened in California (less than 20 percent of occurrences threatened / low degree and immediacy of threat or no current threats known)

Table 14: Potential for Occurrence - Special Status Wildlife Species

Species	Status	Habitat	Potential for Occurrence
Antrozous pallidus pallid bat	Fed: None State: SSC BLM: S	Occurs in chaparral, coastal scrub, desert wash, Great Basin grassland, Great Basin scrub, Mojavean desert scrub, riparian woodland, Sonoran desert scrub, upper montane coniferous forest, and valley and foothills grassland. Most common in open, dry habitats with rock areas for roosting. Roosts must protect bats from high temperatures. Very sensitive to disturbance of roosting sites.	Low. This species has been detected within the SVRA within five miles of the BSA (personal communication, State Parks 2017), and suitable foraging habitat for this species occurs within the BSA, but roosting habitat is of low quality, combined with frequent anthropogenic disturbance.
Athene cunicularia burrowing owl	Fed: None State: SSC BLM: S	Occurs in open, dry annual or perennial grasslands, deserts, and scrublands with low-growing vegetation. This includes a wide variety of vegetation communities, including coastal prairies, coastal scrub, Great Basin grassland, Great Basin scrub, Mojavean desert scrub, Sonoran desert scrub, and valley and foothill grasslands. Depends on fossorial mammals for burrows.	Moderate. There is only one record of this species in the general Project vicinity (CDFW 2017). There were occasional suitable burrows within the survey area that could support this species, but there were few insects observed for prey.
Charadrius alexandrines nivosus western snowy plower	Fed: THR State: SSC BLM: S	Occurs in Great Basin standing waters, sand shores, salt pond levees and shores of large alkali lakes, and wetlands. Requires sandy, gravelly, or friable soils for nesting.	Absent. No suitable habitat is present within the BSA.
Charadrius montanus mountain plover	Fed: None State: SSC BLM: S	Occurs in chenopod scrub, short grasslands, freshly-plowed fields, newly-sprouting grain fields, and occasionally sod farms. Needs a mixture of short vegetation and bare ground, along with flat topography. Prefers grazed areas and areas with fossorial rodents.	Absent. No suitable habitat is present within the BSA.
Falco mexicanus prairie falcon	Fed: None State: WL	Occurs in Great Basin grassland, Great Basin scrub, Mojavean desert scrub, Sonoran desert scrub, and valley and foothill grassland.	Low. Some suitable habitat for this species occurs within the BSA.
Lasiurus blossevillii western red bat	Fed: None State: SSC	Occurs in cismontane woodland, lower montane coniferous forest, riparian forest, and riparian woodland. Roosts primarily in trees 2-40 feet above ground, preferring habitat edges and mosaics with trees that are protected from above and open below with opens areas for foraging.	Low. This species has been detected within the SVRA within five miles of the BSA (personal communication, State Parks 2017), but no suitable foraging or roosting habitat for this species occurs within the BSA.
Oliarces clara cheeseweed owlfly	Fed: None State: None	Occurs in the lower Colorado River drainage. It is found under rocks or in flight over streams. Larrea tridentata is the suspected larval host.	Low. Larrea tridentata occurs within the BSA, but one confirmed observation in the vicinity is more than five miles from the site.
Pelecanus occidentalis californicus California brown pelican	Fed: Delisted State: FP BLM: S	This colonial rooster and nester generally occurs on coastal islands outside of the survey line, but also nests on small islands of small to moderate size which afford immunity from attack by ground-dwelling predators.	Absent. No suitable habitat is present within the BSA.
Perognathus longimembris bangsi Palm Springs pocket mouse	Fed: None State: SSC BLM: S	Occurs in desert riparian, desert washes and Sonoran desert scrub. Most common in desert scrub dominated by creosote. Rarely found on rock sites.	Moderate. Suitable habitat for this species occurs within the BSA.
Phrynosoma mcallii flat-tailed horned lizard	Fed: None State: SSC BLM: S	Occurs in desert dunes, Mojavean desert scrub, and Sonoran desert scrub in central Riverside, eastern San Diego, and Imperial Counties.	High. Suitable habitat for this species occurs within the BSA.
Toxostoma lecontei Le Conte's thrasher	Fed: None State: SSC	Occurs primarily in open desert wash, desert scrub, alkali desert scrub, and desert succulent scrub habitats. Commonly nests in dense, spiny shrubs or densely-branched cacti.	Low . Some suitable habitat for this species occurs within the BSA.

Species	Status	Habitat	Potential for Occurrence
Xantusia gracilis	Fed: None	Known only from the Truckhaven Rocks in the eastern part of Anza-Borrego State Park. Found	Absent. The Truckhaven Rocks is
sandstone night lizard	State: None BLM: S	in fissures or under slabs of exfoliating sandstone and rodent burrows in compacted sandstone and mudstone.	a highly localized area more than five miles from the BSA.

Absent: Species or sign not observed on the site, outside of the known range, and conditions unsuitable for occurrence.

Low: Species or sign not observed on the site, but conditions marginal for occurrence.

Moderate: Species or sign not observed on the site, but conditions suitable for occurrence and/or an historical record exists in the vicinity.

High: Species or sign not observed on the site, but reasonably certain to occur on the site based on conditions, species ranges, and recent records.

Present: Species or sign of their presence recently observed on the site.

Federal status

END = listed as Endangered under the federal Endangered Species Act

THR = listed as Threatened under the federal Endangered Species Act

State status

END = listed as Endangered under the California Endangered Species Act

THR = listed as Threatened under the California Endangered Species Act

SSC = designated as a Species of Concern

FP = designated as a Fully Protected species

WL = watch list species

BLM status

S = designated as a Sensitive species

Other

CNDDB = this species is only listed by the CNDDB and may be locally sensitive or its occurrences may be monitored to see if further protection is needed

APPENDIX A – CalEEMod AIR QUALITY MODEL RUN PRINTOUTS

EDMS 5.1.2 Emissions Inventory Report

Emissions Inventory Summary for 224 Landings and Takeoffs (16 per day for 14 days)

Study: Multiple Scenarios Study

Scenario - Airport: Baseline - Hagerstown

Year: 2020

Units: Pounds per Year

Generated: 10/17/19 10:18:44

# Category	CO2	8	THC	NMHC	VOC	106			PM-10	_	Fuel
Aircraft	53,185	1,623	330	381	379	381			N/A		
GSE	N/A	N/A	N/A	N/A	N/A	N/A			N/A		
APUs	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Parking Facilities	N/A	N/A	N/A	N/A	N/A	N/A			N/A		
Roadways	N/A	N/A	N/A	N/A	N/A	N/A			N/A		
Stationary Sources	A/N	N/A	N/A	N/A	N/A	N/A			N/A		
Training Fires	A/N	N/A	N/A	N/A	N/A	N/A			N/A		
Grand Total (pounds)	53,185	1,623	330	381	379	381			N/A		
Grand Total (tons)	26.59										
Daily Emissions	3,798.89	115.94	23.55	27.23	27.08	27.23	2.62	1.56			1204

Page 1 of 24

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

Truckhaven Geothermal Exploration Wells - 1 Well Calculations

Imperial County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Non-Asphalt Surfaces	160.00	1000sqft	3.67	160,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s) 3.4	3.4	Precipitation Freq (Days)	12
Climate Zone	15			Operational Year	2021
Utility Company	Imperial Irrigation District				
CO2 Intensity (Ib/MWhr)	1270.9	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	9.006

1.3 User Entered Comments & Non-Default Data

Page 2 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

Project Characteristics -

Land Use - 1 Well Pad = 400 ft x 400 ft = 3.67 acres

Construction Phase - Construction Schedule Provided by Applicant

Off-road Equipment - Well Cleanup - 1 Rubber Tired Loader, 2 Tractor/Loader/Backhoe

Off-road Equipment - Well Drilling - 1 Drill Rig 24-hours, 1 Mud Tank (Pump) 24-hours, 1 diesel generator (for lights) 12 hours, 1 Forklift 8 hours, 1 air compressor 8 hours

Off-road Equipment - Well Pad - 1 Rubber Tired Dozer, 1 Grader, and 2 Tractor/Loader/Backhoe

Off-road Equipment - Well Testing - 1 Crane 8 hours, 1 pump 24 hours, 1 Tractor/Loader/Backhoe 8 hours

Trips and VMT - 6 vendor truck trips per day added to Well Pad Construction and Well Cleanup to account for Water Trucks (already accounted for in Well

On-road Fugitive Dust - 90% of construction trips on pavement

srading.

Construction Off-road Equipment Mitigation - Water Exposed Area 2x per day selected to account for ICAPCD Regulation VIII minimum requirements

Off-road Equipment - Geo Survey - 4 Off-hwy trucks 8 hr/dy

Off-road Equipment - Well Pad - 1 Grader, 1 Dozer, 2 Tractors

Vehicle Trips - 2 trips per week

New Value	10.00	45.00	5.00	7.00	Off-Highway Trucks	1.00	1.00	2.00	1.00	1.00
Default Value	5.00	230.00	8.00	5.00		0.00	3.00	4.00	0.00	0.00
Column Name	NumDays	NumDays	NumDays	NumDaysWeek	OffRoadEquipmentType	OffRoadEquipmentUnitAmount	OffRoadEquipmentUnitAmount	OffRoadEquipmentUnitAmount	OffRoadEquipmentUnitAmount	OffRoadEquipmentUnitAmount
Table Name	tblConstructionPhase	tblConstructionPhase	tblConstructionPhase	tblConstructionPhase	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment

Page 3 of 24

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00	tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	1.00
0.00 0.00 3.00 0.00 0.00 8.00 50.00 50.00 50.00 50.00		OffRoadEquipmentUnitAmount	0.00	1.00
0.00 3.00 0.00 0.00 0.00 8.00 50.00 50.00 50.00 50.00 50.00		OffRoadEquipmentUnitAmount	0.00	1.00
3.00 3.00 0.00 0.00 8.00 50.00 50.00 50.00 50.00		OffRoadEquipmentUnitAmount	0.00	1.00
3.00 0.00 8.00 50.00 50.00 50.00 50.00 50.00	<u>.</u>	Officoad Equipment Unit Amount Officoad Equipment Unit Amount	0.00	1.00
8.00 50.00 50.00 50.00 50.00 50.00 50.00	ļ	OffRoadEquipmentUnitAmount	3.00	2.00
8.00 50.00 50.00 50.00 50.00 50.00 50.00	ļ	OffRoadEquipmentUnitAmount	0.00	4.00
8.00 50.00 50.00 50.00 50.00 50.00 50.00		PhaseName		Well Pad Construction
8.00 8.00 50.00 50.00 50.00 50.00 50.00 50.00		PhaseName		Well Drilling
8.00 50.00 50.00 50.00 50.00 50.00 50.00		PhaseName		Well Drilling
8.00 50.00 50.00 50.00 50.00 50.00 50.00		PhaseName		Well Drilling
8.00 50.00 50.00 50.00 50.00 50.00 50.00	• • • •	PhaseName		Well Testing
8.00 50.00 50.00 50.00 50.00 50.00 50.00		PhaseName		Well Testing
8.00 50.00 50.00 50.00 50.00 50.00 50.00		PhaseName		Well Testing
8.00 50.00 50.00 50.00 50.00 50.00 50.00		PhaseName		Well Cleanup-Abandoment
8.00 50.00 50.00 50.00 50.00 50.00 50.00		PhaseName		Geophysical Survey
50.00 50.00 50.00 50.00 50.00 50.00		UsageHours	8.00	12.00
50.00 50.00 50.00 50.00 50.00 50.00		HaulingPercentPave	50.00	00.06
50.00 50.00 50.00 50.00 50.00		HaulingPercentPave	50.00	90:06
50.00 50.00 50.00 50.00 50.00		HaulingPercentPave	50.00	90.06
50.00 50.00 50.00 50.00		HaulingPercentPave	50.00	90.00
50.00 50.00 50.00		HaulingPercentPave	50.00	90.00
50.00 50.00 50.00		VendorPercentPave	50.00	90.00
50.00 50.00		VendorPercentPave	50.00	90.00
50.00		VendorPercentPave	50.00	90.00
		VendorPercentPave	50.00	90.00

Date: 10/17/2019 11:18 AM

CalEEMod Version: CalEEMod.2016.3.2

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

00:06	90.00	90.00	90.00	90.00	90.00	6.00	2.00	6.00	6.00	8.00	20.00	100.00	100.00	0.02
50,00	50.00	50.00	50.00	50.00	50.00	0.00	0.00	0.00	0.00	15.00	10.00	0.00	0.00	0.00
VendorPercentPave	WorkerPercentPave	WorkerPercentPave	WorkerPercentPave	WorkerPercentPave	WorkerPercentPave	VendorTripNumber	VendorTripNumber	VendorTripNumber	VendorTripNumber	WorkerTripNumber	WorkerTripNumber	CC_TTP	PR_TP	ST_TR
tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblTripsAndVMT	tblTripsAndVMT	tblTripsAndVMT	tblTripsAndVMT	tblTripsAndVMT	tblTripsAndVMT	tblVehicleTrips	tblVehicleTrips	tblVehicleTrips

2.0 Emissions Summary

Page 5 of 24

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

		4	T ₁₀
CO2e		7,350.115	0.0000 7,350.115
NZO		0.0000	0.0000
CH4	Å.	1.6744	1.6744
Total CO2	lb/day	7,320,055	7,320.055
NBio- CO2		7,320,055	0.0000 7,320.055 7,320.055 1.6744
Bio- CO2		0.000	0.0000
Exhaust PMZ.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		0.0756 106.5738 1.4856 108.0594 10.7298 1.4525 12.1823 0.0000 7,320,055 7,320,055 1.6744 0.0000 7,350,1154	12.1823
Exhaust PM2.5		1.4525	1.4525
Fugitive PM2.5		10.7298	10.7298
PM10 Total		108 0594	1.4856 108.0594
Exhaust PM10	lay	1,4856	1.4856
Fugitive PM10	lb/day	106.5738	106.5738
S02		0.0756	0.0756
00		30.9164	
NOx		3.7504 i 33.1484 i 30.9164	3.7504 33.1484 30.9164
ROG		3.7504	3.7504
	Year	2020	Maximum

Mitigated Construction

C02e		0.0000 7,350.1154	0.0000 7,350.115
NZO		0.000	0.0000
CH4	À		1.6744
Total CO2	lb/day	7,320.055	7,320.055
NBio- CO2		12.1823 0.0000 7,320.055 7,320.055 1.6744	0.0000 7,320.055 7,320.055
Bio- CO2		0.0000	0.0000
PM2.5 Total		12.1823	12.1823
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		1.4525	1.4525
Fugitive PM2.5			10.7298
PM10 Total		1 4856 108.0594 10 7298	108.0594
Exhaust PM10	ay	1,4856	1.4856
Fugitive PM10	lb/day	106.5738	106.5738
s02			0.0756
8		30.9164	30.9164
X N		3.7504 33.1484 30.9164 0.0756	3.7504 33.1484 30.9164
ROG		3.7504	3.7504
	Year	2020	Maximum

CO2e	00:00
N20	00:00
CH4	0.00
Total CO2	0.00
Bio- CO2 NBio-CO2 Total CO2	0.00
Bio- CO2	00:00
PM2.5 Total	0.00
Exhaust PM2.5	0.00
Fugitive PM2.5	00.0
PM10 Total	0.00
Exhaust PM10	00:0
Fugitive PM10	00:0
S02	00:0
00	00:0
XON	00:0
ROG	0.00
	Percent Reduction

Page 6 of 24

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

2.2 Overall Operational Unmitigated Operational

COZe		0.0373	0.0000	25.0249	25.0622
N20			00000		0.0000
CH4	ay	9,0000e- 005	0.000.0	2.0700e- 003	2.1600e- 003
Total CO2	lb/day	0.0350	00000	24.9731	25.0081
NBio- CO2		0.0350	0.000	24.9731	25.0081
Bio- CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		6,0000e- 005	0.000.0	0.5951	0.5952
Exhaust PM2.5		6.0000e- 1 6	0.000	1.5000e- 004	2.1000e- 004
Fugitive PM2.5				0.5950	0.5950
PM10 Total		6.0000e- 005	0.000.0	5,9615	5.9616
Exhaust PM10	ay	6.0000e- 005	00000	1,6000e- 004	2.2000e- 004
Fugitive PM10	lb/day	NATE:		9614	5.9614
S02		0.000.0	0.000.0	2.4000e- 5 004	0.1194 2.4000e- 004
03		0.0164	0.0000	0.1030	0.1194
XON		1.5000e- 004	0.0000 0.0000.0	0.0664	0.0665
ROG		0.0765	0.000	0.0106	0.0871
	Category	Area	Energy	Mobile	Total

Mitigated Operational

CO2e		0,0373	0.000	25.0249	25.0622
NZO			0.000.0		0.0000
CH4	ay	9.0000e- 005	0,000	2.0700e- 003	2.1600e- 003
Total CO2	lb/day	0.0350	0,000	24.9731	25.0081
NBio- CO2		0.0350	0.000.0	24.9731	25.0081
Bio-CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		6.0000e- 005	0.000	0.5951	0.5952
Exhaust PM2.5		6.0000e- 005	00000	1.5000e- 004	2.1000e- 004
Fugitive PM2.5				0.5950	0.5950
PM10 Total		6.0000e- 005	0.000.0	5.9615	5.9616
Exhaust PM10	lay	6.0000e- 005	00000	1.6000e- 004	2.2000e- 004
Fugitive PM10	lb/day			5.9614	5.9614
S02		0.000	0.0000	2.4000e- 004	2.4000e- (
8		0.0164	0.000	0.1030	0.1194
XON		1.5000e- 004	0.000	0.0664	0.0665
ROG		0.0765	0.000	0.0106	0.0871
	Category	Area	Energy	Mobile	Total

Page 7 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

	ROG	×ON	8	\$05	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.6	PM2.5 Total	Bio-CO2	Bio- CO2 NBio-CO2 Total CO2	Total CO2	CH4	N20	CO2e
ercent duction	0.00	0.00	00:0	00:00	0.00	00:00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	00.0

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days Num Days Week	Phase Description
	Geophysical Survey	Trenching	2/11/2020	2/29/2020	5	41	
	Well Pad Construction	Site Preparation	3/1/2020	3/14/2020	2	10	
	Well Drilling	ing Construction	į	4/28/2020	7	451	
men i	Well Testing		4/29/2020	4/30/2020	5	2	
	Well Cleanup-Abandoment	Grading	5/1/2020	5/7/2020	5	5	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 3.67

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Well Pad Construction	Graders	x -	8.00	187	0.41
Well Pad Construction	Rubber Tired Dozers	1	8.00	247	0.40
Well Pad Construction	Tractors/Loaders/Backhoes	2	8.00	16	0.37
Well Drilling	Air Compressors		8.00	78	0.48
Well Drilling	Bore/Drill Rigs		24.00	221	0.50
Well Drilling	Forklifts		8.00	88	0.20
Well Drilling	Generator Sets		12.00	84	0.74
Well Drilling	Pumps		24.00	84	0.74
Well Testing	Cranes		8.00	231	0.29
Well Testing	Sdmnds	***	24.00	84	0.74
Well Testing	Tractors/Loaders/Backhoes		8.00	97	0.37
Well Cleanup-Abandoment	Rubber Tired Loaders		8.00	203	0.36
Well Cleanup-Abandoment	Tractors/Loaders/Backhoes	2	8.00	6	0.37
Geophysical Survey	Off-Highway Trucks	4	8 00	402	0.38

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Vendor Trip Hauling Trip Number Number	Worker Trip Length	Vendor Trip Hauling Trip Length Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Well Pad Construction	4	10.00	6.00	00.00	7.30	8.90	20.00	20.00 LD_Mix	HDT_Mix	ННОТ
Well Drilling	10	67.00	26.00	0.00	7.30	8.90	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Well Testing	е	8.00	2.00	0.00	7.30	8.90	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Well Cleanup-	9	8.00	9 00	0.00	7.30	8.90	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Geophysical Survey	4	20.00	6.00	00.0	7.30	8.90	20.00	20.00 LD_Mix	HDT_Mix	ННДТ

3.1 Mitigation Measures Construction

Water Exposed Area

Page 9 of 24

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

3.2 Geophysical Survey - 2020 Unmitigated Construction On-Site

CO2e		5,155.841	5,155.841
NZO	1 3		
CH4	ay	1.6541	1.6541
Total CO2	lb/day	5,114,4880;5,114,4880; 1,6541	5,114,488 5,114,488 1.6541 0
NBio- CO2		5,114,4880	5,114.488 0
Bio- CO2			
Exhaust PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 PM2.5		0.8477	0.8477
Exhaust PM2.5		0,8477	0.8477
Fugitive PM2.5			
PM10 Total		0.9214 0.9214	0.9214
Exhaust PM10	lb/day	0.9214	0.9214
Fugitive PM10	/q		
805		0.0528	0.0528
8		15.2404	15.2404
× ON		2.6524 i 25.2909 i 15.2404 i 0.0528	2.6524 25.2909 15.2404 0.0528
ROG		2.6524	2.6524
	Category	Off-Road	Total

Unmitigated Construction Off-Site

C02e		0.0000	204.3106	113.5209	317.8316
NZO					
CH4	à.	0.000	0.0106	9.6200e- 003	0.0203
Total CO2	lb/day	0.000.0		113.2805	317.3255
NBio- CO2		0.000.0	204 0450 + 204 0450	113.2805	317.3255
Bio- CO2			<u> </u>		
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.000	0.8016	2.1719	2.9735
Exhaust PM2.5		0.000.0	3.9700e- 003	7.0000e- 1 004	4.6700e- 003
Fugitive PM2.5		00000	0.7976	2.1712	2.9688
PM10 Total		00000	7.9090	21.5887	29.4977
Exhaust PM10	lay	0.0000	4.1500e- 1 003	7.6000e- 004	4.9100e- 003
Fugitive PM10	lb/day	0.0000	9048	5880	29.4928
802		0000 0	1.9500e- 003	1.1500e- 21 003	3.1000e- 003
8		0000 0	0.1876	1.0128	1.2004
×ON		0.0000 0.0000 0.0000 0.00000	0.6797	0.0862	0.7659
ROG		0.000.0	0.0268	0.1393	0.1661
	Category	Hauling	Vendor	Worker	Total

Page 10 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

3.2 Geophysical Survey - 2020

Mitigated Construction On-Site

C02e		5,155,841	5,155.841
N20			
7 4	,	1.6541	1.6541
Total CO2	lb/day	,114,4880	5,114.488
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.8477 0.0000 5,114,48805,114,4880 1.6541	0.0000 5,114.488 5,114.488
Bio- CO2		0.0000	0.0000
PM2.5 Total		0.8477	0.8477
Exhaust PM2.5		0.8477	0.8477
Fugitive PM2.5			
PM10 Total		0.9214	0.9214
Exhaust PM10	ay 0.9214	0.9214 0.9214	0.9214
Fugitive PM10	lb/day		
802		0.0528	0.0528
8		2,6524 25,2909 15,2404 0,0528	15.2404
NOX		25.2909	2.6524 25.2909
ROG		2.6524	2.6524
	Category	Off-Road	Total

Mitigated Construction Off-Site

C02e		0.000	204,3106	113.5209	317.8316
N20					
CH4	J.	0.000.0	0.0106	9.6200e- 1 003	0.0203
rotal CO2	lb/day	0.0000	204.0450	113.2805	317.3255
NBio- CO2		00000	204.0450 1 204.0450	113.2805 113.2805	317.3255
Bio- CO2					
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.000.0	0.8016	2.1719	2.9735
Exhaust PM2.5		0.000.0	3.97.30e- 003	7.0030e- 004	4.6700e- 003
Fugitive PM2.5		0.000.0	0.7976	2.1712	2.9688
PM10 Total		0000.0	7.9090	21.5887	29.4977
Exhaust PM10	lay	0.0000 0.0000	4.1500e- 003	7.6000e- 004	4.9100e- 003
Fugitive PM10	lb/day	0000.0	7.9048	21.5880	29.4928
S02		00000	1.9500e- 003	1.1500e- 003	3.1000e- 003
8		0.000.0	3.1876	1.0128	1.2004
XON		00000	0.6797	0.0862	0.7659
ROG		0.000.0 0.000.0 0.000.0	0.0268	0.1393	0.1661
	Category	1		Worker	Total

Page 11 of 24

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

3.3 Well Pad Construction - 2020 Unmitigated Construction On-Site

C02e		0.000	2,088.348	2,088.348
NZO				
CH4	ay		0.6700	0.6700
Total CO2	lb/day	00000	2,071.598	2,071.598
ABio- CO2			2,071.598 2,071,598	2,071.598 2,071.598 2 2
Bio- CO2				
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		3.3675	0.9416	4.3091
Exhaust PM2.5	1 4	0.0000	0.9416	0.9416
Fugitive PM2.5		3.3675		3.3675
PM10 Total		6.5523	1.0234	7.5758
Exhaust PM10	ay	0,000	1.0234	1.0234
Fugitive PM10	lb/day	6.5523		6.5523
202			0.0214	0.0214
8			10,5055	10.5055
NOX			1.9743 21.8681	1.9743 21.8681
ROG			1.9743	1.9743
	Category	Fugitive Dust	Off-Road	Total

Unmitigated Construction Off-Site

C02e		0.0000	204.3106	56.7605	261.0711
NZO					
CH4	ay	0.0000	0.0106	4.8100e- 003	0.0154
Total CO2	lb/day	0.000	204.0450 204.0450	56.6403	260.6852
NBio- CO2		0.000	204.0450	56.6403	260.6852
Bio- CO2					
Exhaust PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 PM2.5		0.000.0	0.8016	1.0860	1.8875
Exhaust PM2.5		0.0000	3.9700e- 1 003	3,5000e- 1 004	4.3200e- 003
Fugitive PM2.5		0.000	0.7976	1.0856	1.8832
PM10 Total		00000	7.9090	10.7944	18.7033
Exhaust PM10	lb/day	0000	4.1500e- 003	3.8000e- 004	4.5300e- 1 003
Fugitive PM10)/q	0.000	7.9048	10.7940	.6988
S02		0.0000 0.00000 0.00000 0.00000 0.00000	1.9500e- 003	5.7000e- 004	2.5200e- 18 003
00		0.0000	0.1876	0.5064	0.6940
×ON	1.7	0.0000	0.6797	0.0431	0.7228
ROG		0.000.0	0.0268	9690'0	0.0965
	Category	Hauling	Vendor	Worker	Total

Page 12 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

3.3 Well Pad Construction - 2020

Mitigated Construction On-Site

CO2e		0.000	2,088.348	2,088.348
N20				
전 *	λ		0.6700	0.6700
Total CO2	lb/day	0.0000	2,071.598	2,071.598
NBio- CO2			0.0000 2,071,598 2,071,598	0.0000 2,071.598 2,071.598
Bio- CO2			0.0000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		1.5154	0.9416	2.4569
Exhaust PM2.5		0.0000	0.9416	0.9416
Fugitive PM2.5		1.5154		1.5154
PM10 Total		2.9486	1.0234	3.9720
Exhaust PM10	ay	0.0000	1.0234	1.0234
Fugitive PM10	lb/day	2.9486	ļ	2.9486
202			0.0214	0.0214
00			10.5055	10.5055
XON			21.8681	1.9743 21.8681 10.5055 0.0214
ROG			1.9743	1.9743
	Category	Fugitive Dust	Off-Road	Total

Mitigated Construction Off-Site

	ROG	NOX	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	O2 Total CO2	CH4	NZO	CO2e
Category					lb/day	ay						yqI	lb/day		
Hauling	0.0000	0.0000	0.0000 1 0.0000 1 0.0000	0.0000	0.000	0.000.0	0.000.0	0.0000	0.0000	0.000	00000	0.0000	0.000		0.000
Vendor	0.0268	0.6797	0.1876	1.9500e- 003	7.9048	4.1500e- 1 003	7.9090	0.7976	3.9700e- 1 C03	0.8016	204 04	204.0450 204.0450	0.0106		204.3106
Worker	0.0696	0.0431	0.5064	1 5.7000e- 1 004	0.7940	3.8000e- 004	10.7944	1.0856	3.5000e- 1 CO4	1.0860	56.6403	13 56.6403	4.8100e- 003		56.7605
Total	0.0965	0.7228	0.6940	2.5200e- 003	18.6988	4.5300e- 18	18.7033	1.8832	4.3200e- 003	1.8875	260.6852	52 260.6852	0.0154		261.0711

Page 13 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

3.4 Well Drilling - 2020

Unmitigated Construction On-Site

C02e		6,084.474	6,084.474
NZO			
CH4	Ae .	1.1241	1.1241
Total CO2	lb/day	5,056.3711	6,056.371
NBio- CO2		6,056,3711,6,056.3711, 1,1241	6,056.371 6,056.371 1.1241
Bio- CO2			
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		1.4329	1.4329
Exhaust PM2.5		1.4329	1.4329
Fugitive PM2.5		ania.co	
PM10 Total		1.4650	1.4650
Exhaust PM10	lb/day	1,4650	1.4650
Fugitive PM10)/qI		
s02		0.0633	0.0633
00		26,7104	
NOx		29,9144 26,7104 0,0633	29.9144 26.7104
ROG		3.1676	3.1676
	Category	Off-Road	Total

Unmitigated Construction Off-Site

			i o	. 01	T-
C02e		0,000	885.3460	380 2952	1,265.641 2
N20					
CH4	,	0.000.0	0.0460	0.0322	0.0783
Total CO2	lb/day	0.000.0	884.1949	379.4897	1,263.684 6
NBio- CO2		0.000.0	884.1949	379.4897	1,263.684 1,263.684 6 6
Bio- CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		00000	3,4735	7.2758	10.7494
Exhaust PM2.5		0.000.0	0.0172	2.3500e 003	0.0196
Fugitive PM2.5		0.000.0	3.4563	7.2735	10.7298
PM10 Total		0000	34.2721	72.3222	106.5944
Exhaust PM10	ay	00000	0,0180	2.5500e- 003	0.0206
Fugitive PM10	lb/day	00000	34.2541	72.3197	106.5738
805		0,000	0.8129 18.4600e- 34.2541 003	3,8500e- 003	0.0123
00		00000 000000	0.8129	3.3930	4.2060
×ON		0000 0 0000 0	2.9452	0.2888	3.2340
ROG		00000	0.1163	0.4665	0.5828
	Category	Hauling	Vendor	Worker	Total

Page 14 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

3.4 Well Drilling - 2020

Mitigated Construction On-Site

CO2e		6,084,474	6,084.474 3
NZO			
CH4	ву	1.1241	1.1241
Total CO2	lb/day	5,056.3711	6,056.371
NBio- CO2		0.0000 6,056.3711 6,056.3711 1.1241	0.0000 6,056.371 6,056.371 1.1241
Bio- CO2		0.000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5		1.4329	1.4329
Exhaust PM2.5		1,4329	1.4329
Fugitive PM2.5			
PM10 Total		1,4650	1.4650
Exhaust PM10	lay	1.4650	1,4650
Fugitive PM10	lb/day		
802		0.0633	0.0633
8		26.7104	26.7104
×ON		3,1676 29,9144 26,7104 0,0633	3.1676 29.9144 26.7104
ROG		3.1676	3.1676
	Category	Off-Road	Total

Mitigated Construction Off-Site

COSe		0,000	885.3460	380,2952	1,265.641
NZO			-		
CH4	Á.	0.000.0	0.0460	0.0322	0.0783
Total CO2	lb/day	00000	B84.1949	379.4897	1,263.684 6
NBio- CO2		0.000.0	884 1949 884 1949	379,4897 379,4897	1,263.684 1,263.684 6 6
Bio-CO2					
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.000.0	3.4735	7.2758	10.7494
Exhaust PM2.5		00000	0.0172	2.3500e- 003	0.0196
Fugitive PM2.5		0.000.0	3.4563	7.2735	10.7298
PM10 Total		0,000	34.2721	72.3222	0.0206 106.5944
Exhaust PM10	ay	0.000.0	0.0180	2.5500e- 003	0.0206
Fugitive PM10	lb/day	0.000.0	34.2541	2.3197	106.5738
S02		0.0000	8.4600e- 1 34 003	3.8500e- 7. 003	0.0123
8		0.000	0.8129	3.3930	3.2340 4.2060
XON		00000 00000 00000 00000	2.9452	0.2888	3.2340
ROG		00000	0.1163	0.4665	0.5828
	Category	Hauling	Vendor	Worker	Total

Page 15 of 24

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

3.5 Well Testing - 2020

Unmitigated Construction On-Site

	r	T.	T ₆
C02e		2,738,407	2,738.407 4
NZO			
CH4	Ą	0.3898	0.3898
Total CO2	lb/day	2,728.661	
NBio- CO2		2,728,661 2,728,661 0,3898 9 9	2,728.661 2,728.661 9
Bio- CO2			
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.9486	0.9486
Exhaust PM2.5		0.9486	0.9486
Fugitive PM2.5			
PM10 Total		0.9770	0.9770
Exhaust PM10	lb/day	0,9770	0.9770
Fugitive PM10)/qi		
S02		0.0286	0.0286
00		15,6827	15.6827
×ON		1.9324 18.0838 15.6827 0.0286	1.9324 18.0838 15.6827
ROG		1 9324	1.9324
	Category	Off-Road	Total

Unmitigated Construction Off-Site

C02e		0.0000	68.1035	45.4084	113.5119
NZO			ļ		
CH4	ay	0.000.0	3.5400e- 1 003	3.8500e- 003	7.3900e- 003
Total CO2	lb/day	00000	68.0150	45.3122	113.3272 113.3272
NBio- CO2		00000	68.0150	45.3122	113.3272
Bio- CO2					
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0,000	0.2672	0.8688	1.1360
Exhaust PM2.5		00000	1.3200e- 003	2.8000e- 1 004	1.6000e- 003
Fugitive PM2.5		0.000.0	0.2659	0.8685	1.1344
PM10 Total		00000	2,6363	8.6355	11.2718
Exhaust PM10	lb/day	0.0000 1 0.0000	1,3800e- 003	3.0000e- 004	1.6800e- 003
Fugitive PM10)/q	0.000.0	2.6349	8 6352	11.2701
203		0.0000	6.5000e- 004	0.0345 0.4051 4.6000e- 004	1.1100e- 003
00		0000 0	0.0625	0.4051	0.4677
NOx		0,000 0 0,000 0 0,000 0	0.2266	0.0345	0.2611
ROG		00000	8.9400e- 003	0.0557	0.0646
	Category	Hauling		Worker	Total

Page 16 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

3.5 Well Testing - 2020

Mitigated Construction On-Site

CO2e		2,738 407	2,738.407
NZO			
유 1	ay	0.3898	0.3898
Total CO2	lb/day	2,728 661	
NBio- CO2		0.0000 2,728,661 2,728,661 0.3898	0.0000 2,728.661 2,728.661 8 8
Bio- CO2		0.000	0.0000
Extraust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.9486	0.9486
Exhaust PM2.5	22-	0.9486	0.9486
Fugitive PM2.5		2000	
PM10 Total		0.9770	0.9770
Exhaust PM10	lb/day	0.9770	0.9770
Fugitive PM10)/ql		
202		0.0286	0.0286
00		15,6827	15.6827
NOX		1,9324 18,0838 15,6827	1.9324 18.0838
ROG		1.9324	1.9324
	Category	Off-Road	Total

Mitigated Construction Off-Site

CO2e		0.0000	68.1035	45.4084	113.5119
N20					
CH4	39	0.000.0	3.5400e- 003	3.8500e- 003	7.3900e- 003
Total CO2	lb/day	0.000.0	68.0150	45.3122	
VBio- CO2		0.0000	68.0150	45.3122	113.3272 113.3272
Bio- CO2					
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		00000	0.2672	0.8688	1.1360
Exhaust PM2.5		00000	1.3200e- 1 C03	2.8000e- C04	1.6000e- C03
Fugitive PM2.5		0.000.0	0.2659	0.8685	1.1344
PM10 Total		0000.0	2.6363	8,6355	11.2718
Exhaust PM10	ay	0.000.0	1.3800e- 003	3.0000e- 004	1.6800e- 003
Fugitive PM10	lb/day	0000	2.6349	8.6352	11.2701
S02		0.000.0	6.5000e- 004	4.6000e- 004	1.1100e- 003
0		0.000.0	0.0625	0.4051	0.4677
XON		0.000.0	266	0.0345	0.2611
ROG		0.0000 0.0000 0.00000	8.9400e- 0.2 003	0.0557	0.0646
The second	Category		:	Worker	Total

Page 17 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

3.6 Well Cleanup-Abandoment - 2020

Unmitigated Construction On-Site

		_	i m	Im
C02e		0.0000	1,216.453	1,216.453
NZO				
CH4	>		0.3903	0.3903
rotal CO2	lb/day	0.0000	1,206.696	
ABio- CO2			1,206.696 1,206.696	1,206.696 1,206.696 9
Bio- CO2			- 	
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		3.3675	0.3796	3.7471
Exhaust PM2.5		0,000	0.3796	0.3796
Fugitive PM2.5		3.3675		3.3675
PM10 Total		6.5523	0.4126	6.9650
Exhaust PM10	ay	00000	0.4126	0.4126
Fugitive PM10	lb/day	6.5523		6.5523
203			0.0125	0.0125
8			6.1948	6.1948
XON	= . ñ		8.6199	8.6199
ROG			0.7931	0.7931
	Category	Fugitive Dust	Off-Road	Total

Unmitigated Construction Off-Site

C02e		0.0000	204.3106	45.4084	249.7190
N20					
CH4	â,	0.000	0.0106	3.8500e- 003	0.0145
Total CO2	lb/day	0.000.0	204.0450	45.3122	249.3572
Bio- CO2 NBio- CO2 Total CO2		0.0000	204.0450 204.0450	45.3122	249.3572 249.3572
Bio- CO2					
PM2.5 Total		0.000.0	0,8016	0.8688	1.6703
Exhaust PM2.5		00000	3.9700e- 1 003	2.8000e- 004	4.2500e- 003
Fugitive PM2.5		00000	0.7976	0.8685	1.6661
PM10 Total		0.000.0	7.9090	8.6355	16.5444
Exhaust PM10	lay	00000	4,1500e- 003	3.0000e- 004	4.4500e- 003
Fugitive PM10	lb/day	0000	7.9048	8.6352	16.5400
S02		00000	1.9500e- 1.7.9 003	0.4051 4.6000e- 004	0.5927 2.4100e- 003
00		0.000	0.1876	0.4051	0.5927
NOX		00000 000000	0.6797	0.0345	0.7142
ROG		00000	0.0268	0.0557	0.0825
	Category		Vendor	Worker	Total

Page 18 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

3.6 Well Cleanup-Abandoment - 2020

Mitigated Construction On-Site

CO2e		0.000.0	1,216,453	1,216.453
N20				
CH4	Αi		0.3903	0.3903
Total CO2	lb/day	00000	1,206.696	
Bio- CO2 NBio- CO2 Total CO2			1,206.696	0.0000 1,206.696 1,206.696 9
Bio- CO2			0.000.0	0.0000
PM2.5 Total		1.5154	0.3796	1.8950
Exhaust PM2.5		0.000	0,3796	0.3796
Fugitive PM2.5		1.5154		1.5154
PM10 Total		2.9486	0.4126	3.3612
Exhaust PM10	ay	0.0000	0.4126	0.4126
Fugitive PM10	lb/day	2.9486		2.9486
S02			0.0125	0.0125
00			6.1948	6.1948
XON			8.6199	8.6199
ROG			0.7931	0.7931
	Category	Fugitive Dust	Off-Road	Total

Mitigated Construction Off-Site

CO2e		0.000.0	204.3 06	45.4084	249.7190
NZO					
CH4	Å8	0.000	0.0106	3.8500e- 003	0.0145
Total CO2	lb/day	0.000.0	204.0450	45.3122	249.3572
VBio- CO2		0.0000	204 0450 204 0450	45,3122	249.3572
Bio-CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0,000,0	0.8016	0.8683	1.6703
Exhaust PM2.5		0.000	3.9700e- 003	2.8000e- 004	4.2500e- 003
Fugitive PM2.5		0.0000	0.7976	0.8685	1.6661
PM10 Total		0.000.0	7.9090	8.6355	16.5444
Exhaust PM10	ay	0.0000	4.1500e- 003	3.0000e- 004	4.4500e- 003
Fugitive PM10	lb/day	0.0000	7.9048	8.6352	6.5400
S02		0.0000	1.9500e- 003	4.6000e- 004	2.4100e- 003
8		0.000 0.0000 0.0000 0.0000	0.6797 0.1876 1.9500e-	0.4051	0.5927
XON		0.0000	0.6797	0.0345	0.7142
ROG		0.0000	0.0268	0.0557	0.0825
	Category	Hauling	Vendor	Worker	Total

4.0 Operational Detail - Mobile

Page 19 of 24

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

4.1 Mitigation Measures Mobile

C02e		25.0249	25.0249
NZO		1	
CH4	ÁE.	2.0700e- 003	2.0700e- 003
Total CO2	lb/day	24,9731 24,9731 2.0700e- 003	24.9731
NBio- CO2		24.9731	24.9731 24.9731
Bio- CO2		September.	
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	, a	0.5951	0.5951
Exhaust PM2.5		1.5000e- 004	1.5000e- 0 004
Fugitive PM2.5		5950	0.5950
PM10 Total		5.9615	5.9615
Exhaust PM10	ay	1.6000e- i 5.9615 i (9614 1,6000e- 5,9615 004
Fugitive PM10	lb/day	5.9614	5.9614
S02		2.4000e- 004	2.4000e- 004
00		0.1030	0.1030
NOX	3	0.0664	0.0664
ROG		0.0106 0.0664 0.1030 2.4000e-	0.0106 0.0664 0.1030 2.4000e- 5.0
	Category		Unmitigated

4.2 Trip Summary Information

	Aver	verage Daily Trip Rate	ıte	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Non-Asphalt Surfaces	0.00	3.20	00:00	832	832
Total	00:0	3.20	0.00	832	832

4.3 Trip Type Information

	STRUCTURE OF STRUC	S S S S S S S S S S S S S S S S S S S			82 di :-			or asodina diri	8,
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-W or C-W H-S or C-C H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW Primary	Primary	Diverted	Pass-by
Other Non-Asphalt Surfaces	6.70	5.00	8.90	00:00	100.00	0.00	100	0	0

4.4 Fleet Mix

Land Use	FDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	SNBO	SNBN	MCY	SBUS	MH
Other Non-Asphalt Surfaces	0.509486	0.509486 0.032430 0.160	0.160670	0.124446	0.017653	0.005129	0.019157	0.119824	0.003361	30670 0.124446 0.017653 0.005129 0.019157 0.119824 0.003361 0.001189 0.005223 0.000739 0.000694	0.005223	0.000739	0.000694
					•	•		•	•		•		

Page 20 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

COZe		0.000.0	.
NZO		0.000.0	0.000.0
CH4	ay	0.0000	0.0000
Total CO2	lb/day	0.0000	0.0000 0.0000
NBio- CO2		0.000.0	0.0000
Blo- C02			
Exhaust PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 PM2.5		0.000.0	0.0000
Exhaust PMZ.5		0.0000	0.000.0
Fugitive PM2.5			
PM10 Total		0.000.0	0.0000
Exhaust PM10	lb/day		0.000 0.0000
Fugitive PM10)(q)		
203		0.0000	0.000.0
00		00000	0.000.0
XON		0.0000	0.0000 0.0000 0.0000 0.0000
SOR		0.000 0 0.0000 0.000.0	0.0000
	Category		NaturalGas Unmitigated

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

Date: 10/17/2019 11:18 AM

5.2 Energy by Land Use - NaturalGas

Unmitigated

Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 N2O CO2e PM2.5	lb/day	00000 000000 000000 000000 000000 000000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PM10 Fugitive Exh Total PM2.5 PN		0,0000	0.0000
Fugitive Exhaust PM10 PM10	lb/day	00000	0.0000
CO SO2		0.0000 0.0000.0	0.0000 0.0000
ROG NOx	X 1 2	0,000 0,000 0,000 0,000 0	0.0000 0.0000
NaturalGa s Use	kBTU/yr	0	
	Land Use	Other Non- Asphalt Surfaces	Total

Mitigated

2	NaturalGa ROG s Use	×	8	202	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	C02e
	17)/qI	lb/day							lb/day	ay		
800		00000	00000 00000 000000	00000		0.000	00000		0.000	0.000.0		0.0000	0.0000	0,000	0.000	00000
0.000	Ē	0.000.0	0.0000 0.0000 0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.000	0.0000	0.000	0.0000	0.0000
	_															

6.0 Area Detail

6.1 Mitigation Measures Area

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

CO2e		0.0373	0.0373
N20			
CH4	13	9.0000e- 005	9 0000e- 1 005
Total CO2	lb/day	0.0350	0.0350
IBio- CO2		0.0350	0.0350
Bio- CO2 N			
Fugitive Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		6.0000e- 005	6.0000e- 005
Exhaust PM2.5		6.0000e- 1 6.0000e- 005 005	6,0000e- 6,0000e- 005 005
Fugitive PM2.5			
PM10 Total		6.0000e- 005	6.0000e-
Exhaust PM10	ay	6.0000e- 1 6.0000e- 005 005	6.0000e- 6. 005
Fugitive PM10	lb/day		
802		0000	00000
8		0.0164	0.0164
NOX		1.5000e- 004	1.5000e- 004
ROG		0.0765 1.5000e- 0.0164 0.0000	0.0765
	Category	Mitigated	Unmitigated

6.2 Area by SubCategory

Unmitigated

			, ,		
CO2e		0.000	0.0000	0,0373	0.0373
NZO			23 67 24 47 51		
7 4 4	ay			9.0000e- 005	9.0000e- 005
Total CO2	lb/day	00000	0000 0	0.0350	0.0350
NBio- CO2				0.0350	0.0350
Bio- CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		00000	00000	6.0000e- 005	6.0000e- 005
Exhaust PM2.5		00000	00000	-90000°9	6.0000e- 005
Fugitive PM2.5					
PM10 Total		0000	0.000	6.0000e- 005	6.0000e- 005
Exhaust PM10	lb/day	0000	0.000	6.0000e- 005	6.0000e- 005
Fugitive PM10)/ql				
202				0.000	0.0000
8				0.0164	0.0164
NOX				. 1.5000e- 1 0 004	1.5000e- 004
ROG		0.0183	0.0567	1.5300e- 1 003	0.0765
	SubCategory	Architectural Coating		Landscaping	Total

Page 23 of 24

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

6.2 Area by SubCategory

Mitigated

		1	1	:	_
C02e		0,000	0.0000	0.0373	0.0373
NZO					
CH4	ay			9.0000e- 005	9.0000e- 005
Total CO2	lb/day	0.000.0	0.0000	0.0350	0.0350
Bio- CO2 NBio- CO2 Total CO2				0.0350	0.0350
Bio- CO2					
PM2.5 Total		0.000	0.000	6.0000e- 005	6.0000e- 005
Exhaust PM2.5		0.0000	0.0000	6.0000e- 005	6.0000e- 005
Fugitive PM2.5					
PM10 Total		0.0000	0.0000	6.0000e- 005	6.0000e- 005
Exhaust PM10	lb/day	0.0000	0.0000	6.0000e- 005	6.0000e- 005
Fugitive PM10	lb/di				
S02				0.0000	0.000
00				0.0164	0.0164
NOX				- 1.5000e- 1 0. 004	1.5000e- 0 004
ROG	<u>\$</u> .	0.0183	0.0567	1.5300e- 1 1 003	0.0765
	SubCategory	Architectural Coating	Consumer Products	Landscaping	Total

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

ממאן לימשת	- Parent	76C/9110T	2000	Lorron Dougs	Tookon Look	E COLUMN
		מבות מיום	רמאמי עמו	בו מים בו		202

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Page 24 of 24

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Summer

Boilers

Heat Input/Day Heat Input/Year	Number Heat Input/Day Heat Input/Year
Heat Input/Day	Number Heat Input/Day
	Number

User Defined Equipment

Number	
Equipment Type	

11.0 Vegetation

Page 1 of 24

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

Truckhaven Geothermal Exploration Wells - 1 Well Calculations

Imperial County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Non-Asphalt Surfaces	160.00	1000sqft	3.67	160,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	3.4	Precipitation Freq (Days)	12
Climate Zone	15			Operational Year	2021
Utility Company	Utility Company Imperial Irrigation District				
CO2 Intensity (Ib/MWhr)	1270.9	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Page 2 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

Project Characteristics -

Land Use - 1 Well Pad = 400 ft x 400 ft = 3.67 acres

Construction Phase - Construction Schedule Provided by Applicant

Off-road Equipment - Well Cleanup - 1 Rubber Tired Loader, 2 Tractor/Loader/Backhoe

Off-road Equipment - Well Drilling - 1 Drill Rig 24-hours, 1 Mud Tank (Pump) 24-hours, 1 diesel generator (for lights) 12 hours, 1 Forklift 8 hours, 1 air compressor 8 hours

Off-road Equipment - Well Pad - 1 Rubber Tired Dozer, 1 Grader, and 2 Tractor/Loader/Backhoe

Off-road Equipment - Well Testing - 1 Crane 8 hours, 1 pump 24 hours, 1 Tractor/Loader/Backhoe 8 hours

Trips and VMT - 6 vendor truck trips per day added to Well Pad Construction and Well Cleanup to account for Water Trucks (already accounted for in Well Drilling)

On-road Fugitive Dust - 90% of construction trips on pavement

Grading -

Construction Off-road Equipment Mitigation - Water Exposed Area 2x per day selected to account for ICAPCD Regulation VIII minimum requirements

Off-road Equipment - Geo Survey - 4 Off-hwy trucks 8 hr/dy

Off-road Equipment - Well Pad - 1 Grader, 1 Dozer, 2 Tractors

Vehicle Trips - 2 trips per week

New Value	10.00	45.00	5.00	7.00	Off-Highway Trucks	1.00	1.00	2.00	1.00	1,00
Default Value	5.00	230.00	8.00	5.00		0.00	3.00	4.00	0.00	0.00
Column Name	NumDays	NumDays	NumDays	NumDaysWeek	OffRoadEquipmentType	OffRoadEquipmentUnitAmount	OffRoadEquipmentUnitAmount	OffRoadEquipmentUnitAmount	OffRoadEquipmentUnitAmount	OffRoadEquipmentUnitAmount
Table Name	tblConstructionPhase	tblConstructionPhase	tblConstructionPhase	tblConstructionPhase	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

	Office and a second sec	0.00	1.00
	OffRoadEquipmentUnitAmount		
		0.00	1.00
	OffRoadEquipmentUnitAmount	0.00	1.00
**	OffRoadEquipmentUnitAmount	0.00	1.00
	OffRoadEquipmentUnitAmount	0.00	1.00
	OffRoadEquipmentUnitAmount	3.00	2.00
	OffRoadEquipmentUnitAmount	0.00	4.00
tblOffRoadEquipment	PhaseName		Well Pad Construction
tblOffRoadEquipment	PhaseName		Well Drilling
tblOffRoadEquipment	PhaseName		Well Drilling
tblOffRoadEquipment	PhaseName		Well Drilling
tblOffRoadEquipment	PhaseName		Well Testing
tblOffRoadEquipment	PhaseName		Well Testing
tblOffRoadEquipment	PhaseName		Well Testing
tblOffRoadEquipment	PhaseName		Well Cleanup-Abandoment
tblOffRoadEquipment	PhaseName		Geophysical Survey
tblOffRoadEquipment	UsageHours	8.00	12.00
tblOnRoadDust	HaulingPercentPave	50.00	90.00
tblOnRoadDust	HaulingPercentPave	50.00	00 06
tblOnRoadDust	HaulingPercentPave	50.00	90.00
tblOnRoadDust	HaulingPercentPave	50.00	90.00
tblOnRoadDust	HaulingPercentPave	50.00	90.00
tblOnRoadDust	VendorPercentPave	50.00	00.06
tblOnRoadDust	VendorPercentPave	50.00	00.06
tblOnRoadDust	VendorPercentPave	50.00	90.00
tblOnRoadDust	VendorPercentPave	50.00	90.00

Page 4 of 24

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

90.00	90.06	00:06	00.06	90.00	00.06	9.00	2.00	9.00	9.00	8.00	20.00	100.00	100.00	0.02
50.00	50.00	50.09	50.00	50.00	50.00	0.00	0.00	0.00	0.00	15.03	10.00	0.00	0.00	0.00
VendorPercentPave	WorkerPercentPave	WorkerPercentPave	WorkerPercentPave	WorkerPercentPave	WorkerPercentPave	VendorTripNumber	VendorTripNumber	VendorTripNumber	VendorTripNumber	WorkerTripNumber	WorkerTripNumber	CC_TTP	PR_TP	ST_TR
tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblTripsAndVMT	tblTripsAndVMT	tblTripsAndVMT	tbITripsAndVMT	tbITripsAndVMT	tbITripsAndVMT	tblVehicleTrips	tblVehicleTrips	tblVehicleTrips

2.0 Emissions Summary

Page 5 of 24

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

C02e		7,257,282 7	0.0000 7,257.282
NZO		0.0000	0.0000
CH4	as as	1.6737	1.6737
Total CO2	lb/day	7,227.248 8	7,227.248 8
NBio- CO2		0.0000 7,227,248 7,227,248 1,6737 0,0000 7,257,282	0.0000 7,227.248 7,227.248 1.6737 8 8
Bio- CO2		0.000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	, ;	5738 1 1.4858 1 108.0596 10.7298 1.4527 12.1825	1.4858 108.0596 10.7298 1.4527 12.1825
Exhaust PM2.5		1,4527	1.4527
Fugitive PM2.5		10.7298	10.7298
PM10 Total		108.0596	108.0596
Exhaust PM10	ay	1.4858	1.4858
Fugitive PM10	lb/day	106,5738	106.5738
S02		0.0747	0.0747
03		30.1988	30.1988
NOX		3.6628 33.2174 30.1988 0.0747 106.	3.6628 33.2174 30.1988 0.0747
ROG	120	3.6628	3.6628
7	Year	2020	Maximum

Mitigated Construction

CO2e		0.0000 7,257.282	0.0000 7,257.282
NZO		0.000	0.0000
CH4	à c	1,6737	1.6737
Total CO2	lb/day	7,227.248	7,227.248 8
NBio- CO2		7,227,248	0.0000 7,227.248 7,227.248 1.6737
Bio- CO2	. 51	00000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		12.1825 0.0000 7,227.248 7,227.248 1,6737	12.1825
Exhaust PM2.5		1,4527	1.4527
Fugitive PM2.5		10.7298	10.7298
PM10 Total		1.4858 108.0596 10.7298	1.4858 108.0596
Exhaust PM10	ay	1.4858	1.4858
Fugitive PM10	lb/day	5738	106.5738
S02		0.0747	0.0747 106
8		30.1988	30.1988
×ON		3.6628 33.2174 30.1988 0.0747 106.	3.6628 33.2174
80G		3.6628	3.6628
	Year	2020	Maximum

ROG	NOX	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	Bio- CO2 NBio-CO2 Total CO2	Total CO2	CH4	N20	CO2e
0.00	0.00	0.00	00:00	0.00	00.0	0.00	00:00	0.00	0.00	0.00	0.00	00:00	0.00	00:00	0.00

Pa

CalEEMod Version: CalEEMod.2016.3.2

Page 6 of 24

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

2.2 Overall Operational Unmitigated Operational

COZe		0.0373	0.0000	22.4320	22.4693
NZO			0.000.0		0.0000
CH4	ay	9.0000e- 005	0.000	2.0800e- 003	2.1700e- 003
Total CO2	lb/day	0.0350	00000	22.3799	22.4149
NBio- CO2 Total CO2		0.0350	00000	22.3799	22.4149
Bio- CO2					
PM2.5 Total Bio- CO2		6.0000e- 005	0.000.0	0.5951	0.5952
Exhaust PM2.5		6.0000e- 005	0.000.0	1,6000e- 004	2.2000e- 004
Fugitive PM2.5				0.5950	0.5950
PM10 Total		6.0000e- 005	0.000.0	5.9615	5.9616
Exhaust PM10	lb/day	6.0000e- 005	0.0000	1.7000e- 004	2.3000e- 004
Fugitive PM10	/qi			5.9614	5.9614
ZOS		0.0000	0.000	2.2000e- 004	2.2000e- 004
00		0.0164	0.000	0.0862	0.1026
XON		1.5000e- 0.0	0.000	0.0662	0.0663
ROG		0.0765	0,0000	8.1000e- 0.0	0.0846
	Category	Area	Energy	Mobile	Total

Mitigated Operational

CO2e		0.0373	0.000.0	22.4320	22.4693
N20			0.000.0	er samin	0.0000
CH4	ay	9.0000e-	0.000	2.0800e- 003	2.1700e- 003
Total CO2	lb/day	0.0350	00000	22.3799	22.4149
Bio- CO2 NBio- CO2 Total CO2		0.0350	0.000.0	22.3799	22.4149
Bio- CO2					
PM2.5 Total		6.0000e- 005	0.000.0	0.5951	0.5952
Exhaust PM2.5		6.0000e- 005	0.000.0	1.6000e- 004	2.2000e- 004
Fugitive PM2.5				0.5950	0.5950
PM10 Total		6.0000e- 1 005	0.000.0	5.9615	5.9616
Exhaust PM10	ay	6.0000e- 1	0.000.0	1.7000e- 004	2.3000e- 004
Fugitive PM10	lb/day			5.9614	5.9614
SO2		0.000.0	0.000	2.2000e- (004	2.2000e- 004
8		0164	0.000.0	0.0862	0.1026
XON			0.0000	2662	0.0663
ROG		0.0765	0.000	8.1000e- 1 0.0	0.0846
	Category	Area	Energy	Mobile	Total

Page 7 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

00 00	Ň	8	202	Fugitive PM10	Exhaust PM10	PIM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Bio- CO2 NBio-CO2 Total CO2	CH4	N20	C02e
0.00	0.00	00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days Week	Phase Description
	Geophysical Survey	Trenching	2/11/2020	2/29/2020	9	41	
2	Well Pad Construction		3/1/2020	3/14/2020	5	100	
က		onstruction	3/15/2020	4/28/2020	7	45	
4	Well Testing	Trenching	4/29/2020	4/30/2020	5	2,	
2	Well Cleanup-Abandoment	Grading	5/1/2020	5/7/2020	5	5	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 3.67

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Well Pad Construction	Graders		8.00	187	0.41
Well Pad Construction	Rubber Tired Dozers	1	8.00	247	0.40
Well Pad Construction	Tractors/Loaders/Backhoes		8.00	16	0.37
Well Drilling	Air Compressors		8.00	78	0.48
Well Drilling	Bore/Drill Rigs	\	24.00	221	0.50
Well Drilling	Forklifts		8.00	89	0.20
Well Drilling	Generator Sets	'	12.00	84	0.74
Well Drilling	Sdwnd	`	24.00	84	0.74
Well Testing	Cranes	C	8.00	231	0,29
Well Testing	Pumps	\	24.00	84	0.74
Well Testing	Tractors/Loaders/Backhoes	\	8.00	6	0.37
Well Cleanup-Abandoment	Rubber Tired Loaders	'	8.00	203	0.36
Well Cleanup-Abandoment	Tractors/Loaders/Backhoes		8.00	6	0.37
Geophysical Survey	-Off-Highway Trucks	7	8.00	402	0.38

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Vendor Trip Hauling Trip Number Number	Worker Trip Length	Vendor Trip Hauling Trip Length Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Well Pad Construction	4	10.00	9.00	00.0	7.30	8.90	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Well Drilling	10	67.00	26.00	00:0	7.30	8.90		20.00 LD_Mix	HDT_Mix	HHDT
Well Testing	3	8 00	2.00	00.0	7.30	8.90		20.00 LD_Mix	HDT_Mix	HHDT
Well Cleanup-	9	8.00	9.00	00.0	7.30	8.90	20.00 LE	20.00 LD_Mix	HDT_Mix	HHDT
Geophysical Survey	4	20.00	6.00	0.00	7.30	8 90	20.00	20.00 LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Page 9 of 24

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

3.2 Geophysical Survey - 2020
Unmitigated Construction On-Site

CO2e		5,155.841	5,155.841 2
N20			
CH4	à.	1.6541	1.6541
Total CO2	lb/day	5,114.4880	5,114.488
NBio- CO2		5,114,4860,5,114.4880, 1,6541	5,114.488 5,114.488 0 0
Bio- CO2			
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.8477	0.8477
Exhaust PM2.5		0.8477 0.8477	0.8477
Fugitive PM2.5			
PM10 Total		0.9214 0.9214	0.9214
Exhaust PM10	lb/day	0.9214	0.9214
Fugitive PM10)/ql		
S02		0.0528	0.0528
8		15.2404	15.2404
NOX		2.6524 25.2909 15.2404 0.0528	2.6524 25.2909 15.2404
ROG		2.6524	2.6524
	Category	Off-Road	Total

Unmitigated Construction Off-Site

COZe		0.000	197.0446	95,2085	292.2531
NZO					
A T	33	00000	0.0118	7.7600e- 1 003	0.0196
Total CO2	lb/day	0.000.0		95.0146	291.7636
NBio- CO2		0.0000	196.7490 196.7490	95.0146	291.7636 291.7636
Bio- CO2					
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0000	0,8016	2.1719	2.9735
Exhaust PM2.5		00000	4.0300e- 003	7.0000e- 004	4.7300e- 003
Fugitive PM2.5		00000	0.7976	2.1712	2.9688
PM10 Total		0.000.0	7.9090	21 5887	29.4977
Exhaust PM10	lay	00000	4.2100e- 7 003	7.6000e- 004	4.9700e- 003
Fugitive PM10	lb/day	00000	9048	5880	29.4928
802		00000	1.8800e- 003	9.6000e- 21 004	2.8400e- 003
8		0.0000 0.0000 0.00000	0.2137 1.8800e- 7. 003	0.7649	0.9786
×ON		0.000.0	0.6923	0.0904	0.7827
ROG			0.0278	0.1119	0.1397
	Category	Hauling	Vendor	Worker	Total

Page 10 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

3.2 Geophysical Survey - 2020

Mitigated Construction On-Site

Fugitive Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 N2O CO2e PM2.5 PM2.5	lb/day	0.8477 0.8477 0.0000 5,114.4880 5,114.4880 1.6541 5,155.841	0.8477 0.8477 0.0000 5,114.488 5,114.488 1.6541 5,155.841
Exhaust PM10 PM10 Total	lb/day	0.9214 0.9214	0.9214 0.9214
SO2 Fugitive)/ql	0.0528	0.0528
03		25,2909 15,2404 0.0528	15.2404
XON		25,2909	25.2909
ROG		2.6524	2.6524
	Category	Off-Road	Total

Mitigated Construction Off-Site

C02e		0.000	197.0446	95.2085	292.2531
NZO					
CH4	ly .	0.000.0	0.0118	7.7600e- 003	0.0196
rotal CO2	lb/day	0.000.0	196,7490	95.0146	291.7636
ABio- CO2		0.000	196.7490	95,0146	291.7636
Bio- CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		00000	0.8016	2.1719	2.9735
Exhaust PM2.5		0.000.0	4.0300e- 0.03	7.0006- 034	4.7200e- 033
Fugitive PM2.5		0.000	0.7976	2.1712	2.9688
PM10 Total		00000	7.5090	21.5887	29.4977
Exhaust PM10	ay	0,000	4,2100e- 003	7.6000e- 2 004	4.9700e- 003
Fugitive PM10	lb/day	00000	7.9048	21.5880	29.4928
802		0.000.0	1,8800e- 003		2.8400e- 2 003
8		0.000.0	0,2137	0.7649	0.9786
XON		0,000 0,0000	0.6923	0.0904	0.7827
ROG		00000	0.0278	0.1119	0.1397
	Category	Hauling	Vendor	Worker	Total

Page 11 of 24

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

3.3 Well Pad Construction - 2020 Unmitigated Construction On-Site

C02e		0.0000	2,088.348	2,088.348
N20				
CH4	ay		0.6700	0.6700
Total CO2	lb/day	0.0000	2,071.598	2,071.598
NBio- CO2			2,071,598 2,071,598	2,071.598 2,071.598
Bio- CO2				
Exhaust PMz.5 Total Bio- CO2 NBio- CO2 Total CO2 PMz.5		3.3675	0.9416	4.3091
Exhaust PM2.5		0.000	0.9416	0.9416
Fugitive PM2.5		3.3675		3.3675
PM10 Total		6.5523	1.0234	7.5758
Exhaust PM10	lay	0.0000	1.0234	1.0234
Fugitive PM10	lb/day	6.5523		6.5523
802			0.0214	0.0214
8			10.5055	10.5055
×ON			21.8681 10.5055	1.9743 21.8681 10.5055 0.0214
ROG			1.9743	1.9743
	Category	Fugitive Dust	Off-Road	Total

Unmitigated Construction Off-Site

C02e		0.0000	197.0446	47.6043	244.6489
NZO					
CH4	ay	0.000.0	0.0118	3.8800e- 003	0.0157
Total CO2	lb/day	0.000	196.7490	47.5073	244.2563
NBio- CO2	3 m	0.0000	196.7490	47.5073	244.2563
Bio- CO2					
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.000.0	0.8016	1.0860	1.8876
Exhaust PM2.5		0.000.0	4.0300e- 003	3.5000e- 004	4.3800e- 003
Fugitive PM2.5		0.000.0	0.7976	1.0856	1.8832
PM10 Total		0,000.0	7.9090	10.7944	18.7034
Exhaust PM10	tay	00000	4.2100e- 003	3.8000e- 004	4.5900e- 003
Fugitive PM10	lb/day	00000	7.9048	10.7940	18.6988
802		0000	1.8800e- 7. 003	4.8000e- 10 004	2.3600e- 003
8		00000	0.2137	0.3825	0.5961
XON		00000 000000 000000 000000 000000	0.6923	0.0452	0.7375
ROG		0.000.0	0.0278	0.0560	0.0837
	Category	Hauling	Vendor	Worker	Total

Page 12 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

3.3 Well Pad Construction - 2020

Mitigated Construction On-Site

CO2e	5-	0,000	2,088,348	2,088.348
N20		,		
CH4	Ą		0.6700	0.6700
Total CO2	lb/day	00000	2,071,598 i 2	2,071.598
NBio- CO2			2,071 598 2,071 598	0.0000 2,071.598 2,071.598
Bio- CO2			0,000	0.000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		1,5154	0.9416	2.4569
Exhaust P PM2.5	lb/day	00000	0.9416	0.9416
Fugitive PM2.5		1,5154		1.5154
PM10 Total		2.9486	1.0234	3.9720
Exhaust PM10		0:0000	1.0234	1.0234
Fugitive PM10		2.9486		2.9486
202			0.0214	0.0214
8			10.5055	10.5055
NOX			21.8681 10.5055	1.9743 21.8681 10.5055
ROG	1		1.9743	1.9743
	Category	Fugitive Dust	Off-Road	Total

Mitigated Construction Off-Site

C02e		0,000	197.0446	47.6043	244.6489
N2O					
CH4	13	0.000.0	0.0118	3.8800e- 1 003	0.0157
rotal CO2	lb/day	0.0000	196.7490	47.5073	244.2563
· Rio- CO2		0.000	196.7490	47.5073	244.2563
Bio- CO2					
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.000.0	0.8016	1.0860	1.8876
Exhaust PM2.5		00000	4.0300e- 003	3,5000e- 004	4.3800e- 003
Fugitive PM2.5		0.000.0	0.7976	1.0856	1.8832
PM10 Total		0.000.0	7.9090	10.7944	18.7034
Exhaust PM10	lay	0.000.0	4.2100e- 003	3.8000e- 004	8 4.5900e- 003
Fugitive PM10	lb/day	00000	7,9048	10.7940	18.698
S02		0.000	0.2137 1.1.8800e- 7.9048 003	4.8000e- 004	0.5961 2.3600e- 003
00		0000	0.2137	0.3825	0.5961
XON		0.000 0.0000 0.0000 0.0000	0.6923	0.0560 0.0452	0.0837 0.7375
ROG		0000	0.0278	0.0560	0.0837
	Category	Hauling	Vendor	Worker	Total

CalEEMod Version: CalEEMod.2016.3.2

Page 13 of 24

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

3.4 Well Drilling - 2020

Unmitigated Construction On-Site

CO2e		6,084,474 3	6,084.474 3
ŏ		9	6,08
NZO			
CH4	ÁI	1.1241	1.1241
Total CO2	lb/day	,056.3711	5,056.371
NBio- CO2		6,056.371116,056.37111 1.1241	6,056.371 6,056.371
Bio- CO2			
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		1.4329	1.4329
Exhaust PM2.5		1.4329	1.4329
Fugitive PM2.5			
PM10 Total		1,4650	1.4650
Exhaust PM10	lb/day	1,4650	1.4650
Fugitive PM10)/qI		
802		0.0633	0.0633
00		26.7104	26.7104
XON		29.9144 26,7104 0.0633	29.9144 26.7104 0.0633
ROG		3.1676	3.1676
	Category	Off-Road	Total

Unmitigated Construction Off-Site

C02e		0.000	853.8599	318.9485	1,172.808
N20		Na Final Company			
CH4	ay ay	0.000	0.0512	0.0260	0.0772
Total CO2	lb/day	0.000.0	852.5789	318.2988	1,170.877
NBio- CO2		0.0000 1 0.0000	852.5789	318.2988	1,170.877 1,170.877 7
Bio- CO2					
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.000.0	3.4738	7.2758	10.7496
Exhaust PM2.5		0.000	0.0175	2.3500e- 003	0.0198
Fugitive PM2.5		00000	3.4563	7.2735	10.7298
PM10 Total		00000	34.2724	72.3222	106.5946
Exhaust PM10	ay	0.000.0	0.0183	2.5500e- 003	0.0208
Fugitive PM10	lb/day	0.000.0	34.2541	72.3197	106.5738
S02		00000	0.9260 8.1600e- 34.2541 003	3.2200e- 003	0.0114 106.5738
00		00000 1 00000	0.9260	2.5624	3.4884
XON		0.000.0 0.0000.0	3.0000	0.3750 0.3030	3.3030
ROG		0.0000	0.1203	0.3750	0.4953
	Category	Hauling	Vendor	Worker	Total

Page 14 of 24

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

3.4 Well Drilling - 2020

Mitigated Construction On-Site

C02e		6,084,474	6,084.474 3
N20			
CH4	ау	1,1241	1.1241
Total CO2	lb/day	0.0000 6,056.37116,056.3711 1,1241	0.0000 6,056.371 6,056.371
NBio- CO2		6,056.3711	6,056.371 1
Bio- CO2		0.000	0.000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PW2.5		1.4329	1.4329
Exhaust PIV2.5		1.4329	1.4329
Fugitive PM2.5			
PM10 Total		1.4650	1.4650
Exhaust PM10	b/day	1.4650	1.4650
Fugitive PM10)/ql		
205		0.0633	0.0633
00		26,7104	26.7104
×ON		29.9144	3.1676 29.9144 26.7104 0.0633
ROG		3.1676 29.9144 26,7104 0.0633	3.1676
The second	Category	Off-Road	Total

Mitigated Construction Off-Site

C02e		0,000,0	853.8599	318.9485	1,172.808
NZO					
CH4	J.	0.000	0.0512	0.0260	0.0772
Total CO2	lb/day	0.0000	852.5789	318.2988	
NBio- CO2 Total CO2		0.000	852.5789	318.2988	1,170.877 1,170.877 7
Bio-CO2					
PM2.5 Total		0.000.0	3.4738	7.2758	10.7496
Exhaust PN2.5		0.000.0	0.0175	2.3500e- 003	0.0498
Fugitive PM2.5		0.0000	3.4563	7.2735	10.7298
PM10 Total		00000	34.2724	72.3222	106.5946
Exhaust PM10	ay	0.0000	0.0183	2.5500e- 003	0.0208
Fugitive PM10	lb/day	0.0000	34.2541	72.3197	106.5738
202		0.0000	8.1600e- 1 34 003	1 3.2200e- 72 003	0.0114
8		0.000	0.9260	2.5624	3.4884
XON		0.0000 0.0000	3.0000	0.3030	3.3030
ROG		0,000	0.1203	0.3750	0.4953
Total Sec	Category	Hauling	Vendor	Worker	Total

CalEEMod Version: CalEEMod.2016.3.2

Page 15 of 24

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

3.5 Well Testing - 2020

Unmitigated Construction On-Site

PM10	205		8	ROG NOX CO SO2
b/day	lb/day	lb/day	lb/day	lb/day
0.9770		0.0286	0.0286	
0.9770		0.0286	0.0286	

Unmitigated Construction Off-Site

Bio- CO2 NBio- CO2 Total CO2 CH4 N2O CO2e	lb/dav		0.000.0 0.000.0 0.000.0	0.0000 0.0000 65.5830 3.9400e-	0.0000 0.0000 65.5830 3.9400e- 003 38.0058 3.1000e-
PM2.5			00000 0 00000		
Fugitive PM2.5			0.0000	CONTRACTOR AND AND	EUROCEAN WEST COM
PM10 Total			0.0000		l i
PM10	lb/day		0000		
PM10	9		0.0000	0.0000 0.0000 6.3000e- 2.6349	0.0000 0.0000 6.3000e- 2.6349 004 3.8000e- 8.6352
202			0.0000	0.0000 6.3000e- 004	0.0000 0.0000 0 0.0712 6.3000e- 2 0.3060 3.8000e- 8
00	2		0.000	0.0000	0.0000
X O N			0.000.0	0.0000	0.0000
ROG			0.0000	0.0000 9.2500e-	0.0000 9.2500e- 003 0.0448
	Category	Hauling	- 8	100	

Page 16 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

3.5 Well Testing - 2020

Mitigated Construction On-Site

CO2e		2,738,407 4	2,738.407
NZO			
7 2	٨	0.3898	0.3898
Total CO2	lb/day	2,728,661	2,728.661 8
NBio- CO2	0	0.9486 0.0000 2.728.661 2.728.661 0.3898	0.0000 2,728.661 2,728.661 0.3898
Bio- CO2		0.000	0.0000
Fugitive Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4		0.9486	0.9486
Exhaust PM2.5		0.9486	0.5486
Fugitive PM2.5			
PM10 Total		0.9770	0.9770
Exhaust PM10	lb/day	0.9770	0.9770
Fugitive PM10)/qI		
802		0.0286	0.0286
8		15.6827	15.6827
XON		1,9324 18,0838 15,6827 0,0286	1.9324 18.0838 15.6827
ROG		1.9324	1.9324
	Category	Off-Road	Total

Mitigated Construction Off-Site

COZe		00000	65.6815	38.0834	103.7649
NZO					
CH4	ly	0.000.0	3.9400e- 003	3.1000e- 003	7.0400e- 003
Total CO2	lb/day	0.0000	65.5830	38.0058	103.5888
NBio- CO2		0000 00000	65.5830	38 0058	103.5888
Bio- CO2					
Extraust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		10	0.2672	0.8688	1.1360
Extraust PM2.5		0000.0	1,3400e- 1 C03	2.8000e- C04	1.6200e- 003
Fugitive PM2.5		0.000.0	0.2659	0.8685	1.1344
PM10 Total		0.000	2.6363	8.6355	11.2718
Exhaust PM10	ay	0000 0	1.4000e- 003	3.0000e- 004	1.7000e- 11.2718 003
Fugitive PM10	lb/day	0000	6349	8.6352	11.2701
802		0.000.0	6.3000e- 2. 004	3.8000e- 004	0.3772 1.0100e- 003
00		0.000	0.0712	0.3060	0.3772
NOX		0.000.0	0.2308	0.0362	0.2669
ROG		0.0000	9.2500e- 003	0.0448	0.0540
	Category	Hauling	Vendor	Worker	Total

Page 17 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

3.6 Well Cleanup-Abandoment - 2020

Unmitigated Construction On-Site

			ł m	I _m
COZe		0.0000	1,216,453	1,216.453
N20				
CH4	ay		0.3903	0.3903
Total CO2	lb/day	0,000	1,206.696	1,206.696
NBio- CO2			1,206.696	1,206.696 1,206.696 9
Bio- CO2				
Exhaust PMZ.5 Total Bio- CO2 NBio- CO2 Total CO2 PMZ.5		3.3675	0.3796	3.7471
Exhaust PM2.5		0.000	0.3796	0.3796
Fugitive PM2.5		3,3675		3.3675
PM10 Total		6,5523	0.4126	6.9650
Exhaust PM10	lay	0,000	0.4126	0.4126
Fugitive PM10	lb/day	6.5523		6.5523
802			0.0125	0.0125
00			6.1948	6.1948
×ON			8.6199	8.6199
ROG			0.7931	0.7931
	Category	Fugitive Dust	Off-Road	Total

Unmitigated Construction Off-Site

C02e		0.0000	197.0446	38.0834	235.1280
NZO		A STANDARD			
CH4	ay.	0.0000	0.0118	3.1000e- 003	0.0149
Total CO2	lb/day	0.0000	196.7490	38,0058	234.7548
NBio- CO2		0.0000	196,7490 196,7490	38.0058	234.7548
Bio- CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0.8016	0.8688	1.6704
Exhaust PM2.5		0.0000	4.0300e- 003	2.8000e- 004	4.3100e- 003
Fugitive PM2.5		0.000	0.7976	0.8685	1.6661
PM10 Total		0.000	7.9090	8.6355	16.5445
Exhaust PM10	lay	0.000	4,2100e- 003	3.0000e- 004	4.5100e- 003
Fugitive PM10	lb/day	0.000	7 9048	8.6352	16.5400
S02		00000	1.8800e- 7 003	0.3060 3.8000e- 8	2.2600e- 003
00		00000	0.2137	0.3060	0.5196
NOX		0,000.0	0.6923	0.0362	0.7285
ROG		0.000.0	0.0278	0.0448	0.0725
	Category	Hauling	Vendor	Worker	Total

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

3.6 Well Cleanup-Abandoment - 2020

Mitigated Construction On-Site

C02e		0.0000	1,216.453	1,216.453
NZO				
CH4	Bý	1-17	0.3903	0.3903
Total CO2	lb/day	0.0000	,206.696	
NBio- CO2			0.0000 1,206,696 1,206,696	0.0000 1,206.696 1,206.696
Bio- CO2			0.000	0.000
PM2.5 Total		1.5154	0.3796	1.8950
Exhaust PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 PM2.5		0.0000	0.3796	0.3796
Fugitive PM2.5		1.5154		1.5154
PM10 Total		2.9486	0.4126	3.3612
Exhaust PM10	lay	0.0000	0.4126	0.4126
Fugitive PM10	lb/day	2.9486		2.9486
802			0.0125	0.0125
8			6,1948	6.1948
×ON			8.6199	8.6199
ROG			0.7931	0.7931
	Category	Fugitive Dust	Off-Road	Total

Mitigated Construction Off-Site

Y	ROG	×ON	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	C02e
Category					ΙΡί	lb/day							lb/day	ay		
Hauling	0.0000	0.000	0.000 0.0000 0.0000.0	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000		0.000	0.0000 0.0000.0	0.000		0.000
Vendor	0.0278		0.6923 0.2137	1.8800e- 003	7.9048	4.2100e- 7 003	7.9090	0.7976	4.0300e-	0.8016		196.7490	196.7490	0.0118		197.0446
Worker	0.0448	0.0362	0.3060	3.8000e- 004	8.6352	3.0000e- 004	8.6355	0.8685	2.8000e- 1 004	0.8688		38.0058	38.0058	3.1000e- 003		38.0834
Total	0.0725	0.7285	0.5196	2.2600e- 1 003	6.540	0 4.5100e-	16.5445	1.6661	4.3100e- 003	1.6704		234.7548	234.7548	0.0149		235.1280

4.0 Operational Detail - Mobile

Page 19 of 24

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

4.1 Mitigation Measures Mobile

CO2e		22.4320	22.4320
NZO			
CH4	ву	2.0800e- 003	2.0800e- 003
Total CO2	lb/day	22.3799	22.3799
NBio- CO2		22.3799 22.3799 2.0800e-	22.3799 22.3799 2.0800e-
Bio- CO2			
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	7 1	0.5951	0.5951
Exhaust PM2.5		0,5950 1,6000e-	0. 1.6000e- 0.
Fugitive PM2.5		0,5950	0,5950
PM10 Total		5.9615	5.9615
Exhaust PM10	lb/day	5,9614 1,7000e- 5,9615 004	1.7000e- 5.96 004
Fugitive PM10	lb/c	5,9614	9614
205		2,2000e- 004	2.2000e- 004
00		0.0362	0.0362
XON	18.5	0.0662	0.0662
ROG		8,1000e- 0.0662 0.0362 2,2000e- 5 003 004	8.1000e- 003
	Category		Unmitigated

4.2 Trip Summary Information

	Aver	Average Daily Trip Rate	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday Sunday	Sunday	Annual VMT	Annual VMT
Other Non-Asphalt Surfaces	00.0	3.20	00.00	832	832
Total	00.00	3.20	0.00	832	832

4.3 Trip Type Information

The second second		Willes			% du l	2012		% asoduna du l	% as
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-W or C-W H-S or C-C H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW	Primary	Diverted	Pass-by
Other Non-Asphalt Surfaces	6.70	5.00	8.90	00.0	100.00	00.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	SUBU SUBO	NBUS	MCY	SBUS	MH
Other Non-Asphalt Surfaces	0.509.486	0.509486 0.032430	0.1	0.124446	60670 0.124446 0.017653 0.005129 0.019157 0.119824 0.003361 0.001189 0.005223 0.000739 0.000694	0.005129	0.019157	0.119824	0.003361	0.001189	0.005223	0.000739	0.000694

Page 20 of 24

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

2005e		0.000	0.0000
NZO		0.0000	0.0000
CH4	, se	0.000.0	0.0000
Total CO2	lb/day	00000	0.0000
VBio- CO2	-18	00000	0.0000
Bio- CO2			
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		00000	0.0000
Exhaust PM2.5		00000	0.000.0
Fugitive PM2.5			
PM10 Total	ау	0.000	0.0000
Exhaust PM10			0.000.0
Fugitive PM10	lb/day		
202		0.000.0	0.000.0
00		00000	0.000.0
NOX		00000	0.000.0
ROG		0.0000 1 0.0000 1 0.0000 1 0.0000	0.0000 0.0000 0.0000 0.0000
	Category	<u> </u>	NaturalGas Unmitigated

CalEEMod Version: CalEEMod.2016.3.2

Page 21 of 24

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

5.2 Energy by Land Use - NaturalGas

Unmitigated

n.			
CO2e	4 Q	0.000	0.0000
NZO		0.0000	0.0000
CH4	lay	0.0000 0.00000 0.00000 0.00000	0.0000 0.0000
Total CO2	lb/day	0000 0	0.000.0
NBio- CO2		0000 0	0.0000
Bio- CO2			
Fugitive Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0000	0.0000
Exhaust PM2.5		00000	0.0000
Fugitive PM2.5			
PM10 Total	lb/day	0.000	0.0000
Exhaust PM10		0.0000	0.0000
Fugitive PM10	/qı		
S02		0.000	0.0000
00		0.000.0	0.0000
NOx		0000'0 0000'0 0000'0 0000'0	0.000.0
ROG		0.000	0.000.0
NaturalGa s Use	kBTU/yr	0	
	Land Use	Other Non- Asphalt Surfaces	Total

Mitigated

	NaturalGa ROG s Use	ROG	NOX	8	802	Fugitive PM10	Exhaust PM10	P.M10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	C02e
Land Use	kBTU/yr					lb/day	a d							lb/day	ay		
Other Non- Asphalt Surfaces	0	0.000.0	0.0000	00000 000000 000000	0.0000		0.000.0	0.0000		0.0000	0.0000		0.0000	0.000	0.000	0.0000	0.0000
		0.0000	0.0000	0.0000	0.0000		0.000	0.0000		0.0000	0.000		0.0000	0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

CO2e		0,0373	0.0373
NZO			
CH4	ay	- 9 0000e- 005	9.0000e- 005
Total CO2	lb/day	3 0980 0	0.0350
Bio- CO2		0.0350	0.0350
Bio- CO2			
M2.5 Total		6.0000e- 005	6.0000e- 005
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		9 -90000 9 002	3.0000e- 1. (
Fugitive E PM2.5			
PM10 Total		6.0000e- 1 005	6.0000e- 005
Exhaust PM10	ay	6,0000e- 16,0000e- 005 1,005	6 0000e- 6 005
Fugitive PM10	lb/day		
S02		0.0000	0.000.0
00		0.0164	0.0164
NOX		0.0765 1.5000e- 0.0164 0.0000 004	1.5000e- 004
ROG		0.0765	0,0765
	Category	Mitigated	Unmitigated

6.2 Area by SubCategory

Unmitigated

CO2e		00000	000000	0.0373	0.0373
N20					
CH4	ay			9.0000e- 005	9.0000e- 005
Total CO2	lb/day	0.000.0	0.000.0	0.0350	0.0350
NBio- CO2				0,0350	0.0350
Bio- CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.000	0 000 0	6.0000e- 005	6.0000e- 005
Exhaust PM2.5		0.000.0	0.000	6.0000e- (6.0000e- 005
Fugitive PM2.5					
PM10 Total		0.000.0	0.000	6.0000e- 005	6.0000e- 005
Exhaust PM10	lb/day	0.000	0.000	6.0000e- 005	6.0000e- 005
Fugitive PM10	/ qı				
205				0.0000	0.0000
00				0.0164	0.0164
XON				000e-	1.5000e- 004
ROG		0.0183	0.0567	1.5300e- 1.5 003 (0.0765
	SubCategory	Architectural Coating	Consumer Products	Landscaping	Total

Page 23 of 24

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

6.2 Area by SubCategory

Mitigated

CO2e		0,000,0	0.000.0	0.0373	0.0373
		0			ö
NZO			ļ		
CH4	lb/day			9.0000e- 005	9.0000e- 005
Total CO2) <u>a</u>	0.000	0.000	0.0350	0.0350
NBio- CO2				0.0350	0.0350
Bio- CO2					
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	0 0000	6.0000e- 005	6.0000e- 005
Exhaust PM2.5		0.0000	0.0000	6.0000e- 005	6.0000e- 005
Fugitive PM2.5					
PM10 Total		0.0000	0.000	6,0000e- 1	6.0000e- 005
Exhaust PM10	lb/day	0.0000	0.0000	6.0000e- 005	6.0000e- 005
Fugitive PM10	/qı				
805	-			0.000	0.000
00				0.0164	0.0164
XON				le- 1.5000e- 004	1.5000e- 004
ROG		0.0183	0.0567	1.5300e- 1 003	0.0765
	SubCategory	Architectural Coating	Consumer Products	Landscaping	Total

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Number Hours/Day Days/Year Horse Power	urs/Day Days/Year	ear Horse Power	Load Factor	r Fuel Type
--	---------------------	-----------------	-------------	-------------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

CalEEMod Version: CalEEMod.2016.3.2

Page 24 of 24

Date: 10/17/2019 11:19 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Winter

Fuel Type
Load Factor
Horse Power
Hours/Year
Hours/Day
Number
Equipment Type

Boilers

Equipment Type Number	Heat Input/Day	Heat Input/Year	Boller Rating	Fuel Type
-----------------------	----------------	-----------------	---------------	-----------

User Defined Equipment

Number Equipment Type

11.0 Vegetation

ORMAT NEVADA, INC.

Truckhaven Geothermal Project Proposed 3D Geophysical Survey Biological Resources Evaluation Report

PROJECT NUMBER: 149090

PROJECT CONTACT: Ken McDonald EMAIL: Ken.mcdonald@powereng.com **PHONE:** (714) 507-2729

Truckhaven Geothermal Project Proposed 3D Geophysical Survey Biological Resources Evaluation Report

PREPARED FOR: ORMAT NEVADA, INC.
PREPARED BY: KEN MCDONALD
(714) 507-2729
KEN.MCDONALD@POWERENG.COM

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	PROJECT DESCRIPTION	1
1.2	PROJECT LOCATION	
2.0	METHODS	5
2.1	APPROACH TO DATA COLLECTION	5
2.2	LITERATURE REVIEW	5
2.3	FIELD SURVEY	6
3.0	RESULTS	7
3.1	VEGETATION COMMUNITY DESCRIPTIONS	7
	.1.1 Sonoran Creosote Bush Scrub	7
-	.1.2 Desert Saltbush Scrub	
3	.1.3 Desert Sink Scrub	
_	.1.4 Desert Wash	
3	.1.5 Bare Ground/Disturbed	
3.2		
3	.2.1 Chaparral Sand-verbena	
3	.2.2 Salton Milk-vetch	
3	.2.3 Harwood's Milk-vetch	12
3	.2.4 Peirson's Pincushion	
3	.2.5 Wiggin's Croton	12
3	.2.6 Ribbed Cryptantha	
3	.2.7 Sand Food	
3	.2.8 Olney's Three-square Rush	
3	5.2.9 Orcutt's Woody Aster	
3.3		
3	3.1 Burrowing Owl	
_	3.2 Prairie Falcon	
	3.3.3 Palm Springs Pocket Mouse	
	5.3.4 Flat-tailed Horned Lizard	
3	3.3.5 Le Conte's Thrasher	15
4.0	RECOMMENDATIONS	17
5.0	REFERENCES	19
		2
TAB	LES:	
	THE AMERICAN GOLD HAR HOUSE WATER THE BLOCK COLOUR CARRIES.	
TABL		_
	AREA	
EIGI	JRES:	
i-iGC	JNLO.	
FIGU	RE 1 PROJECT LOCATION	3
FIGU		
1100		

APPENDICES:

APPENDIX A	PLANT SPECIES OBSERVED DURING THE FIELD SURVEY
APPENDIX B	WILDLIFE SPECIES OBSERVED DURING THE FIELD SURVEY
APPENDIX C	SPECIAL-STATUS PLANT SPECIES AND THEIR POTENTIAL TO OCCUR
	WITHIN THE BIOLOGICAL SURVEY AREA
APPENDIX D	SPECIAL-STATUS WILDLIFE SPECIES AND THEIR POTENTIAL TO
	OCCUR WITHIN THE BIOLOGICAL SURVEY AREA

ACRONYMS AND ABBREVIATIONS

3D Three Dimensional

BLM Bureau of Land Management BSA Biological Survey Area

CDFG California Department of Fish and Game
CDFW California Department of Fish and Wildlife

CFR Code of Federal Regulations

CNDDB California Natural Diversity Database

CNPS California Native Plant Society

msl mean sea level
Ormat Ormat Nevada, Inc.
POWER POWER Engineers, Inc.

Project Truckhaven Geothermal Project

State Parks Ocotillo Wells Field Office

SVRA State Vehicular Recreation Area USFWS US Fish and Wildlife Service

1.0 INTRODUCTION

This document presents the findings of the biological resources evaluation survey for the Ormat Nevada, Inc. (Ormat) Truckhaven Geothermal Project (Project). This survey focused exclusively on portions of the Project that will be affected by the seismic survey described below.

1.1 Project Description

Ormat is proposing to conduct a three-dimensional (3D) geophysical data acquisition seismic survey to evaluate potential subsurface geothermal resources located at the north end of the joint U.S. Department of the Interior, Bureau of Land Management (BLM)-State of California Truckhaven Geothermal Lease Area in Imperial County, California.

Land within the seismic survey footprint consists of a block of approximately 24 square miles. These lands are managed by public (state, federal) agencies or are owned privately. The public lands are managed by the BLM and the California Department of Parks and Recreation as part of the Ocotillo Wells State Vehicular Recreation Area (SVRA).

The 3D seismic data collection process requires the use of off-road buggy vibrators that must cross uneven terrain within the Project footprint. The biological resources survey was conducted to provide clearance for the vibrators to conduct the seismic data collection within defined corridors of vehicular movement. The results of the biological resources survey will allow for the evaluation of potential impacts to sensitive biological resources within the Project corridors prior to the seismic data collection.

This report combines the results of the 2016 and 2018 biological resources surveys conducted within the seismic survey footprint.

1.2 Project Location

The proposed Project is located within and south of Salton City, west of the Salton Sea in the northern portion of Imperial Valley, California (Figure 1). The outer site boundaries of the Biological Survey Area (BSA) are immediately south of the intersection of U.S. Highway 86 and South Marina Drive on the north, 0.3 mile west of the Salton City landfill on the west, 1.7 miles south of the Salton City landfill on the south, and 0.6 mile from the Thomas R. Cannell Waste Water Treatment Facility on the east. The elevation of the BSA ranges from approximately 125 feet above mean sea level (msl) to the northwest and 215 feet below msl to the northeast. The BSA is bisected by Highway 86. The majority of the BSA is sparsely vegetated with native and non-native plant species and is comprised of low-density residential housing and associated infrastructure and off-road vehicle usage. The BSA itself consists only of the proposed corridors of vehicular movement.

This page intentionally left blank.

This page intentionally left blank.

2.0 METHODS

2.1 Approach to Data Collection

The first step in the approach to data collection for this analysis included the identification and characterization of biological resources, including vegetation community types, and special-status plant and animal species that are known to occur or have potential to occur in the BSA.

"Special-status," as used in this report, refers to species that are:

- Listed, proposed for listing, or candidates for listing as threatened or endangered under the Endangered Species Act (50 Code of Federal Regulations [CFR] Part 17.12 [listed plants], 50 CFR Part 17.11 [listed animals], 67 Federal Register 40657 [candidate species], and various notices in the Federal Register [proposed species]);
- Listed or proposed for listing by the State of California as threatened or endangered under the California Endangered Species Act (California Department of Fish and Wildlife [CDFW] 2016a and 2018);
- Identified by the CDFW as species of concern or fully protected species, including fish and wildlife that do not have State or federal threatened or endangered status but may still be threatened with extinction (CDFW 2016a and 2018);
- California Species of Special Concern: vertebrate species that have been designated as "species of special concern" by the CDFW because declining population levels, limited range, and/or continuing threats have made them vulnerable to extinction (CDFW 2016a and 2018):
- Included in the California Native Plant Society (CNPS) Rare Plant Inventory (CNPS 2016 and 2018);
- Otherwise defined as rare, threatened, or endangered under the California Environmental Quality Act;
- Identified by State Parks Ocotillo Wells Field Office (State Parks) as a sensitive species; or
- Identified by the BLM or the BLM El Centro Field Office as a sensitive species.

Prior to conducting fieldwork, the biologists reviewed records of known occurrences to identify special-status species that may occur within the BSA. Those records were then compared with lists of federal- or State-listed threatened, endangered, or other special-status species. Details of all survey work and approaches to collecting data are described below.

2.2 Literature Review

Preliminary investigation included review of information obtained from literature searches, examinations of habitat as discernible from aerial photographs, database searches including CNPS and the California Natural Diversity Database (CNDDB) records (CDFW 2016a and 2018), and previous surveys (POWER Engineers, Inc. [POWER] 2017). No changes were noted between the CDFW and CNPS 2016 and 2018 data. To identify the existing and potential biological resources present in the vicinity of the proposed Project, a geographic information system search was performed. This consisted of mapping baseline biological resource data (e.g., vegetation mapping, CNDDB records).

2.3 Field Survey

Biological resource evaluation surveys were conducted in April and May of 2016 and March and April of 2018. POWER provided a wildlife biologist and a botanist for the survey. The role of the wildlife biologist was to record observations of wildlife species, with emphasis on special-status species such as flat-tailed horned lizard (*Phrynosoma mcallii*) and burrowing owl (*Athene cunicularia*), and record active or potential burrows for a variety of wildlife species.

The botanist was tasked with creating a vegetation map of the corridors that were surveyed, extending as far as they could reliably determine using line-of-sight and aerial imagery, and identifying and recording plant species encountered, with emphasis on special-status plant species. Botanists also recorded occurrences of seeps encountered. All biologists were preauthorized for conducting surveys on private, BLM, and State Parks land by State Parks and CDFW.

All detected wildlife and botanical species were recorded, as were observed vegetation communities within and adjacent to the survey corridors. Wildlife species were detected either by observation, by vocalization, or by sign (e.g., tracks, burrows, scat). The botanical inventory was floristic in nature, meaning that all plants observed were identified to the taxonomic level needed to determine whether they were special-status plant species. Vegetation communities were classified according to Holland (1986).

3.0 RESULTS

Vegetation communities consisted primarily of Sonoran creosote bush scrub and desert saltbush scrub (Figure 2). A more detailed description of this vegetation community is provided below. Seven special-status plant species were observed during the surveys. A list of plant species observed during the field surveys is provided in Appendix A. One special-status, wildlife species, flat-tailed horned lizard, was detected within the BSA during the surveys. Few wildlife species were observed within the BSA, but wildlife sign was observed more frequently. Burrows of varying sizes were present intermittently throughout the BSA, including rodent and potential burrowing owl burrows. A small number of unoccupied bird nests were also observed. Appendix B provides a list of observed animal species. The potential for occurrence of special-status plant and animal species are presented in Sections 3.2 and 3.3, respectively.

3.1 Vegetation Community Descriptions

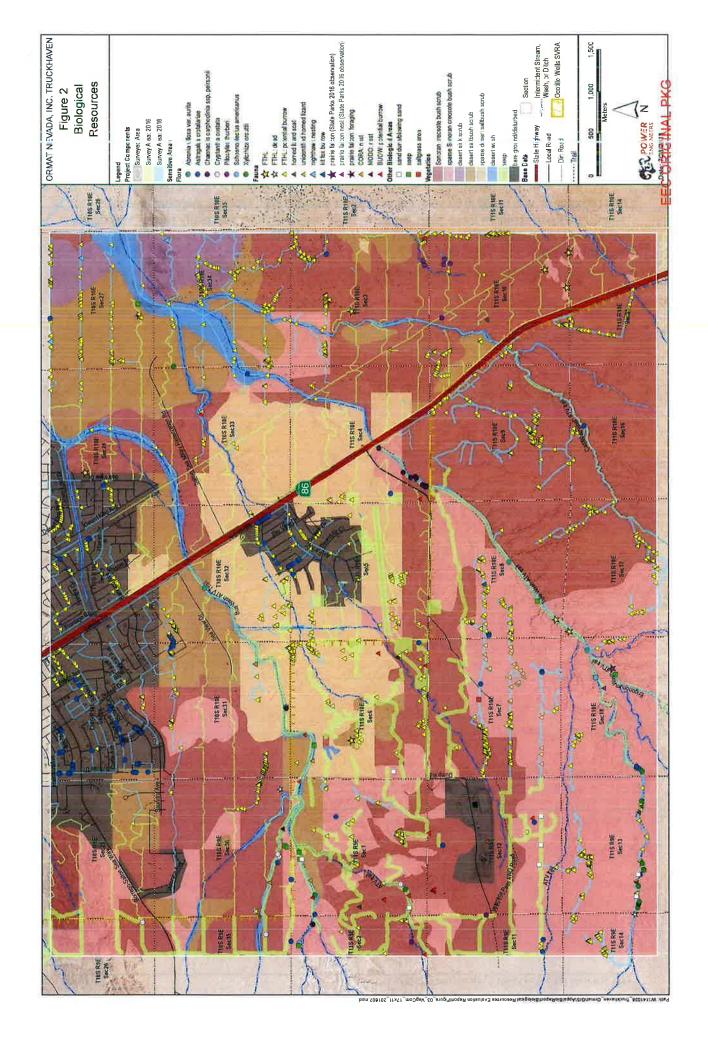
The following vegetation communities were named according to Holland (1986), and are shown in Figure 2. Table 1 provides approximate vegetation community acreages found within the BSA.

VEGETATION COMMUNITY	ACRES	11.
Sonoran Creosote Bush Scrub	884.2	
Desert Saltbush Scrub	349.3	
Desert Sink Scrub	18.4	
Desert Wash	199.9	
Bare/Disturbed	133.2	
Total Acres	1.585	

TABLE 1 VEGETATION COMMUNITIES WITHIN THE BIOLOGICAL SURVEY AREA

3.1.1 Sonoran Creosote Bush Scrub

Sonoran creosote bush scrub is a widely spaced open community generally dominated by creosote (*Larrea tridentata*) and burro bush (*Ambrosia dumosa*), usually with abundant bare ground between larger shrubs. Growth in this community occurs from winter to early spring and later, with sufficient rainfall, with the shrubs often dormant for long periods. During years of sufficient rainfall, the bare ground is filled with ephemeral herbs. This community typically occurs on well-drained secondary soils of slopes, fans, and valley, rather than upland sites, with winter temperatures seldom below freezing (Holland 1986).


This community was noted to be very sparse in areas constituting a separate mapping layer of "sparse" Sonoran creosote bush scrub. In these areas, the community appeared to be essentially bare of vegetation, but remnant components of the community were present in sufficient number to classify the vegetation type.

3.1.2 Desert Saltbush Scrub

Desert saltbush scrub is a low-growing open community dominated by chenopod bushes (*Atriplex* spp.), usually with a low-growing herbaceous cover. Total cover in this community is often low, with abundant bare ground between widely spaced shrubs. Stands of shrubs are typically dominated by a

single Atriplex species. Common species in this community include four-wing saltbush (Atriplex canescens), desert holly (Atriplex hymenolytra), shadscale (Atriplex confertifolia), allscale (Atriplex polycarpa), and hop sage (Grayia spinosa). This community typically occurs on fine-textured, poorly drained soils with high alkalinity and/or salinity (Holland 1986).

This community was noted to be very sparse in areas constituting a separate mapping layer of "sparse" saltbush scrub. In these areas, the community appeared to be essentially bare of vegetation, but remnant components of the community were present in sufficient number to classify the vegetation type.

3.1.3 Desert Sink Scrub

Desert sink scrub is similar to desert saltbush scrub, but plants are more widely spaced and with a higher proportion of succulent chenopod species. It occurs on poorly drained soils with high alkalinity and/or salt content. This community often has a higher water table and with visible salt crust on the surface Holland (1986). This community was dominated by pickleweed (*Salicornia* sp.), with varying amounts of saltbush scrub species and occasional creosote scrub species.

3.1.4 Desert Wash

Desert wash is a sparsely vegetated to bare community occurring throughout the BSA. These sandy to hardened silty-mud substrate washes most closely resemble the Holland (1986) vegetation descriptions of tamarisk scrub and arrowweed scrub communities. Where vegetation occurs in the washes, tamarisk (*Tamarix* sp.) was the largest shrub, while arrowweed (*Pluchea sericea*) was the most common. Occasionally, these washes also harbored Sonoran creosote bush scrub and desert saltbush scrub vegetation. Seeps occurred intermittently within desert washes, and were comprised mainly of salt grass (*Distichlis spicata*).

3.1.5 Bare Ground/Disturbed

Bare ground and disturbed areas within the BSA occurred mainly adjacent to developed areas and infrastructure, generally in the form of bare, compacted soils from human activities or paved roads. Vegetation in these areas tended to be sparse and weedy. Occasional individuals of the special-status Salton milk-vetch (*Astragalus crotalariae*), which thrives on disturbance, occur in disturbed areas and the edges of developed areas.

3.2 Special-Status Plant Species

A total of 36 special-status plant species were targeted for the survey, as determined by the literature review and consultation with State Parks and BLM. Their habitat description, status, and potential for occurrence within the BSA are provided in Table 2. Two additional special-status species that were not originally included in the list were observed during the course of the survey and were added to the potential for occurrence table, bringing the number to 38. Of the 38 plant species considered to have a potential to occur within the vicinity, seven were observed during the survey. Refer to Figure 2 for the species and location. Three species were determined to have a moderate potential for occurrence within the BSA, and seven had a low potential, while the remaining were determined to be absent. Potential for occurrence was based on habitat, elevation, soil, and proximity to known recorded occurrences of a species. The species accounts below include only those species that were observed or were determined to have at least a moderate potential to occur within the BSA. Appendix C provides the potential for occurrence of special-status plant species.

3.2.1 Chaparral Sand-verbena

Chaparral sand-verbena (*Abronia villosa* var. *aurita*) is a BLM sensitive species and is included on List 1B.1 of the CNPS online inventory (CNPS 2018). It is a pink-flowered annual herb in the Four oclock Family (Nyctaginaceae) that occurs in south coast ranges and Sonoran desert. It occurs in coastal scrub and desert dunes, on sandy soils, ranging from 245 to 5,250 feet in elevation, and blooms from March to September (CNPS 2016). Suitable habitat for this species occurs within the BSA. Chaparral sand-verbena was observed within the BSA during the survey.

3.2.2 Salton Milk-vetch

Salton milk-vetch (*Astragalus crotalariae*) is included on List 4.3 of the CNPS online inventory (CNPS 2018). It is a red-purple to white flowered perennial herb in the Pea Family (Fabaceae). Salton milk-vetch occurs from the southeastern-most portion of California and into Arizona; documented in Imperial, Riverside, and San Diego counties. This species occurs in desert wash and Sonoran desert scrub, on sandy or gravelly soils. It ranges from 195 to 820 feet in elevation, and blooms from January to April (CNPS 2018). Suitable habitat for this species occurs within the BSA. Salton milk-vetch was observed within the BSA during the survey.

3.2.3 Harwood's Milk-vetch

Harwood's milk-vetch (*Astragalus insularis* var. *harwoodii*) is included on List 2B.2 of the CNPS online inventory (CNPS 2018). It is a pink to violet flowered annual herb in the Pea Family (Fabaceae). Harwood's milk-vetch occurs from the south easternmost portion of California and into Arizona and Mexico; documented in Imperial, Riverside, and San Diego counties. This species occurs in desert dunes, desert wash, and desert scrub, on sandy or gravelly soils. It ranges from msl to 2,330 feet in elevation, and blooms from January to May (CNPS 2018). Suitable habitat for this species occurs within the BSA. Harwood's milk-vetch has a moderate potential to occur within the BSA, and has a known occurrence within five miles of the site.

3.2.4 Peirson's Pincushion

Peirson's pincushion (*Chaenactis carphoclinia* var. *peirsonii*) is included on List 1B.3 of the CNPS online inventory (CNPS 2018). It is a pink to white flowered annual herb in the Sunflower Family (Asteraceae). Peirson's pincushion is known from the Sonoran desert. This species occurs in Sonoran desert scrub, on sandy soils. It ranges from 10 to 1,640 feet in elevation, and blooms from March to April. Suitable habitat for this species occurs within the BSA. Peirson's pincushion was observed within the BSA during the survey.

3.2.5 Wiggin's Croton

Wiggin's croton (*Croton wigginsii*) is a BLM sensitive species and is included on List 2B.2 of the CNPS online inventory (CNPS 2018). It is a petal-lacking perennial shrub in the Spurge Family (Euphorbiaceae). Wiggin's croton is known from the Sonoran desert. This species occurs in desert dunes and Sonoran desert scrub, on sandy soils. It ranges from 165 to 330 feet in elevation, and blooms from March to May (CNPS 2018). Suitable habitat for this species occurs within the BSA. Wiggin's croton has a moderate potential to occur within the BSA. Abram's Spurge

Abram's spurge (*Euphorbia abramsiana*) is included on List 2B.2 of the CNPS online inventory (CNPS 2018). It is a petal-lacking annual herb in the Spurge Family (Euphorbiaceae). Abram's spurge is known from the southeastern-most portion of California and into Arizona and Mexico; documented in Imperial, Riverside, and San Bernardino counties. This species occurs in desert scrub, on sandy soils. It ranges from -15 feet below msl to 4,300 feet in elevation, and blooms from August to November (CNPS 2018). Suitable habitat for this species occurs within the BSA. Abram's spurge has a moderate potential to occur within the BSA.

3.2.6 Ribbed Cryptantha

Ribbed cryptantha (*Johnstonella costata*) is a BLM sensitive species and is included on List 4.3 of the CNPS online inventory (CNPS 2018). It is a white flowered annual herb in the Waterleaf Family

(Boraginaceae). Ribbed cryptantha is known from the southeastern-most portion of California and into Arizona and Mexico; documented in Imperial, Riverside, and San Diego counties. This species occurs in desert dunes and Sonoran desert scrub, on sandy soils. It ranges from -195 feet below msl to 1,640 feet in elevation, and blooms from February to May (CNPS 2018). Suitable habitat for this species occurs within the BSA. Ribbed cryptantha was observed within the BSA during the survey.

3.2.7 Sand Food

Sand food (*Pholisma sonorae*) is a BLM sensitive species and is included on List 1B.2 of the CNPS online inventory (CNPS 2018). It is a pink to purple flowered perennial parasitic herb in the Waterleaf Family (Boraginaceae). Sand food occurs from the south easternmost portion of California and into Arizona; documented in Imperial County. This species occurs in desert dunes and Sonoran desert scrub, on sandy soils. It ranges from -305 feet below msl to 1,120 feet in elevation, and blooms from April to June (CNPS 2018). Suitable habitat for this species occurs within the BSA. Sand food has a moderate potential to occur within the BSA.

3.2.8 Olney's Three-square Rush

Olney's three-square rush (*Schoenoplectus americanus*) is a State Parks sensitive species. It is a grass-like perennial rhizomatous herb in the Sedge Family (Cyperaceae). Olney's three-square rush is known from a variety of ranges throughout California. This species occurs in mineral-rich or brackish marshes, shores, fens, seeps, and springs. It ranges from msl to 7,220 feet in elevation, and blooms from May to August. Suitable habitat for this species occurs within the BSA. Olney's three-square rush was observed within the BSA during the survey.

3.2.9 Orcutt's Woody Aster

Orcutt's woody aster (*Xylorhiza orcuttii*) is included on List 1B.2 of the CNPS online inventory (CNPS 2018). It is lavender to light blue flowered perennial herb in the Aster Family (Asteraceae). Orcutt's woody aster is known from the south easternmost portion of California and into Mexico; documented in Imperial, Riverside, and San Diego counties. This species occurs in desert wash and Sonoran desert scrub. It ranges from msl to 1,200 feet in elevation, and blooms from March to April (CNPS 2018). Orcutt's woody aster was observed within the BSA during the survey.

3.3 Special-Status Wildlife Species

A total of 10 special-status wildlife species were initially determined by the literature review to potentially occur within the BSA. Two additional species were added, based on personal communication with State Parks (2017), bringing the number to 12. Of the 12 wildlife species, one species was present, one had a high potential for occurrence within the BSA, three had a moderate potential, one had a low potential, and the remainder were determined to be absent. Their habitat description, status, and potential for occurrence within the survey area are provided in Appendix D.

One special-status wildlife species, flat-tailed horned lizard, was detected during the field surveys. In addition to these confirmed sightings, there were occasional small mammal burrows throughout the BSA that can provide suitable cover for the lizard and for burrowing owls (Figure 2).

The accounts below include species that are determined to have at least a moderate potential to occur in the BSA, or were observed during the field surveys. Appendix D provides the potential for occurrence of special-status wildlife species.

3.3.1 Burrowing Owl

Burrowing owl is designated as a Priority 2 Bird Species of Special Concern by CDFW due to rapid habitat loss and degradation from urbanization. It is also designated as a BLM Sensitive species and a U.S. Fish and Wildlife Service (USFWS) Bird of Conservation Concern. Its range extends through all states west of the Mississippi Valley and into Mexico, Central America, and South America. In California, it typically inhabits lowlands, including those in the Central Valley, northeastern plateau, southeastern deserts, and coastal areas. For shelters, the burrowing owl uses rodent burrows in sparse grassland, desert, and agricultural habitats, as well as open areas of pinyon-juniper or ponderosa pine habitats (CDFW [as California Department of Fish and Game (CDFG)] 2008). Breeding populations generally display greater site fidelity than winter populations, which tend to move about more, even taking refuge into vegetation instead of nearby burrows (Poulin et al. 2011). Individuals in California, particularly southern California, are mostly residents. Nesting begins from late March to August, peaking in April and May (CDFW [as CDFG] 2008). While some pairs have been observed to have double broods within a single breeding season, it is considered to be uncommon and is not always successful (Poulin et al. 2011). Burrowing owls are typically active at dusk and dawn, but can sometimes be active at night as well.

Observations of burrowing owl within one mile of the BSA have been noted by parks in spring 2018 (in Campbell Wash, south of the BSA) and in Summer of 2018 (west of the confluence of Bus Wash and Arroyo Salado), indicating that burrowing owls do occur in the vicinity. These observations are not shown on the figures. Approximate coordinates to both observations are as follows: Summer 2018: 11S 592193 E 3679421 N and Spring 2018: 11S 597759 E 3673009 N.

Suitable burrows for burrowing owls were observed during the survey, but no burrowing owls and no sign of burrowing owls were detected. Burrowing owls have a moderate potential to occur within the BSA.

3.3.2 Prairie Falcon

The prairie falcon (*Falco mexicanus*) is designated by the USFWS as a Species of Special Concern and by CDFW as a Watch List species. It inhabits dry, open terrain in level and hilly areas. Breeding sites are located on cliffs. Foraging habitat includes marshlands and ocean shores (CNDDB 2018).

There are two State Park records of this species within the BSA (State Parks 2017). Suitable habitat for this species occurs within the BSA. The prairie falcon has a high potential to utilize the BSA, but a low potential to nest within the BSA.

3.3.3 Palm Springs Pocket Mouse

The Palm Springs pocket mouse (*Perognathus longimembris bangsi*) is designated by the CDFW as a Species of Special Concern and by BLM as sensitive. It occurs in desert dunes, Mojavean desert scrub, and Sonoran desert scrub in central Riverside, eastern San Diego, and Imperial Counties. It often occurs in habitat with gently sloping topography, sparse to moderate vegetative cover, and loosely packed or sandy soils (Dodd 1996).

There are three CNDDB records of this species in the general vicinity of the Project area (CDFW 2018). Suitable habitat for this species occurs within the BSA. The Palm Springs pocket mouse has a moderate potential to occur.

3.3.4 Flat-tailed Horned Lizard

The flat-tailed horned lizard is designated by the CDFW as a Species of Special Concern and by BLM as sensitive. It has the smallest range of all horned lizards (Sherbrooke 2003), being restricted to southeastern California, extreme southwestern Arizona, and adjacent portions of northeastern Baja California and northwestern Sonora, Mexico (Funk 1981). In California, it is distributed throughout much of the Salton Trough, sections of San Diego County, central Riverside County, and western and southern Imperial County (CDFW 2018). Flat-tailed horned lizard occurs in desert dunes, Mojavean desert scrub, and Sonoran desert scrub with sandy soils in central Riverside, eastern San Diego, and Imperial Counties. It requires loose, friable soils for burrowing, and scattered perennial vegetation for cover and thermoregulation, as well as a sufficient population of ants (Barrows and Allen 2009).

Nine flat-tailed horned lizards were observed during the surveys, plus two dead individuals. Suitable burrows for the species were observed intermittently throughout the BSA.

3.3.5 Le Conte's Thrasher

Le Conte's thrasher (*Toxostoma lecontei*) is a Species of Special Concern and a USFWS Bird of Conservation Concern. In California, Le Conte's thrasher is a resident species in the San Joaquin Valley and the Mojave and Colorado deserts in southeastern California. It occurs in desert washes, desert scrub, alkali desert scrub, and desert succulent shrub habitat (CDFW 2018). Because creosote bush is unable to sufficiently support nests, Le Conte's thrashers typically do not occur in monotypic creosote bush scrub habitat or in massive Sonoran Desert woodlands (Prescott 2005). Preferred nest substrate includes thorny shrubs or cholla cactus (Sheppard 1996). Breeding activity occurs from January to early June, peaking from mid-March to mid-April (CDFW [as CDFG] 2008). Pairs typically attempt up to three broods each year. Le Conte's thrashers forage for food by digging and probing in the soil with their bills, searching for arthropods (the majority of their diet), small lizards and snakes, other vertebrates, and seeds and fruit (Sheppard 1996, CDFW [as CDFG] 2008).

No Le Conte's thrashers were observed during the survey. Some suitable habitat is present within the BSA, and Le Conte's thrasher has a moderate potential to occur.

This page intentionally left blank.

4.0 RECOMMENDATIONS

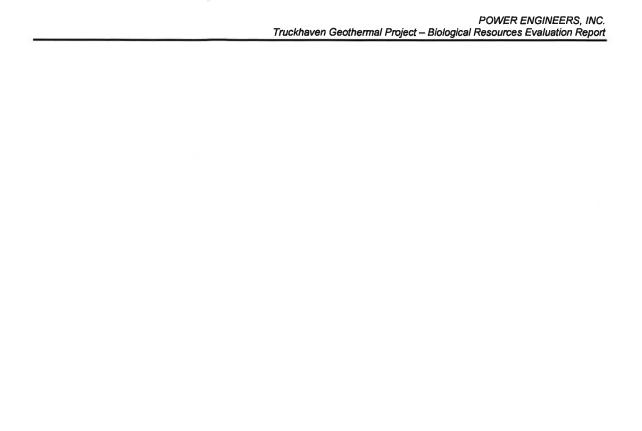
The following recommendations are provided for avoidance and minimization of effects to biological resources during the seismic survey:

- 1. Coordinate with State Parks, BLM, and CDFW to obtain any necessary permits, memorandums of understanding, or permissions prior to seismic activities.
- 2. A qualified biologist(s) will monitor all off-road seismic testing activities to ensure that standard and special-status species-specific avoidance and minimization recommendations are adhered to. The monitor will retain stop work authority in the event there is the likelihood of eminent take of special-status species. The monitor will conduct a daily survey in and around work areas before seismic surveys start, including the drive path of any off-road vehicular seismic testing activities, as previously observed potential burrows may no longer exist and new burrows may be present, as well as wildlife entering the work area. All biological monitors will be approved by State Parks, BLM, and CDFW prior to commencement of the geophysical data acquisition seismic survey.
- 3. A worker environmental awareness program will be prepared and presented to all employees working on the Project site in listed species habitat. The education program will include identification of target species and their habitats, any Project mitigation measures and stipulations, reporting requirements, and penalties for failure of compliance.
- 4. Should seismic surveys occur between February 15 and August 15, the time period typically referenced in California for the general bird nesting season, daily nesting surveys will be conducted in and around work areas before seismic surveys start, including the drive path of any off-road vehicular seismic testing activities. If no active bird nests are found within this area, no further mitigation is required. If an active nest is found, a buffer shall be instated around the nest if it belongs to a non-listed or migratory bird. If the nest belongs to a listed or fully-protected species, a larger buffer shall be instated around the nest, at a distance approved prior to seismic survey activities.
- 5. Avoid burrows that may be utilized by special-status wildlife species with a minimum buffer of 20-feet from burrows suitable for flat-tailed horned lizard and a minimum buffer of 30-feet from burrows suitable for burrowing owls for seismic testing. Buggies may drive within five-feet of these burrows with a biological monitor present.
- 6. If burrowing owls are observed within the Project area prior to or during the seismic survey, occupied burrows shall not be disturbed during the owl nesting season, February 1 through August 31. If new burrows are found during the non-breeding season the agreed upon project, minimum buffer of 30-feet (reduced buffered approved by CDFW for this data acquisition seismic survey phase of the project [CDFW 2016c]), or a buffer deemed appropriate by the qualified biological monitor, shall be instated until occupancy status is determined. If the buffer cannot be maintained during the non-breeding season, owls may be temporarily evicted from the burrows using accepted methodology as outlined in by CDFW (2012) and approved by resource agencies. Eviction will not occur during the breeding season. If flattailed horned lizards are observed within the seismic survey path, the qualified biological monitor, with prior approval through Project acquired permits or permissions from BLM and State Parks, will relocate the individual out of the seismic path, adjacent to where it was moved from.
- 7. Avoid special-status perennial plant species with a minimum buffer of 5 to 10 feet, depending on the root structure and as determined by the biological monitor.
- 8. Impacts to special-status species shall first be avoided where feasible, and where not feasible, impacts to special-status species shall be compensated on a case-by-case basis through methods agreed upon prior to seismic survey activities.

- 9. Any disturbance will be minimized to the maximum extent feasible. Access to sites will be via pre-existing access routes, to the greatest extent possible. Any newly identified biological resources will be temporarily flagged with pin-flags, which will be removed following seismic testing.
- 10. Vehicles and equipment will be maintained and free of leaks. All hazardous material, oil, hydraulic, or other fluid leaks will be contained and cleaned immediately to reduce the risk of negatively impacting water or soil quality.
- 11. To avoid attracting predators and nuisance species, the areas of survey testing will be kept clear of debris, where possible. All food-related trash items will be enclosed in sealed containers and regularly removed.
- 12. Project-related equipment will be washed prior to entering the Project area for the first time to reduce the chance of transporting noxious weed seeds from outside the area.
- 13. Fire extinguishers, water, and shovels shall be kept on-site during survey activities.

5.0 REFERENCES

Barrows, C.W., and M.F. Allen. 2009. Conserving species in fragmented habitats: Population
dynamics of the flat-tailed horned lizard, Phrynosoma mcallii. The Southwestern Naturalist
54(3):307-316.


California Department of Fish and Wildlife (CDFW; as CDFG) 2008. California Interagency Wildlife

Task Group. Sacramento, CA.
2012. Staff Report on Burrowing Owl Mitigation.
2016a. California Natural Diversity Database. RareFind, commercial version 3.1.1.
2016b. Report to the Fish and Game Commission; A Status Review of the Flat-tailed Horned Lizard (Phrynosoma mcallii) in California. State of California Natural Resources Agency. Sacramento, CA. September.
2016c. Personal communication with Magdalena Rodriguez, CDFW, and Ken McDonald, POWER Engineers, Inc. April 2016.
. 2018. California Natural Diversity Database. RareFind, commercial 5.2.14.
California Native Plant Society (CNPS). 2016. <i>Inventory of Rare and Endangered Plants</i> (online edition, v8-01a). California Native Plant Society. Sacramento, CA.
2018. Inventory of Rare and Endangered Plants (online edition, v7-18mar 3-19-18). California Native Plant Society. Sacramento, CA.

- Dodd, S.C. 1996. Report of the 1996 Palm Springs pocket mouse (Perognathus longimembris bangsi) surveys. Palm Desert, CA. Unpublished report to the Coachella Valley Association of Governments.
- Funk, R.S. 1981. *Phrynosoma mcallii* (Hallowell) *Flat-tailed horned lizard*. Catalogue of American Amphibians and Reptiles 281:1-2.
- Holland, R.F. 1986. Preliminary Descriptions of the Terrestrial Natural Communities of California (California Department of Fish and Game The Resources Agency, ed.). Sacramento, CA.
- Poulin, R., L.D. Todd, E.A. Haug, B.A. Millsap, and M.S. Martell. 2011. *Burrowing Owl (Athene cunicularia)*, *The Birds of North America Online* (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/061
- POWER Engineers, Inc. (POWER). 2017. Truckhaven Geothermal Project. Proposed 3D Geophysical Survey Interim Biological Resources Evaluation Report.
- Prescott, B.G. 2005. Le Conte's Thrasher Species Account, West Mojave Plan, Bureau of Land Management. Final environmental impact report and statement for the West Mojave plan: a habitat conservation plan and California desert conservation area plan amendment. Moreno Valley (CA): U.S. Dept. of the Interior, Bureau of Land Management, California Desert District.
- Sheppard, J.M. 1996. Le Conte's Thrasher (Toxostoma lecontei), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/230.

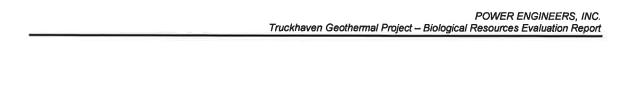
- Sherbrooke, W.C. 2003. *Introduction to horned lizards of North America*. California Natural History Guides No. 64. University of California Press, Berkeley and Los Angeles, California.
- State Parks Ocotillo Wells Field Office (State Parks). 2017. Personal communication with Sara Lockett, State Parks, and Ken McDonald, POWER Engineers, Inc. September 2017
- _____. 2018. Personal communication with Sara Lockett, State Parks, and Ken McDonald, POWER Engineers, Inc. September 2018.

APPENDIX A PLANT SPECIES OBSERVED DURING THE FIELD SURVEY

SCIENTIFIC NAME	COMMON NAME
ANGIOSPERMS (DICOTYLEDONS)	
AIZOACEAE	FIG-MARIGOLD FAMILY
Mesembryanthemum nodiflorum*	slender-leaved iceplant
AMARANTHACEAE	AMARANTH FAMILY
Tidestromia oblongifolia	honeysweet
APODANTHACEAE	STEMSUCKER FAMILY
Pilostyles thurberi	Thurber's pilostyles
ASCLEPIADACEAE	MILKWEED FAMILY
Asclepias erosa	desert milkweed
Asclepias subulata	rush milkweed
ASTERACEAE	SUNFLOWER FAMILY
Ambrosia dumosa	burro bush
Bebbia juncea	sweetbush
Chaenactis carphoclinia var. carphoclinia	pebble pincushion
Chaenactis carphoclinia var. piersonii	Peirson's pincushion
Dicoria canescens	bugseed
Encelia frutescens	rayless encelia
Geraea canescens	desert sunflower
Hymenoclea salsola	cheesebush
Isocoma acradenia	alkali goldenbush
Lactuca serriola*	prickly lettuce
Malacothrix glabrata	desert dandelion
Palafoxia arida	Spanish needles
Perityle emoryi	Emory rock daisy
Pluchea sericea	arrow weed
Sonchus asper*	prickly sow thistle
Stephanomeria pauciflora	wire lettuce
Sonchus oleraceus	common sow thistle
Xylorhiza orcuttii	Orcutt's woody aster
BORAGINACEAE	BORAGE FAMILY
Cryptantha angustifolia	narrowleaf cryptantha
Cryptantha bargigera	bearded fort-me-not
Cryptantha circumscissa	cushion cryptantha
Cryptantha maritima	Guadalupe forget-me-not
Johnstonella costata	ribbed cryptantha
Pectocarya heterocarpa	chuckwalla combseed
Tiquilia palmeri	Palmer's tiquilia
Tiquilia plicata	plicate tiquilia

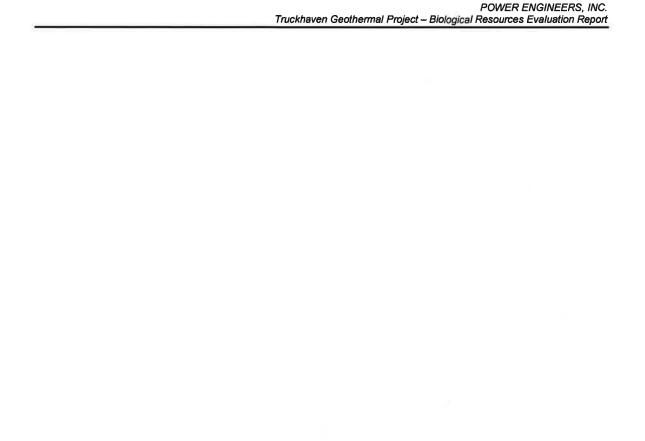
SCIENTIFIC NAME	COMMON NAME
BRASSICACEAE	MUSTARD FAMILY
Brassica tournefortii*	Sahara mustard
Lepidium densifolium	desert peppergrass
Lepidium sp.	peppergrass
CACTACEAE	CACTUS FAMILY
Cylindropuntia echinocarpa	golden cholla
CHENOPODIACEAE	GOOSEFOOT FAMILY
Allenrolfea occidentalis	iodine bush
Atriplex canescens	four-wing saltbush
Atriplex elegans	wheel scale
Atriplex hymenelytra	desert holly
Atriplex lentiformis	quail brush
Atriplex polycarpa	allscale
Beta vulgaris*	beet
Chenopodium murale*	nettle-leaved goosefoot
Salsola australis	Russian thistle
Salsola sp.*	Russian thistle
Suaeda nigra	bush seepweed
CLEOMACEAE	SPIDERFLOWER FAMILY
Cleomella obtusifolia	Mojave stinkweed
EUPHORBIACEAE	SPURGE FAMILY
Chamaesyce polycarpa	golondrina
Croton californicus	California croton
Stillingia spinulosa	Mohave stillingia
FABACEAE	LEGUME FAMILY
Acacia greggii	cat claw acacia
Astragalus crotalariae	Salton Sea milkvetch
Cercidium floridum	palo verde
Cystus scoparius*	Scotch broom
Dalea mollis	silky dalea
Prosopis glandulosa	honey mesquite
Psorothamnus emoryi	dye plant
Psorothamnus schottii	indigobush
Psorothamnus spinosus	smokebush
FOUQUIERIACEAE	OCOTILLO FAMILY
Fouquieria splendens	ocotillo
GERANIACEAE	GERANIUM FAMILY
Erodium botrys*	broad-lobed filaree
Erodium texanum	Texas filaree

SCIENTIFIC NAME	COMMON NAME
HYDROPHYLLACEAE	WATERLEAF FAMILY
Phacelia crenulata	purple phacelia
KRAMERIACEAE	RHATANY FAMILY
Krameria bicolor	white rhatany
LOASACEAE	LOASA FAMILY
Mentzelia involucrata	bracted blazing star
Petalonyx sp.	sandpaper plant
MALVACEAE	MALLOW FAMILY
Eremalche rotundifolia	desert five-spot
MONTIACEAE	MINER'S LETTUCE FAMILY
Cistanthe ambigua	desert pussypaws
NYCTAGINACEAE	FOUR O'CLOCK FAMILY
Abronia villosa var. aurita	chaparral sand-verbena
ONAGRACEAE	EVENING PRIMROSE FAMILY
Chylismia cardiophylla	heartleaf suncup
Chylismia claviformis	brown-eyed evening primrose
Eremothera boothii	Booth's evening primrose
PAPAVERACEAE	POPPY FAMILY
Eschscholzia minutiflora	pygmy goldenpoppy
PLANTAGINACEAE	PLANTAIN FAMILY
Plantago ovata	woolly plantain
POLEMONIACEAE	PHLOX FAMILY
Aliciella latifolia	broadleaf gilia
Langloisia setosissima	langlosia
POLYGONACEAE	BUCKWHEAT FAMILY
Chorizanthe brevicornu	brittle spineflower
Chorizanthe corrugata	wrinkled spineflower
Chorizanthe rigida	rigid spineflower
Eriogonum deflexum	flat-topped buckwheat
Eriogonum inflatum	desert trumpet
Eriogonum reniforme	buckwheat
Eriogonum thomasii	Thomas eriogonum
Eriogonum trichopes	little trumpet
PORTULACACEAE	PURSLANE FAMILY
Portulaca halimoides	desert portulaca
RESDACEAE	MIGNONETTE FAMILY
Oligomeris linifolia	narrow-leaved oligomeris


SCIENTIFIC NAME	COMMON NAME
SOLANACEAE	NIGHTSHADE FAMILY
Datura discolor	desert thorn apple
Lycium andersonii	Anderson's box-thorn
Lycium brevipes	Baja desert-thorn
TAMARICACEAE	TAMARISK FAMILY
Tamarix aphylla*	athel
Tamarix ramosissima*	Mediterranean tamarisk
ZYGOPHYLLACEAE	CALTROP FAMILY
Larrea tridentata	creosote bush
ANGIOSPERMS (MONOCOTYLEDONS)	
ARECACEAE	PALM FAMILY
Arecastrum sp.*	palm
CYPERACEAE	SEDGE FAMILY
Schoenoplectus americanus	Olney's three-square rush
LILIACEAE	LILY FAMILY
Hesperocallis undulata	desert lily
POACEAE	GRASS FAMILY
Aristida adscensionis	six-week's three-awn
Distichlis spicata	saltgrass
Festuca sp.	fescue
Phalaris minor*	Mediterranean canary grass
Pleuraphis rigida	galleta grass
Schismus arabicus*	Arabian schismus
Schismus barbatus*	Mediterranean schismus
TYPHACEAE	CATTAIL FAMILY
Typha sp.	cattail

APPENDIX B WILDLIFE SPECIES OBSERVED DURING THE FIELD SURVEY

SCIENTIFIC NAME	COMMON NAME
CLASS INSECTA	INSECTS
POMPILIDAE	SPIDER WASPS
Pepsis sp.	tarantula hawk
DANAIDAE	MILKWEED BUTTERFLIES
Danaus gilippus	queen
PIERIDAE	WHITES & SULPHURS
Pontia bedkerii	Becker's white
Pontia protodice	checkered white
HESPERIIDAE	TRUE SKIPPERS
Hesperopsis libya	Mohave sootywing
CLASS REPTILIA	REPTILES
IGUANIDAE	IGUANID LIZARDS
Callisaurus draconoides draconoides	common zebra-tailed lizard
Dipsosaurus dorsalis	desert iguana
Phrynosoma sp.	horned lizard
Phrynosoma mcalli	flat-tailed horned lizard
Uma notata	Colorado Desert fringe-toed lizard
Uta stansburiana	common side-blotched lizard
TEIIDAE	WHIPTAIL LIZARDS
Cnemidophorus sp.	whiptail
COLUBRIDAE	COLUBRID SNAKES
Masticophis flagellum fulginosus	Baja California coachwhip
VIPERIDAE	VIPERS
Crotalus cerastes laterorepens	Colorado desert sidewinder
CLASS AVES	BIRDS
CATHARTIDAE	NEW WORLD VULTURES
Cathartes aura	turkey vulture
ACCIPITRIDAE	HAWKS, KITES, EAGLES
Buteo jamaicensis	red-tailed hawk
FALCONIDAE	FALCONS
Falco mexicanus	prairie falcon
Falco sparverius	American kestrel
ODONTOPHORIDAE	NEW WORLD QUAIL
Callipepla gambelii	Gambel's quail
CHARADRIIDAE	PLOVERS
Charadrius vociferus	killdeer
COLUMBIDAE	PIGEONS & DOVES
Columba livia	rock pigeon
Zenaida macroura	mourning dove


SCIENTIFIC NAME	COMMON NAME
CAPRIMULGIDAE	NIGHTHAWKS
Chordeiles acutipennis	lesser nighthawk
APODIDAE	SWIFTS
Aeronautes saxatalis	white-throated swift
TYRANNIDAE	TYRANT FLYCATCHERS
Empidonax difficilis	Pacific-slope flycatcher
Myiarchus cinerascens	ash-throated flycatcher
Sayornis saya	Say's phoebe
Tyrannus verticalis	western kingbird
ALAUDIDAE	LARKS
Eremophila alpestris	horned lark
HIRUNDINIDAE	SWALLOWS
Petrochelidon pyrrhonota	cliff swallow
Hirundo rustica	barn swallow
Stelgidopteryx serripennis	northern rough-winged swallow
CORVIDAE	JAYS & CROWS
Corvus corax	common raven
STURNIDAE	STARLINGS
Sturnus vulgaris	European starling
VIREONIDAE	VIREOS
Vireo gilvus	warbling vireo
PARULIDAE	WOOD WARBLERS
Vermivora celata	orange-crowned warbler
Vermivora ruficapilla	Nashville warbler
Dendroica townsendi	Townsend's warbler
Oporornis tolmiei	MacGillivray's warbler
Wilsonia pusilla	Wilson's warbler
CTERIDAE	BLACKBIRDS
Icterus bullockii	Bullock's oriole
Icterus parisorum	Scott's oriole
Sturnella neglecta	western meadowlark
Quiscalus mexicanus	great-tailed grackle
EMBERIZIDAE	EMBERIZIDS
Passerculus sandwichensis	savannah sparrow
CARDINALIDAE	CARDINALS
Pheucticus melanocephalus	black-headed grosbeak
FRINGILLIDAE	FINCHES
Carpodacus mexicanus	house finch
PASSERIDAE	OLD WORLD SPARROWS
Passer domesticus	house sparrow

SCIENTIFIC NAME	COMMON NAME
CLASS MAMMALIA	MAMMALS
LEPORIDAE	HARES & RABBITS
Lepus californicus	black-tailed prabbit
Sylvilagus audubonii	desert cottontail
SCIURIDAE	SQUIRRELS
Spermophilus tereticaudus	round-tailed ground squirrel
HETEROMYIDAE	POCKET MICE & KANGAROO RATS
Dipodomys sp.	kangaroo rat
FELIDAE	CATS
Lynx rufus	bobcat
CANIDAE	WOLVES & FOXES
Canis latrans	coyote
Vulpes macrotis	kit fox

This page intentionally left blank.

APPENDIX C SPECIAL-STATUS PLANT SPECIES AND THEIR POTENTIAL TO OCCUR WITHIN THE BIOLOGICAL SURVEY AREA

This page intentionally left blank.

SPECIAL-STATUS PLANT SPECIES AND THEIR POTENTIAL TO OCCUR WITHIN THE BIOLOGICAL SURVEY AREA

SPECIES	STATUS	навпат	BLOOMING PERIOD	POTENTIAL FOR OCCURRENCE
Abronia villosa var. aurita chaparral sand-verbena	Fed: None State: None CNPS: 1B.1 BLM: S	Annual herb occurring in chaparral, coastal scrub, and desert dunes, on sandy soils. From 245 to 5,250 feet in elevation.	March September	Present. Observed within the BSA during the survey.
Astragalus crotalariae Salton milk-vetch	Fed: None State: None CNPS: 4.3	Perennial herb occurring in desert wash and Sonoran desert scrub, on sandy or gravelly soils. From 195 to 820 feet in elevation.	January – April	Present. Observed within the BSA during the survey.
Astragalus insularis var. harwoodii Harwood's milk-vetch	Fed: None State: None CNPS: 28.2	Annual herb occurring on desert dunes, desert wash, and Mojavean desert scrub, on sandy or gravelly soils. From 0 to 2,330 feet in elevation.	January – May	Moderate. Suitable habitat occurs within the BSA.
Astragalus magdalenae var. peirsonii Peirson's milk-vetch	Fed: THR State: END CNPS: 1B.2	Perennial herb occurring on desert dunes. From 195 to 740 feet in elevation.	December – April	Absent. No suitable habitat occurs within the BSA.
Bursera microphylla littleleaf elephant tree	Fed: None State: None CNPS: 2B.3	Perennial deciduous tree occurring in desert wash, Sonoran desert scrub, on rocky soils. From 655 to 2,300 feet in elevation.	June – July	Absent. The BSA is below the known elevation range for the species.
Castela emoryi crucifixion thorn	Fed: None State: None CNPS: 2B.2	Perennial deciduous shrub occurring on alkali playa, desert wash, Mojavean desert scrub and Sonoran desert scrub, on gravelly soils. From 300 to 2,380 feet in elevation.	June – July	Low. Suitable habitat occurs on site, but the BSA is below the known elevation range for the species.
Chaenactis carphoclinia var. peirsonii Peirson's pincushion	Fed: None State: None CNPS: 1B.3	Annual herb occurring in Sonoran desert scrub, on sandy soils. From 10 to 1,640 feet in elevation.	March – April	Present. Observed within the BSA during the survey.
Chaenactis glabriuscula var. orcuttiana Orcutt's pincushion	Fed: None State: None CNPS: 1B.1 BLM: S	Annual herb occurring in coastal bluff scrub and coastal dunes. From 0 to 330 feet in elevation.	January – August	Absent. No suitable habitat occurs within the BSA.
Chorizanthe polygonoides var. longispina long-spined spineflower	Fed: None State: None CNPS: 1B.2 BLM: S	Annual herb occurring in chaparral, coastal scrub, meadows and seeps, valley and foothill grassland, ultramafic soils, and vernal pools in clay soils. From 100 to 5,020 feet in elevation.	April – June	Absent. No suitable habitat occurs within the BSA.

APPENINIX C

EEC ORIGINAL PKG

APPENDIX C

SPECIES	STATUS	НАВІТАТ	BLOOMING	POTENTIAL FOR OCCURRENCE
Hulsea californica San Diego sunflower	Fed: None State: None CNFS: 1B.3 BLM: S	Perennial herb occurring in chaparral, lower montane coniferous forest, and upper montane coniferous forest in openings and burned areas. From 3,000 to 9,560 feet in elevation.	April – June	Absent. No suitable habitat occurs within the BSA, and is below the known elevation range for the species
Johnstonella costata (=Cryptantha costata) ribbed cryptantha	Fed: None State: None CNPS: 4.3 BLM: S	Annual herb occurring in desert dunes, Mojavean desert scrub, and Sonoran desert scrub, on sandy soils. From -195 to 1,640 feet in elevation.	February – May	Present. Observed within the BSA during the survey.
Lepidium flavum var. felipense Borrego Valley pepper-grass	Fed: None State: None CNPS: 1B.2 BLM: S	Annual herb occurring in pinyon and juniper woodlands and Sonoran desert scrub, on sandy soils. From 1,490 to 2,755 feet in elevation.	March – May	Absent. The BSA is below the known elevation range for the species.
Lupinus excubitus var. medius Mountain Springs bush lupine	Fed: None State: None CNPS: 1B.3	Perennial shrub occurring in pinyon and juniper woodlands and Sonoran desert scrub. From 1,395 to 4,495 feet in elevation.	March – May	Absent. The BSA is below the known elevation range for the species.
Lycium parishii Parish's desert-thorn	Fed: None State: None CNPS: 2B.3	Perennial shrub occurring in coastal scrub and Sonoran desert scrub. From 440 to 3,280 feet in elevation.	March – April	Absent. The BSA is below the known elevation range for the species.
Malperia tenuis brown turbans	Fed: None State: None CNPS: 28.3	Annual herb occurring in Sonoran desert scrub, on sandy or gravelly soils. From 50 to 1,100 feet in elevation.	March – April	Low. Suitable habitat occurs within the BSA, b at there are no known occurrences within 10 miles.
Monardella nana ssp. leptosiphon San Felipe monardella	Fed: None State: None CNFS: 1B.2 BLM: S	Perennial rhizomatous herb occurring in chaparral and lower montane coniferous forest. From 3,940 to 6,085 feet in elevation.	June – July	Absent. No suitable habitat occurs within the BSA, and is below the known elevation range for the species.
Monardella robisonii Robison's monardella	Fed: None State: None CNPS: 18.3 BLM: S	Perennial rhizomatous herb occurring in pinyon and juniper woodlands. From 2,000 to 4,920 feet in elevation.	April – September	Absent. No suitable habitat occurs within the BSA, and is below the known elevation range for the species.
Palafoxia arida var. gigantea giant Spanish needle	Fed: None State: None CNPS: 18.3 BLM: S	Annual to perennial herb occurring on desert dunes. From 50 to 330 feet in elevation.	February – May	Absent. No suitable habitat occurs within the BSA.

APPENI JIX C

SPECIES	STATUS	НАВІТАТ	BLOOMING PERIOD	POTENTIAL FOR OCCURRENCE
Pholisma sonorae sand food	Fed: None State: None CNPS: 1B.2	Perennial parasitic herb occurring on desert dunes and Sonoran desert scrub on sandy soils. From 0 to 655 feet in	April – June	Moderate. Suitable habitat occurs within the BSA.
Pilostyles thurberi Thurber's nilostyles	Fed: None State: None CNPS: 4.3	Perennial parasitic herb occurring on Psorothamnus in Sonoran desert scrub. From 0 to 1 120 feet in elevation	December – April	Present. Observed within the BSA during the survey.
Salvia greatae Orocopia sage	Fed: None State: None CNPS: 18.3 BLM: S	Perennial evergreen shrub occurring in desert wash, Mojavean desert scrub, and Sonoran desert scrub. From -130 to 2,705 feet in elevation.	March – April	Low. Suitable habitat occurs within the BSA, but all known populations occur on northeastern portion of the Salton Sea.
Schoenoplectus americanus Olney's three-square bulrush	Fed: None State: None CNPS: None State Parks: S	Perennial rhizomatous herb occurring in mineral-rich or brackish marshes, shores, fens, seeps, and springs. Up to 7,220 feet in elevation.	May - August	Present. Observed within the BSA during the survey.
Senna covesii Cove's senna	Fed: None State: None CNPS: 28.2	Perennial herb occurring in sandy desert washes and slopes, and in Sonoran desert scrub. From 740 to 4,250 feet in elevation.	March – June	Absent. The BSA is below the known elevation range for the species.
Streptanthus campestris Southern jewel-flower	Fed: None State: None CNPS: 1B.3 BLM: S	Perennial rhizomatous herb occurring in chaparral, lower montane coniferous forest, and pinyon and juniper woodlands, on rocky soils. From 2,950 to 7,545 feet in elevation.	May – July	Absent. No suitable habitat occurs within the BSA, and is below the known elevation range for the species.
Symphyotrichum defoliatum San Bernardino aster	Fed: None State: None CNPS: 1B.2 BLM: S	Perennial rhizomatous herb occurring in cismontane woodland, coastal scrub, lower montane coniferous forest, marsh and swamps, meadows and seeps, and valley and foothill grassland. From 5 to 6,690 feet in elevation.	July – November	Absent. No suitable habitat occurs within the BSA.
Thermopsis californica var. semota velvety false lupine	Fed: None State: None CNPS: 18.2 BLM: S	Perennial rhizomatous herb occurring in cismontane woodland, lower montane coniferous forest, meadows and seeps, valley and foothill grassland, and wetlands. From 3,280 to 6,150 feet in elevation	March – June	Absent. No suitable habitat occurs within the BSA, and is below the known elevation range for the species.

SPECIES	STATUS	НАВІТАТ	BLOOMING	POTENTIAL FOR OCCURRENCE
Thysanocarpus rigidus	Fed: None State: None	Annual herb occurring in pinyon and juniper woodlands, often on dry rocky	February –	Absent. No suitable habitat occurs within the
ridge fringepod	CNPS: 1B.2 BLM: S	slopes. From 1,970 to 7,220 feet in elevation.	Мау	the species.
Xylorhiza cognata	Fed: None State: None	Perennial herb occurring in Sonoran	January –	Low. Suitable habitat occurs within the BSA, but
Mecca aster	CNPS: 1B.2 BLM: S	elevation.	June	portion of the Salton Sea.
Xylorhiza orcuttii	Fed: None State: None	Perennial herb occurring in desert wash	March - April	Present. Observed within the BSA during the
Orcutt's woody aster	CNPS: 1B.2 BLM: S	1,200 feet in elevation.	וומלי – וסופות	survey.

Absent: Species or sign not observed on the site, outside of the known range, and conditions unsuitable for occurrence.

Low: Species or sign not observed on the site, but conditions marginal for occurrence.

Moderate: Species or sign not observed on the site, but conditions suitable for occurrence and/or an historical record exists in the vicinity

High: Species or sign not observed on the site, but reasonably certain to occur on the site based on conditions, species ranges, and recent records.

Present: Species or sign of their presence recently observed on the site,

Federal status

END = listed as Endangered under the federal Endangered Species Act

Delisted = previously listed under the federal Endangered Species Act but now removed

END = listed as Endangered under the California Endangered Species Act

BLM status

S = designated as a Sensitive species

S = designated as a Sensitive species State Parks status

SRPR State Rare Plant Rank

- Plants presumed extirpated in California and either rare or extinct elsewhere 1B. Considered rare, threatened, or endangered in California and elsewhere.
- 2A: Plants presumed extirpated in California, but more common elsewhere
- 2B: Plants Rare, Threatened, or Endangered in California, But More Common Elsewhere 3: Plants About Which More Information is Needed A Review List
 - Plants of Limited Distribution A Watch List

Threat Ranks/ Decimal notations: A California Native Plant Society extension added to the SSRPR

- Seriously threatened in California (over 80% of occurrences threatened / high degree and immediacy of threat)
- 3 Not very threatened in California (less than 20% of occurrences threatened / low degree and immediacy of threat or no current threats known) .2 Moderately threatened in California (20-80% occurrences threatened / moderate degree and immediacy of threat)

APPENI)IX C

Truckhaven Geothermal Project – Biological Resources Evaluation Report
The state of the s
This page intentionally left blank.

APPENDIX D SPECIAL-STATUS WILDLIFE SPECIES AND THEIR POTENTIAL TO OCCUR WITHIN THE BIOLOGICAL SURVEY AREA

This page intentionally left blank.

SPECIAL-STATUS WILDLIFE SPECIES AND THEIR POTENTIAL TO OCCUR WITHIN THE BIOLOGICAL SURVEY AREA

SPECIES	STATUS	НАВПАТ	POTENTIAL FOR OCCURRENCE
Antrozous pallidus pallid bat	Fed: None State: SSC BLM: S	Occurs in chaparral, coastal scrub, desert wash, Great Basin grassland, Great Basin scrub, Mojavean desert scrub, riparian woodland, Sonoran desert scrub, upper montane coniferous forest, and valley and foothills grassland. Most common in open, dry habitats with rock areas for roosting. Roosts must protect bats from high temperatures. Very sensitive to disturbance of roosting sites.	Low. This species has been detected within the SVRA within five miles of the BSA (personal communication, State Parks 2017), and suitable foraging habitat for this spec es occurs within the BSA, but roosting habitat is of low quality, combined with frequent anthropogenic disturbance.
Athene cunicularia burrowing owl	Fed: None State: SSC BLM: S	Occurs in open, dry annual or perennial grasslands, deserts, and scrublands with low-growing vegetation. This includes a wide variety of vegetation communities, including coastal prairies, coastal scrub, Great Basin grassland, Great Basin scrub, Mojavean desert scrub, Sonoran desert scrub, and valley and foothill grasslands. Depends on fossorial mammals for burrows.	Moderate. There is only one record of this species in the general Project vicinity (CDFW 2018), but two observations within one mile of the BSA have been recorded by State Farks (2018). There were occasional suitable burrows within the survey area that could support this species, but there were few insects observed for prey.
Charadrius alexandrines nivosus western snowy plower	Fed: THR State: SSC BLM: S	Occurs in Great Basin standing waters, sand shores, salt pond levees and shores of large alkali lakes, and wetlands. Requires sandy, gravelly, or friable soils for nesting.	Absent. No suitable habitat is present within the BSA.
Charadrius montanus mountain plover	Fed: None State: SSC BLM: S	Occurs in chenopod scrub, short grasslands, freshly-plowed fields, newly-sprouting grain fields, and occasionally sod farms. Needs a mixture of short vegetation and bare ground, along with flat topography. Prefers grazed areas and areas with fossorial rodents.	Absent. No suitable habitat is present within the BSA.
Falco mexicanus prairie falcon	Fed: None State: WL	Occurs in Great Basin grassland, Great Basin scrub, Mojavean desert scrub, and valley and foothill grassland.	Low. While suitable foraging habitat occurs within the BSA, only some suitable nesting habitat for this species occurs.
Lasiurus blossevillii western red bat	Fed: None State: SSC	Occurs in cismontane woodland, lower montane coniferous forest, riparian forest, and riparian woodland. Roosts primarily in trees 2-40 feet above ground, preferring habitat edges and mosaics with trees that are protected from above and open below with opens areas for foraging.	Low. This species has been detected within the SVRA within five miles of the BSA (personal communication, State Parks 2017), but no suitable foraging or roosting habitat for this species occurs within the BSA.

APPEN JIX D

SPECIES	STATUS	HABITAT	POTENTIAL FOR OCCURRENCE
Oliarces clara	Fed: None	Occurs in the lower Colorado River drainage. It is found under rocks or in flight over streams. I prose tridentate is the	Low. Larrea tridentata occurs within the BSA, but one confirmed observation in
cheeseweed owlfly	State: None	suspected larval host.	the vicinity is more than five miles from the site.
Poloconus occidentalis californicus	Fad: Delisted	This colonial rooster and nester generally occurs on coastal	
	State: FD	islands outside of the survey line, but also nests on small	Absent . No suitable habitat is present
California brown pelican	Bi M·S	islands of small to moderate size which afford immunity from	within the BSA.
	0	attack by ground-dwelling predators.	
Perognathus longimembris bangsi	Fed: None	Occurs in desert riparian, desert washes and Sonoran desert	Management Contact to the state of
	State: SSC	scrub. Most common in desert scrub dominated by creosote.	Moderate. Sultable flabilat for this
Palm Springs pocket mouse	BLM: S	Rarely found on rock sites.	species occurs within the BSA.
Phrynosoma mcallii	Fed: None	Occurs in desert dunes, Mojavean desert scrub, and Sonoran	Link Cuitable hehitet for this concess
	State: SSC	desert scrub in central Riverside, eastern San Diego, and	rigir. Sultable liabilat for this species
flat-tailed horned lizard	BLM: S	Imperial Counties.	occurs within the boa.
Toxostoma lecontei	Fod: None	Occurs primarily in open desert wash, desert scrub, alkali	Low Come suitable habitet for this
	State: SSC	desert scrub, and desert succulent scrub habitats. Commonly	coories occurs within the BCA
Le Conte's thrasher	Oldie. OOO	nests in dense, spiny shrubs or densely-branched cacti.	species occurs within the DOA.
Yantucia gracilie	Fod: None	Known only from the Truckhaven Rocks in the eastern part of	Absent The Truckbayer Decks is a
Sillon B picquipy	Ctate: None	Anza-Borrego State Park. Found in fissures or under slabs of	highly localized area more than five miles
sandstone night lizard	BI M. S	exfoliating sandstone and rodent burrows in compacted	from the RSA
Salidatorio ingliciizard	D	sandstone and mudstone.	ווסוון מופ ססט.

Absent: Species or sign not observed on the site, outside of the known range, and conditions unsuitable for occurrence.

Low: Species or sign not observed on the site, but conditions marginal for occurrence.

Moderate: Species or sign not observed on the site, but conditions suitable for occurrence and/or an historical record exists in the vicinity.

High: Species or sign not observed on the site, but reasonably certain to occur on the site based on conditions, species ranges, and recent records.

Present: Species or sign of their presence recently observed on the

END = listed as Endangered under the federal Endangered Federal status

IHR = listed as Threatened under the federal Endangered

Species Act

State status END = listed as Endangered under the California Endangered Species Act

THR = listed as Threatened under the California Endangered Species Act

SSC = designated as a Species of Concern

FP = designated as a Fully Protected species WL = watch list species

BLM status

S = designated as a Sensitive species

CNDDB = this species is only listed by the CNDDB and may be locally sensitive or its occurrences may be monitored to see if further protection is needed

APPENDIX C – PROPOSED WELL SITES BOTANICAL SURVEY REPORT

ORMAT NEVADA, INC.

Truckhaven Geothermal Project
Proposed Well Sites
Botanical Survey Report

PROJECT NUMBER: 146567

PROJECT CONTACT:
Ken McDonald
EMAIL:
ken.mcDonald@powereng.com
PHONE:
(714) 507-2700

Truckhaven Geothermal Project
Proposed Well Sites
Botanical Survey Report

PREPARED FOR: ORMAT NEVADA, INC.

PREPARED BY: KEN MCDONALD
PHONE: (714) 507-2700
EMAIL: KEN.MCDONALD@POWERENG.COM

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1 1.2	PROJECT DESCRIPTIONPROJECT LOCATION	
2.0	SURVEY AREA	7
2.1	VEGETATION COMMUNITIES	7
3.0	SURVEY METHODOLOGY	11
3.1 3.2	Pre-field PreparationsField Survey Methods	11 19
4.0	RESULTS	21
5.0	RECOMMENDATIONS	23
6.0	CONCLUSIONS	25
7.0	REFERENCES	27
FIGURES	3	
FIGURE 1	REGIONAL LOCATION	3
FIGURE 2 FIGURE 3	BIOLOGICAL SURVEY AREABIOLOGICAL RESOURCES	
I IGURE 5	BIOLOGICAL RESOURCES	
TABLES		
TABLE 1	SPECIAL-STATUS PLANT SPECIES WITH POTENTIAL TO OCCUR AND FINAL DETERMINATION	13

APPENDICES

APPENDIX A VASCULAR PLANT SPECIES OBSERVED

THIS PAGE INTENTIONALLY LEFT BLANK

ACRONYMS AND ABBREVIATIONS

BLM Bureau of Land Management

BSA biological survey area

CDFW California Department of Fish and Wildlife

CNPS California Native Plant Society

CNDDB California Natural Diversity Database

GPS global positioning system Ormat Ormat Nevada, Inc.

Project Truckhaven Geothermal Project

POWER Engineers, Inc. SRPR State Rare Plant Rank

USFWS U.S. Fish and Wildlife Service

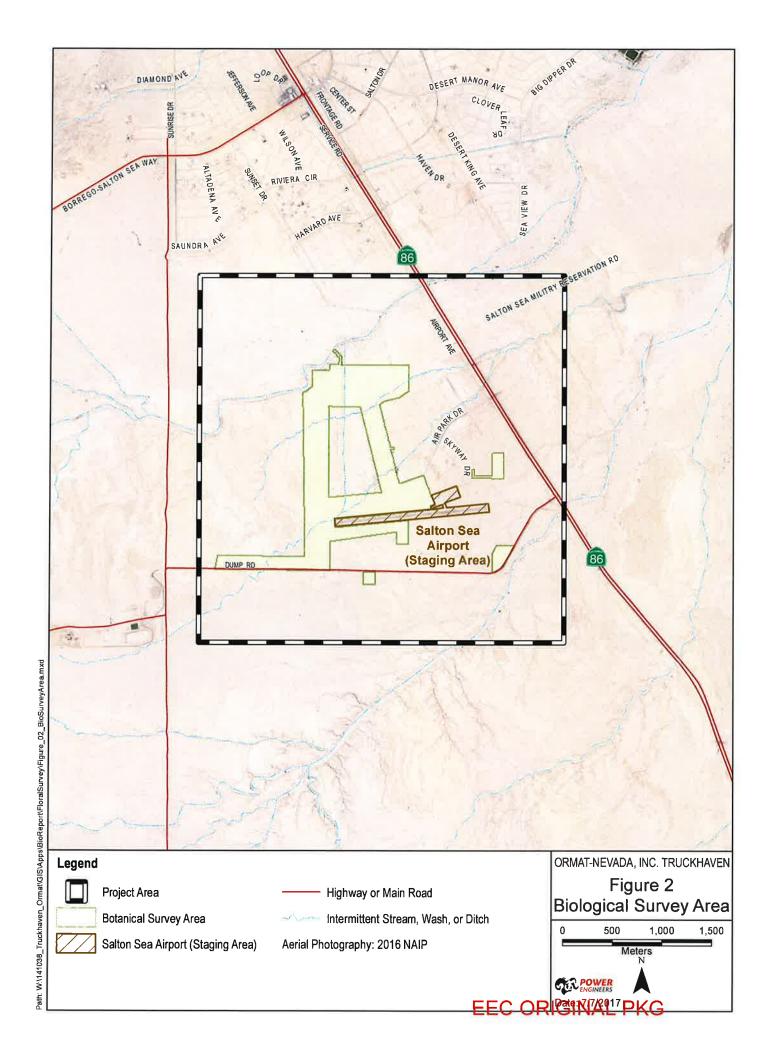
THIS PAGE INTENTIONALLY LEFT BLANK

1.0 INTRODUCTION

This document presents the findings of the focused special-status plant survey for the Ormat Nevada, Inc. (Ormat) Truckhaven Geothermal Project (Project). This survey focused exclusively on portions of the Project that will be physically disturbed to allow for construction of wells, well pads, and access roads.

1.1 Project Description

Ormat is proposing to construct six wells located on pads in the vicinity of the Salton Sea Airport in Imperial County, California (Figure 1), situated at the north end of the U.S. Department of the Interior, Bureau of Land Management (BLM) Truckhaven Geothermal Lease Area. Lands within the Project footprint are federal, state, and private. Future construction of a geothermal power plant that can make use of these wells will occur under separate environmental compliance and permitting documentation.


This report focuses on the proposed well pads, access roads, and sufficient buffer areas to allow for the adjusting of pads and roads should the need arise. The biological survey area (BSA) is depicted in Figure 2.

1.2 Project Location

The proposed Project site is located within and south of Salton City, west of the Salton Sea in the northern portion of Imperial Valley, California. The BSA consists of several discontinuous polygons adjacent to and surrounding the Salton Sea Airport (Figure 2). The elevation of the site ranges from approximately 50 feet below mean sea level to 130 feet below mean sea level. Land use in the BSA consists of low-density residential housing and associated infrastructure and open, natural areas sparsely vegetated with native and non-native plant species.

THIS PAGE INTENTIONALLY LEFT BLANK

2.0 SURVEY AREA

The BSA consists of four polygons of various sizes encompassing the proposed well pads and associated access roads, with sufficient buffer to refine the final disturbance footprint (Figure 2). The BSA includes federal, state, and private lands on the following U.S. Geological Survey 7.5' quadrangles: Truckhaven, Kane Spring NW, Shell Reef, and Seventeen Palms. The federal lands are administered by BLM and state lands by the State Lands Commission.

2.1 Vegetation Communities

Descriptions of vegetation types that occur within the BSA are provided below. Vegetation was classified using Holland's *Preliminary Descriptions of the Terrestrial Natural Communities of California* as a guide and primary reference (Holland 1986). Communities were classified to the closest described vegetation type. Composition of any community will vary due to various site specific factors, such as elevation, slope, aspect, and disturbance regime, and can appear dissimilar while remaining within the greater classified vegetation community. Vegetation communities within and adjacent to the BSA are presented in Figure 3.

Sonoran Creosote Bush Scrub

Sonoran creosote bush scrub is a widely spaced open community generally dominated by creosote (*Larrea tridentata*) and burro bush (*Ambrosia dumosa*), usually with abundant bare ground between larger shrubs. Growth in this community occurs from winter to early spring, and later with sufficient rainfall, with the shrubs often dormant for long periods. During years of sufficient rainfall, the bare ground is filled with ephemeral herbs. This community typically occurs on well-drained secondary soils of slopes, fans, and valley, rather than upland sites, with winter temperatures seldom below freezing (Holland 1986).

This community was noted to be very sparse in areas constituting a separate mapping layer of "sparse" Sonoran creosote bush scrub. In these areas, the community appeared to be essentially bare of vegetation, but remnant components of the community were present in sufficient number to classify the vegetation type.

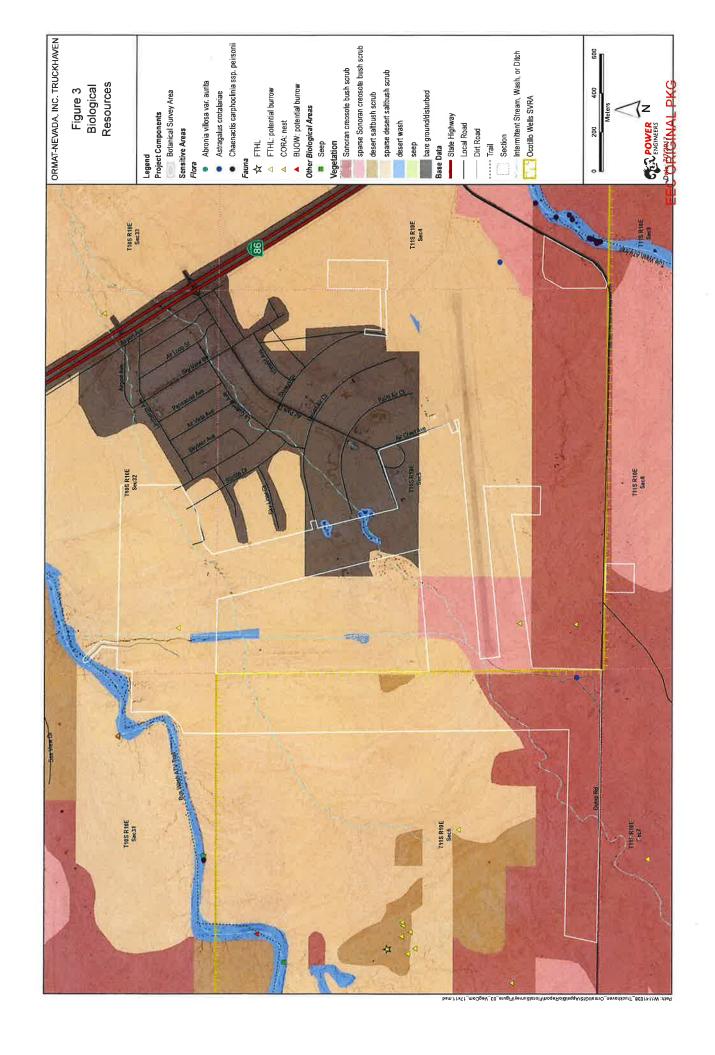
Desert Saltbush Scrub

Desert saltbush scrub is a low-growing open community dominated by chenopod bushes (*Atriplex* spp.), usually with a low-growing herbaceous cover. Total cover in this community is often low, with abundant bare ground between widely spaced shrubs. Stands of shrubs are typically dominated by a single Atriplex species. Common species in this community include four-wing saltbush (*Atriplex canescens*), desert holly (*Atriplex hymenolytra*), shadscale (*Atriplex confertifolia*), allscale (*Atriplex polycarpa*), and hop sage (*Grayia spinosa*). This community typically occurs on fine-textured, poorly drained soils with high alkalinity and/or salinity (Holland 1986).

This community was noted to be very sparse in areas constituting a separate mapping layer of "sparse" saltbush scrub. In these areas, the community appeared to be essentially bare of vegetation, but remnant components of the community were present in sufficient number to classify the vegetation type.

Desert Wash

Desert wash is a sparsely vegetated to bare community occurring throughout the BSA. These sandy to hardened silty-mud substrate washes most closely resemble the Holland (1986) vegetation descriptions of tamarisk scrub and arrow weed scrub communities. Where vegetation occurs in the washes, tamarisk (*Tamarix* sp.) was the largest shrub, while arrow weed (*Pluchea sericea*) was the


most common. Occasionally, these washes also harbored Sonoran creosote bush scrub and desert saltbush scrub vegetation. Seeps occurred intermittently within desert washes, and were comprised mainly of salt grass (*Distichlis spicata*).

Bare Ground/Disturbed

Bare ground and disturbed areas within the BSA occurred mainly adjacent to developed areas and infrastructure, generally in the form of bare, compacted soils from human activities. Vegetation in these areas tended to be sparse and weedy. Occasional individuals of the special-status Salton milk-vetch (*Astragalus crotalariae*), which thrives on disturbance, occur in disturbed areas and the edges of developed areas.

Developed

Developed areas include roads, built structures, and associated infrastructure. Areas generally considered developed include dirt and paved roads, transmission lines, underground gas pipelines, railroads, and any other permanent structures. Examples of this habitat type within the BSA are found throughout the Project area in the form of roads, with the highest concentrations found near the north eastern portion of the site.

POWE RENGINEERS, INC. Truckhaven Geothermal Project - Proposed Well Sires B. (anical Survey Report

3.0 SURVEY METHODOLOGY

Focused special-status plant species surveys were conducted in late-spring and early summer, 2017. The surveys were conducted during the appropriate blooming periods for special-status plant species. The survey methodology followed the U.S. Fish and Wildlife Service's (USFWS) *Guidelines for Conducting and Reporting Botanical Inventories for Federally Listed, Proposed and Candidate Plants* (USFWS 1996), the recommended botanical survey guidelines of the California Department of Fish and Wildlife (CDFW; CDFW 2000), the protocols for surveying and evaluating impacts (CDFW 2009), the BLM (BLM 2005), and the California Native Plant Society (CNPS; CNPS 2001).

3.1 Pre-field Preparations

Before conducting the botanical surveys, pre-field research was conducted to determine which special-status plants had potential to occur within the Project area. This list of potentially occurring special-status plant species was compiled using lists and databases from the USFWS (USFWS 2017), CDFW (CDFW 2017a, b, c), the BLM (BLM 2017), and the CNPS (CNPS 2017), and the Habitat Assessment conducted for the Project area (Power 2017). For each potentially occurring species, information was compiled on distribution, habitat preferences, blooming times, elevation, and conservation status from the sources listed above.

A plant was considered to be of special-status if it met one or more of the following criteria:

- Listed, proposed for listing, or candidates for listing as threatened or endangered under the Federal Endangered Species Act (50 Code of Federal Regulations Part 17.12 [listed plants]);
- Listed or proposed for listing by the State of California as threatened or endangered under the California Endangered Species Act (CDFW 2017);
- Identified by the CDFW as species of concern or fully protected species, including fish and wildlife that do not have State or federal threatened or endangered status, but may still be threatened with extinction (CDFW 2017);
- Included in the CNPS Rare Plant Inventory (CNPS 2017);
- Otherwise defined as rare, threatened, or endangered under the California Environmental Quality Act;
- Identified by State Parks Ocotillo Wells Field Office as a sensitive species; or
- Identified by the BLM or the BLM El Centro Field Office as a sensitive species.

Plants meeting one or more of these criteria were considered to have potential to occur within the Project area if suitable habitat occurs within or near the Project area and if their range includes the Project area or its vicinity.

The preliminary list was revised after reviewing information on habitat preferences and range for each species. Species were eliminated from the preliminary list if suitable habitat was absent, or if the species range and elevation requirements did not extend into the Project area or its vicinity.

Species determined to be absent were perennially visible sub-shrubs to trees that are easily observed and identified year-round and were not observed during the botanical surveys, or species with habitat requirements that do not occur in the Project area, including species dependent on mesic conditions or alkaline seeps, granite outcroppings or cliffs, specific elevation ranges, and vernal pool species.

Of the 38 potentially occurring special-status plant species for the desert portion of the survey, seven species were determined to have high potential to occur in the BSA based on known occurrences in the Project vicinity and suitable habitat present on-site, three species had moderate potential to occur, seven had a low potential to occur, and the remaining seven species were determined to be absent from

the Project area based on lack of suitable habitat. Special-status species with potential to occur are summarized in Table 1.

SPECIAL-STATUS PLANT SPECIES WITH POTENTIAL TO OCCUR AND FINAL DETERMINATION TABLE 1

SPECIES	STATUS	НАВІТАТ	BLOOMING	POTENTIAL FOR OCCURRENCE	PRESENCE/ABSENCE
Abronia villosa var. aurita chaparral sand-verbena	Fed: None State: None CNPS: 1B.1 BLM: S	Annual herb occurring in chaparral, Coastal scrub, and Desert dunes, on sandy soils. From 245 to 5,250 feet in elevation.	March – September	High. Occurs in the nearby vicinity.	Not observed during the focused surveys. Reference population surveys were negative.
Astragalus crotalariae Salton milk-vetch	Fed: None State: None CNPS: 4.3	Perennial herb occurring in desert wash and Sonoran desert scrub, on sandy or gravelly soils. From 195 to 820 feet in elevation.	January – April	High. Occurs in the nearby vicinity.	Observed during the focused surveys.
Astragalus insularis var, harwoodii Harwood's milk-vetch	Fed: None State: None CNPS: 2B.2	Annual herb occurring on desert dunes, desert wash, and Mojavean desert scrub, on sandy or gravelly soils. From 0 to 2,330 feet in elevation.	January – May	Moderate. Suitable habitat occurs within the BSA.	Not observed during the focused surveys. Reference population surveys were positive.
Astragalus magdalenae var. peirsonii Peirson's milk-vetch	Fed: THR State: END CNPS: 1B.2	Perennial herb occurring on desert dunes. From 195 to 740 feet in elevation.	December – April	Absent. No suitable habitat occurs within the BSA.	Not observed during the focused surveys. Reference population was not readily accessible.
Bursera microphylla littleleaf elephant tree	Fed: None State: None CNPS: 2B.3	Perennial deciduous tree occurring in desert wash, Sonoran desert scrub, on rocky soils. From 655 to 2,300 feet in elevation.	June – July	Absent. The BSA is below the known elevation range for the species.	Not observed during the focused surveys. Reference population surveys were positive.
Castela emoryi crucifixion thom	Fed: None State: None CNPS: 2B.2	Perennial deciduous shrub occurring on alkali playa, desert wash, Mojavean desert scrub and Sonoran desert scrub, on gravelly soils. From 300 to 2,380 feet in elevation.	June – July	Low. Suitable habitat occurs on site, but the BSA is below the known elevation range for the species	Not observed during the focused surveys. No reference populations occur within 10 miles of the BSA.
Chaenactis carphoclinia var. peirsonii Peirson's pincushion	Fed: None State: None CNPS: 1B.3	Annual herb occurring in Sonoran desert scrub, on sandy soils. From 10 to 1,640 feet in elevation.	March – April	High. Occurs in the nearby vicinity.	Not observed during the focused surveys. Reference population surveys were positive.
Chaenactis glabriuscula var. orcuttiana Orcutt's pincushion	Fed: None State: None CNPS: 1B.1 BLM: S	Annual herb occurring in coastal bluff scrub and coastal dunes. From 0 to 330 feet in elevation.	January – August	Absent. No suitable habitat occurs within the BSA.	Not observed during the focused surveys. No reference populations occur within 10 miles of the BSA.
Chorizanthe polygonoides var. longispina long-spined spinetlower	Fed: None State: None CNPS: 1B.2 BLM: S	Annual herb occurring in chaparral, coastal scrub, meadows and seeps, valley and foothill grassland, ultramafic soils, and vernal pools in clay soils. From 100 to 5,020 feet in elevation.	April – June	Absent. No suitable habitat occurs within the BSA.	Not observed during the focused surveys. No reference populations occur within 10 miles of the BSA.

SPECIES	STATUS	НАВІТАТ	BLOOMING	POTENTIAL FOR OCCURRENCE	PRESENCE/ABSE VCE
Croton wigginsii Wiggin's croton	Fed: None State: Rare CNPS: 2B.2 BLM:	Perennial shrub occurring on desert dunes and Sonoran desert scrub, on sandy soils. From 165 to 330 feet in elevation.	March – May	Moderate. Suitable habitat occurs within the BSA.	Not observed during the focused surveys. Reference population was not read ly accessible.
Cylindropuntia fosbergii Pink teddy-bear cholla	Fed: None State: None CNPS: 1B.3 BLM: S	Perennial stem succulent occurring in Sonoran desert scrub. From 280 to 2,790 feet in elevation.	March – May	Low. Suitable habitat occurs on site, but the BSA is below the known elevation range for the species.	Not observed during the focused surveys. No reference populations owcur within 10 miles of the BSA.
Cylindropuntia munzii Munz's cholla	Fed: None State: None CNPS: 1B.3 BLM: S	Perennial stem succulent occurring Sonoran desert scrub, on sandy or gravelly soils. From 490 to 1,970 feet in elevation.	May	Low. Suitable habitat occurs on site, but the BSA is below the known elevation range for the species.	Not observed during the focused surveys. No reference populations occur within 10 miles of the BSA.
Dieteria asteroids var. lagunensis Mount Laguna aster	Fed: None State: Rare CNPS: 2B.1 BLM: S	Perennial herb occurring in cismontane woodland and lower montane coniferous forest. From 2,590 to 7,875 feet in elevation.	July – August	Absent. The BSA is below the known elevation range for the species.	Not observed during the focused surveys. No reference populations occur within 10 miles of the BSA.
Euphorbia abramsiana Abram's spurge	Fed: None State: None CNPS: 2B.2	Annual herb occurring in Mojavean desert scrub and Sonoran desert scrub, on sandy soils. From - 15 to 4,300 feet in elevation.	August – November	Moderate. Suitable habitat occurs within the BSA.	Not observed during the focused surveys. Reference population surveys were negative.
Euphorbia platysperma Flat-seeded spurge	Fed: None State: None CNPS: 1B.2 BLM: S	Annual herb occurring in desert dunes and Sonoran desert scrub, on sandy soils. From 215 to 330 feet in elevation.	February – September	Low. Suitable habitat occurs on site, but the BSA is below the known elevation range for the species, and there are no known occurrences within 10 miles.	Not observed during the focused surveys. No reference populations occur within 10 miles of the BS:A.
Fremontodendron mexicanum Mexican flannelbush	Fed: END State: Rare CNPS: 1B.1	Perennial evergreen shrub occurring in chaparral, cismontane woodlands, and closed-cone coniferous forest, on gabbroic, metavolcanic, or serpentinite soils. From 30 to 2,350 feet in elevation.	March – June	Absent. No suitable habitat occurs within the BSA.	Not observed during the focused surveys. No reference populations occur within 10 miles of the BS.A.
Grindelia hallii San Diego sunflower	Fed: None State: None CNPS: 1B.2 BLM: S	Perennial herb occurring in chaparral, lower montane coniferous forest, meadows and seeps, and valley and foothill grassland. From 605 to 5,725 feet in elevation.	May – October	Absent. No suitable habitat occurs within the BSA, and is below the known elevation range for the species.	Not observed during the focused surveys. No reference populations occur within 10 miles of the B\$.A.

SPECIES	STATUS	НАВІТАТ	BLOOMING	POTENTIAL FOR OCCURRENCE	PRESENCE/ABSENCE
Helianthus niveus ssp. tephrodes	Fed: None State: END CNPS: 18.2	Perennial herb occurring on desert dunes. From 165 to 330 feet in elevation	September –	Absent. No suitable habitat	Not observed during the focused surveys. No
Algodones Dunes sunflower	BLM: S		(pu	Scotla William III a DOD.	within 10 miles of the BSA.
Hulsea californica	Fed: None State: None	Perennial herb occurring in chaparral, lower montane coniferous forest, and upper montane		Absent. No suitable habitat occurs within the BSA, and	Not observed during the focused surveys. No
San Diego sunflower	CNPS: 1B.3 BLM: S	coniferous forest in openings and burned areas. From 3,000 to 9,560 feet in elevation.	aline – ndk	elevation range for the species.	reference populations occur within 10 miles of the BSA.
Johnstonella costata (=Cryptantha costata)	Fed: None State: None	Annual herb occurring in desert dunes, Mojavean desert scrub, and Sonoran desert scrub, on sandy	February – May	High, Occurs in the nearby	Not observed during the focused surveys. Reference
ribbed cryptantha	CNPS: 4.3 BLM: S	soils. From -195 to 1,640 feet in elevation.		vicinity.	population surveys were positive.
Lepidium flavum var. felipense	Fed: None	Annual herb occurring in pinon and juniper		Absent. The BSA is below	Not observed during the
Borrego Valley pepper-	CNPS: 18.2	woodlands and Sonoran desert scrub, on sandy soils. From 1,490 to 2,755 feet in elevation.	March – May	the known elevation range for the species.	rocused surveys. No reference populations occur
grass	DLIMI. S				Willing to miles of the boa.
Lupinus excubitus var.	- FC	Constant of Scientific August Constant of Scientific Constant of Sci		About The DOA is helen.	Not observed during the
medius	State: None	refermial sirrub occurring in pinyon and jumper woodlands and Sonoran desert scrub. From 1,395	March – May	the known elevation range	focused surveys. No
Mountain Springs bush lupine	CNPS: 1B.3	to 4,495 feet in elevation.		for the species.	reference populations occur within 10 miles of the BSA.
Lycium parishii	Fed: None	Perennial shrub occurring in coastal scrub and		Absent. The BSA is below	Not observed during the focused surveys. No
Parish's desert-thorn	State: None CNPS: 2B.3	Sonoran desert scrub. From 440 to 3,280 feet in elevation.	March – April	the known elevation range for the species.	reference populations occur within 10 miles of the BSA.
Malperia tenuis	Fed: None	Annual herb occurring in Sonoran desert scrub,		Low. Suitable habitat occurs within the BSA but there	Not observed during the
brown turbans	State: None CNPS: 2B.3	on sandy or gravelly soils. From 50 to 1,100 feet in elevation.	March – April	are no known occurrences within 10 miles	reference populations occur within 10 miles of the BSA
Monardella nana ssp.	Fed: None	Derennial rhizomatone herb occurring in chanarral		Absent. No suitable habitat	Not observed during the
leptosiphon	State: None CNPS: 1B.2	and lower montane conferous forest. From 3,940	June – July	is below the known	focused surveys. No reference populations occur
San Felipe monardella	BLM: S	to 5,085 teet in elevation.		elevation range for the	within 10 miles of the BSA.

PA-JE 16

SPECIES	STATUS	НАВІТАТ	BLOOMING	POTENTIAL FOR OCCURRENCE	PRESENCE/ABSENCE
Symphyotrichum defoliatum	Fed: None State: None CNPS: 18.2	Perennial rhizomatous herb occurring in cismontane woodland, coastal scrub, lower montane coniferous forest, marsh and swamps, meadows and scens, and valley and footbill	July – November	Absent. No suitable habitat occurs within the BSA.	Not observed during the focused surveys. No reference populations occur
San Bernardino aster	BLM: S	grassland. From 5 to 6,690 feet in elevation.			within 10 miles of the BSA.
Thermopsis californica	Fed: None State: None	Perennial rhizomatous herb occurring in cismontane woodland, lower montane coniferous		Absent. No suitable habitat occurs within the BSA, and	Not observed during the
velvety false lupine	CNPS: 1B.2 BLM: S	forest, meadows and seeps, valley and foothill grassland, and wetlands. From 3,280 to 6,150 feet in elevation	March – June	is below the known elevation range for the species.	reference populations occur within 10 miles of the BSA.
Thysanocarpus rigidus	Fed: None	Annual herb occurring in pinon and juniper		Absent. No suitable habitat occurs within the BSA, and	Not observed during the
ridge fringepod	CNPS: 18.2 BLM: S	woodlands, often on dry rocky slopes. From 1,970 to 7,220 feet in elevation.	February – May	is below the known elevation range for the	reference populations occur within 10 miles of the BSA.
Xvlorhiza cognata	Fed: None			Low. Suitable habitat occurs within the BSA but all	Not observed during the
Mecca aster	State: None CNPS: 18.2 BLM: S	Perennial herb occurring in Sonoran desert scrub. From 65 to 1,310 feet in elevation.	January – June	known populations occur on northeastern portion of the Salton Sea.	focused surveys. Reference population surveys were positive.
Xylorhiza orcuttii	Fed: None State: None	Perennial herb occurring in desert wash and		High. Occurs in the nearby	Not observed during the focused surveys. Reference
Orcutt's woody'aster	CNPS: 1B.2 BI M: S	Sondran desert scrub. From U to 1,200 feet in elevation.	March - April	vicinity.	population surveys were

兴

PRESENCE/ABSE NC
POTENTIAL FOR OCCURRENCE
BLOOMING
НАВІТАТ
STATUS
SPECIES

Absent: Species or sign not observed on the site, outside of the known range, and conditions unsuitable for occurrence.

Low: Species or sign not observed on the site, but conditions marginal for occurrence.

Moderate: Species or sign not observed on the site, but conditions suitable for occurrence and/or an historical record exists in the vicinity

High: Species or sign not observed on the site, but reasonably certain to occur on the site based on conditions, species ranges, and recent records. Present: Species or sign of their presence recently observed on the site.

Federal status

END = listed as Encangered under the federal Endangered Species Act

Delisted = previously listed under the federal Endangered Species Act but now removed

State status

END = listed as Encangered under the California Endangered Species Act

BLM status

S = designated as a Sensitive species

State Parks status

S = designated as a Sensitive species

SRPR State Rare Plant Rank

- Plants presumed extirpated in California and either rare or extinct elsewhere.
- 1B: Considered rare, threatened, or endangered in California and elsewhere.
- 2B: Plants Rare, Threatened, or Endangered in California, But More Common Elsewhere Plants presumed extirpated in California, but more common elsewhere
 - Plants About Wh ch More Information is Needed A Review List
 - 4: Plants of Limited Distribution A Watch List

Threat Ranks/ Decimal notations: A California Native Plant Society extension added to the SRPR

- . 1 Seriously threatened in California (over 80% of occurrences threatened / high degree and immediacy of threat). 2 Moderately threatened in California (20-80% occurrences threatened / moderate degree and immediacy of threat). 3 Not very threatened in California (less than 20% of occurrences threatened / low degree and immediacy of threat or no current threats known).

EEC ORIGINAL PKG

3.2 Field Survey Methods

The 2017 botanical surveys were conducted by POWER botanists Ken McDonald and Melissa Lippincott. Floral surveys were conducted on May 9 through May 12 and June 14 through June 16. Surveys consisted of walking pedestrian transects within the BSA polygons, with special consideration towards impact areas such as proposed well pads and access road footprints.

Surveys were conducted within all areas containing potential habitat for special-status plants. The intuitive approach uses the botanist's knowledge of the preferred habitat of special-status plants to focus the survey effort on sites most likely to support them. The botanical surveys were floristic in nature, meaning that all taxa were identified to the level necessary to determine if they were of special-status. Botanists identified all plant species detected during field surveys using personal knowledge of the plants and keys in *The Jepson Manual* (Hickman 1993) and Jepson Online Interchange (2017). Scientific nomenclature in this report follows Hickman (1993) and common names are derived from Hickman (1993) and CalFlora (2017).

Botanists recorded observations with Garmin hand-held Global Positioning System (GPS) units. These units were pre-loaded with maps of the BSA boundaries. GPS units were used for navigation, and to collect locational data (points and polygons) for special-status plant species observations. Incidental detections of animal burrows suitable for flat-tailed horned lizard (*Phrynosoma mcallii*) or burrowing owl (*Athene cunicularia*) were also noted, and presented in Figure 3. Current aerial figures of the project site were also used in navigation and noting observations. Additionally, reference population surveys of several special-status target species were conducted to insure that they were in bloom or could otherwise be identified at the time of the botanical surveys.

A list of plant species observed during the surveys within the BSA is presented in Appendix A.

4.0 RESULTS

More than 65 plant species were detected during the course of the surveys, representing 27 families. A list of plant species observed in the BSA during the surveys is presented in Appendix A.

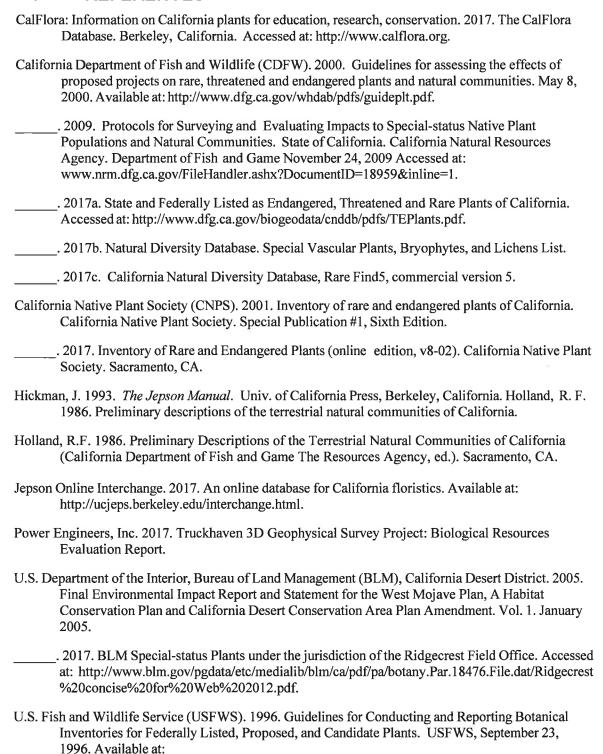
One special-status plant species was detected within the BSA during the 2017 botanical surveys, and is discussed below. No other special-status plant species were observed during the surveys.

Salton milk-vetch (Astragalus crotalariae)

Salton milk-vetch (*Astragalus crotalariae*) is included on List 4.3 of the CNPS online Inventory (CNPS 2017). It is a red-purple to white flowered perennial herb in the Pea Family (Fabaceae). Salton milk-vetch occurs from the south easternmost portion of California and into Arizona; documented in Imperial, Riverside, and San Diego counties. This species occurs in desert wash and Sonoran desert scrub, on sandy or gravelly soils. It ranges from 195 to 820 feet in elevation, and blooms from January to April. Suitable habitat for this species occurs within the BSA. Salton milk-vetch was observed within the BSA during the survey. The locations of Salton milk-vetch detected within the BSA are shown in Figure 3.

5.0 RECOMMENDATIONS

The following recommendations are provided for avoidance and minimization of effects to botanical resources:


- 1. A qualified biologist will conduct a general preconstruction survey no more than 14 days prior to the start of construction to verify that no new special-status species are in the project area or its buffers.
- 2. Impacts to special-status plant species shall first be avoided where feasible, and where not feasible, impacts shall be compensated through approved methods, including reseeding.
- 3. The footprint of disturbance will be minimized to the maximum extent feasible. Access to sites will be via pre-existing access routes, to the greatest extent possible, and the work area boundaries will be delineated with staking, flagging, or other comparable markings to minimize surface disturbance associated with vehicle straying. Signs and/or fencing will be placed around the project area to restrict access to project-related vehicles.
- 4. Vehicles and equipment should be maintained and free of leaks. All hazardous material, oil, hydraulic, or other fluid leaks should be contained and cleaned immediately to reduce the risk of negatively impacting water or soil quality.
- 5. If required, the area of project-related disturbance will be revegetated (reseeded) in consultation with requirements set forth by the County. Mitigation ratios for disturbing habitat are assumed to be 1:1 for temporary disturbance and 2:1 for permanent disturbance.
- 6. Prior to construction, a plan should be created that will address post-construction clean-up, soil stabilization and erosion control, and any required revegetation for land disturbed by construction related activities, in coordiation with appropriate land owners and regulating agencies. The plan should include a monitoring schedule, responsible parties, minimum standards, and contingecy plans.
- 7. Project-related equipment will be washed prior to entering the project area for the first time to reduce the chance of transporting noxious weed seeds from outside the area.
- 8. Straw or hay bales that are used during construction will be certified weed-free.

6.0 CONCLUSIONS

One special-status plant species was observed within the BSA during the 2017 botanical surveys. Salton milk-vetch would potentially be affected by Project activities. While Salton milk-vetch has no federal or State status, it is considered a plant of limited distribution, and should be avoided, if feasible. Although reference population surveys of several of the other target species were conducted, with most species being observed, no other special-status plant species were detected within the BSA during the focused floral surveys.

The conclusion determined from the survey data indicates that the majority of the BSA does not support any other special-status plant species. The locations of the detected special-status species are shown in Figure 3.

7.0 REFERENCES

http://www.fws.gov/sacramento/es/documents/listed plant survey guidelines.htm.

______. 2017. List of federal candidates for listing. Accessed at:
http://ecos.fws.gov/tess_public/pub/SpeciesReport.do?lead=8&listingType=C

APPENDIX A VASCULAR PLANT SPECIES OBSERVED

SCIENTIFIC NAME	COMMON NAME
ANGIOSPERMS (DICOTYLEDONS)	
IZOACEAE	FIG-MARIGOLD FAMILY
lesembryanthemum nodiflorum*	slender-leaved iceplant
MARANTHACEAE	AMARANTH FAMILY
idestromia oblongifolia	honeysweet
SCLEPIADACEAE	MILKWEED FAMILY
sclepias subulata	rush milkweed
STERACEAE	SUNFLOWER FAMILY
mbrosia dumosa	burro bush
ebbia juncea	sweetbush
icoria canescens	bugseed
ncelia frutescens	rayless encelia
eraea canescens	desert sunflower
ocoma acradenia	alkali goldenbush
alafoxia arida	Spanish needles
Perityle emoryi	emory rock daisy
luchea sericea	arrow weed
onchus asper*	prickly sow thistle
tephanomeria pauciflora	wire lettuce
ORAGINACEAE	BORAGE FAMILY
ryptantha angustifolia	narrowleaf cryptantha
ryptantha circumscissa	cushion cryptantha
yptantha maritima	Guadalupe forget-me-not
ectocarya heterocarpa	chuckwalla combseed
RASSICACEAE	MUSTARD FAMILY
rassica tournefortii*	Sahara mustard
epidium densifolium	desert peppergrass
epidium sp.	peppergrass
HENOPODIACEAE	GOOSEFOOT FAMILY
triplex canescens	four-wing saltbush
riplex hymenelytra	desert holly
triplex lentiformis	quail brush
riplex polycarpa	allscale
eta vulgaris*	beet
henopodium murale*	nettle-leaved goosefoot
alsola sp.*	Russian thistle
aeda nigra	bush seepweed
-EOMACEAE	SPIDERFLOWER FAMILY
eomella obtusifolia	Mojave stinkweed
UPHORBIACEAE	SPURGE FAMILY
illingia spinulosa	Mohave stillingia
ABACEAE	LEGUME FAMILY
stragalus crotalariae	Salton milkvetch
ercidium floridum	palo verde

SCIENTIFIC NAME	COMMON NAME
Prosopis glandulosa	honey mesquite
HYDROPHYLLACEAE	WATERLEAF FAMILY
Phacelia crenulata	purple phacelia
KRAMERIACEAE	RHATANY FAMILY
Krameria bicolor	white rhatany
LOASACEAE	LOASA FAMILY
Mentzelia involucrata	bracted blazing star
MALVACEAE	MALLOW FAMILY
Eremalche rotundifolia	desert five-spot
MONTIACEAE	MINER'S LETTUCE FAMILY
Cistanthe ambigua	desert pussypaws
ONAGRACEAE	EVENING PRIMROSE FAMILY
Chylismia cardiophylla	heartleaf suncup
Chylismia claviformis	brown-eyed evening primrose
Eremothera boothii	Booth's evening primrose
PAPAVERACEAE	POPPY FAMILY
Eschscholzia minutiflora	pygmy goldenpoppy
PLANTAGINACEAE	PLANTAIN FAMILY
Plantago ovata	woolly plantain
POLEMONIACEAE	PHLOX FAMILY
Aliciella latifolia	broadleaf gilia
Langloisia setosissima	langlosia
POLYGONACEAE	BUCKWHEAT FAMILY
Chorizanthe brevicomu	brittle spineflower
Chorizanthe corrugata	wrinkled spineflower
Chorizanthe rigida	rigid spineflower
Eriogonum deflexum	flat-topped buckwheat
Eriogonum inflatum	desert trumpet
Eriogonum reniforme	buckwheat
Eriogonum thomasii	Thomas eriogonum
Eriogonum trichopes	little trumpet
PORTULACACEAE	PURSLANE FAMILY
Portulaca halimoides	desert portulaca
RESDACEAE	MIGNONETTE FAMILY
Oligomeris linifolia	narrow-leaved oligomeris
SOLANACEAE	NIGHTSHADE FAMILY
Lycium brevipes	Baja desert-thorn
TAMARICACEAE	TAMARISK FAMILY
Tamarix aphylla*	athel
Tamarix ramosissima*	Mediterranean tamarisk
ZYGOPHYLLACEAE	CALTROP FAMILY
Larrea tridentata	creosote bush
ANGIOSPERMS (MONOCOTYLEDONS)	
LILIACEAE	LILY FAMILY
Hesperocallis undulata	desert lily

SCIENTIFIC NAME	COMMON NAME
POACEAE	GRASS FAMILY
Aristida adscensionis	six-week's three-awn
Phalaris minor*	Mediterranean canary grass
Pleuraphis rigida	galleta grass
Schismus arabicus*	Arabian schismus

^{*}Non-native species

Page 1 of 29

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

Truckhaven Geothermal Exploration Wells - 1 Well Calculations

Imperial County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Popu ation
Other Non-Asphalt Surfaces	160.00	1000sqft	3.67	160,000.00	C

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	3.4	Precipitation Freq (Days)	12
Climate Zone	15			Operational Year	2021
Utility Company	Imperial Irrigation District				
CO2 Intensity (Ib/MWhr)	1270.9	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	90.00

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2

Page 2 of 29

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

Project Characteristics -

Land Use - 1 Well Pad = 400 ft x 400 ft = 3.67 acres

Construction Phase - Construction Schedule Provided by Applicant

Off-road Equipment - Well Cleanup - 1 Rubber Tired Loader, 2 Tractor/Loader/Backhoe

Off-road Equipment - Well Drilling - 1 Drill Rig 24-hours, 1 Mud Tank (Pump) 24-hours, 1 diesel generator (for lights) 12 hours, 1 Forklift 8 hours, 1 air compressor 8 hours

Off-road Equipment - Well Pad - 1 Rubber Tired Dozer, 1 Grader, and 2 Tractor/Loader/Backhoe

Off-road Equipment - Well Testing - 1 Crane 8 hours, 1 pump 24 hours, 1 Tractor/Loader/Backhoe 8 hours

Trips and VMT - 6 vendor truck trips per day added to Well Pad Construction and Well Cleanup to account for Water Trucks (already accounted for in Well

On-road Fugitive Dust - 90% of construction trips on pavement

Grading -

Construction Off-road Equipment Mitigation - Water Exposed Area 2x per day selected to account for ICAPCD Regulation VIII minimum requirements

Off-road Equipment - Geo Survey - 4 Off-hwy trucks 8 hr/dy

Off-road Equipment - Well Pad - 1 Grader, 1 Dozer, 2 Tractors

Vehicle Trips - 2 trips per week

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	5.00	10.00
tblConstructionPhase	NumDays	230.00	45,00
tblConstructionPhase	NumDays	8.00	5.00
tblConstructionPhase	NumDaysWeek	5.00	7.00
tblOffRoadEquipment	OffRoadEquipmentType		Off-Highway Trucks
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	0.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	0.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	0.00	1.00

CalEEMod Version: CalEEMod.2016.3.2

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

1.00	1.00	1.00	1.00	1.00	1.00	2.00	4.00	Well Pad Construction	Well Drilling	Well Drilling	Well Drilling	Well Testing	Well Testing	Well Testing	Well Cleanup-Abandoment	Geophysical Survey	12.00	90.00	90.00	90.00	90.00	90.00	90.00	90.00	90.06	90.00
3.00	0.00	0.00	0.00	0.00	0.00	3.00	0.00										8.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
OffRoadEquipmentUnitAmount	PhaseName	PhaseName	PhaseName	PhaseName	PhaseName	PhaseName	PhaseName	PhaseName	Рһаѕе Nаше	UsageHours	HaulingPercentPave	HaulingPercentPave	HaulingPercentPave	HaulingPercentPave	HaulingPercentPave	VendorPercentPave	VendorPercentPave	VendorPercentPave	VendorPercentPave							
tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOffRoadEquipment	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust							

Page 4 of 29

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

90.00	90.00	90.00	90.00	00.06	00'06	6.00	2.00	6.00	6.00	8.00	20.00	100.00	100.00	0.02
50.00	50,00	50.00	50.00	50.00	50.00	0.00	0.00	0.00	0.00	15.00	10.00	0.00	0.00	0.00
VendorPercentPave	WorkerPercentPave	WorkerPercentPave	WorkerPercentPave	WorkerPercentPave	WorkerPercentPave	VendorTripNumber	VendorTripNumber	VendorTripNumber	VendorTripNumber	WorkerTripNumber	WorkerTripNumber	CC_TTP	РЯТР	ST_TR
tblOnRoadDust	tbiOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblOnRoadDust	tblTripsAndVMT	tblTripsAndVMT	tblTripsAndVMT	tblTripsAndVMT	tblTripsAndVMT	tblTripsAndVMT	tblVehicleTrips	tblVehicleTrips	tblVehicleTrips

2.0 Emissions Summary

Page 5 of 29

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

2.1 Overall Construction

Unmitigated Construction

CO2B		200.2013	200.2013
N2O		0.0000 200.2013	0.0000
CH4	lyr	0.0395	0.0395
Total CO2	MT/yr	199.2134	199.2134
NBio- CO2		0.0000 199.2134 199.2134 0.0395	0.0000 199.2134 199.2134
Bio- CO2		00000	0.0000
M2.5 Total		0.3385	0.3385
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0453	0.0453
Fugitive PM2.5		0.2932	0.2932
PM10 Total		2.7566	2.7566
Exhaust PM10	:/yr	0.0471	0.0471
Fugitive PM10	tons/yr	2.7096	2.7096
802		2.2700e- 003	2.2700e- 003
00		0.8849	0.8849
NOK		1.0852 0.8849 2.2700e-	1.0852
ROG		0.1167	0.1167
	Year	2020	Maximum

Mitigated Construction

tons/yr 1.0852 0.8849 2.2700e- 2.6825 0.0471 2.7296 0.2793 0.0453	MT/v	070
1.0852 0.8849 2.2700e- 2.6825 0.0471 2.7296 0.2793 0.0453		
	0.3246 0.0000 199,2132 199,2132 0.0395 0.	0.0000 200.2011
0.1167 1.0852 0.8849 2.2700e- 2.6825 0.0471 2.7296 0.2793 0.0453 0	0.3246 0.0000 199.2132 199.2132 0.0395 0.	0.0000 200.2011

CO2e	00:00
N20	0.00
CH4	0.00
Total CO2	0.00
Bio- CO2 NBio-CO2 Total CO2	0.00
Bio- CO2	0.00
PM2.5 Total	4.10
Exhaust PM2.6	0.00
Fugitive PM2.5	4.74
PM10 Total	0.98
Exhaust PM10	0.00
Fugitive PM10	1.00
802	0.00
00	00:00
×ON	0.00
ROG	0.00
	Percent Reduction

CalEEMod Version: CalEEMod.2016.3.2

Page 6 of 29

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

ď		l
Maximum Mitigated ROG + NOX (tons/quarter)	0.9934	0,9934
Maximum Unmitigated ROG + NOX (tons/quarter)	0.9934	0,9934
End Date	5-31-2020	Highest
Start Date	3-1-2020	
Quarter	1	

2.2 Overall Operational Unmitigated Operational

ROG NOX CO		0.0138 1.0000e- 1.4800e- 005 003	0.000 0.0000 0.0000	2.3000e- 1.7400e- 2.3000e- 004 003 003			0.0141 1.7500e- 3.7800e- 003 003
S02	33	00000	00000	1.0000e- 005			1.0000e- 005
Fugitive PM10	tons/yr			0.1550			0.1550
Exhaust PM10	s/yr	1.0000e- 005	0.000.0	0.000.0	0.000.0	0.000.0	1.0000e- 005
PM10 Total		1,0000e- 005	0000 0	0.1550	00000	0.000.0	0.1550
Fugitive PM2.5				0.0155			0.0155
Exhaust PM2.5		1.0000e- 005	0.000	0.000.0	0.000.0	0.000.0	1.0000e- 005
PMZ.5 Total Bio- CO2 NBio- CO2 Total CO2		1.0000e- 005	0.000.0	0.0155	0.000.0	0.000.0	0.0155
Bio- CO2		0.000	00000	0.000.0	0.000.0	0.000.0	0.0000
NBio- CO2		2.8600e- 003	00000	0.5560	0.0000	0.000	0.5589
Total CO2	MT/yr	2.8600e- 1 003	0.0000	0.5560	0.000.0	0.000.0	0.5589
CH4	, Àr	1.0000e- 005	0.000	5.0000e- 005	0.000	0.000.0	6.0000e- 005
N20		0.0000	0.0000	0.0000	0.0000	0.000	0.0000
C02e	7	3.0500e- 003	0.0000	0.5572	0.0000	0.000	0.5603

Page 7 of 29

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

2.2 Overall Operational

Mitigated Operational

D		ė	o O	2	8	9	50
CO2e		3.0500e- 003	0.0000	0.5572	0.0000	0.000	0.5603
NZO		00000	0.000	0.000	0.0000	0.0000	0.0000
CH4	/yr	1.0000e- 005	0.000	5.0000e- 005	00000	0.0000	6.0000e- 005
Total CO2	MT/yr	2.8600e- 003	0.000	0.5560	0.000	0.000.0	0.5589
Bio- CO2 NBio- CO2 Total CO2		2.8600e- 003	0.000.0	0.5560	0.000	0.0000	0.5589
Bio- CO2		00000	00000	00000	00000	00000	0.0000
PM2.5 Total		1.0000e- 005	00000	0.0155	0.000	0.000	0.0155
Exhaust PM2.5		1.0000e- 005	0,000	0.000.0	0.000.0	0.000.0	1.0000e- 005
Fugitive PM2.5				0.0155			0.0155
PM10 Total		1,0000e- 005	0.000.0	0.1550	0.000	0.000	0.1550
Exhaust PM10	s/yr	1,0000e- 005	0.000	0.000	0.000	0.000	1.0000e- 005
Fugitive PM10	tons/yr			0.1550			0.1550
202		0000 0	0.000	1.0000e- 005			1.0000e- 005
00	1000	1.4800e- 003	0.0000	2.3000e- 003			3.7800e- 003
NON		1,0000e- 1,4800e- 005 003	00.00	1.7400e- 003			1.7500e- 003
ROG	4444	0.0138	00000	2.3000e- 004			0.0141
	Category	Area	Energy	Mobile	Waste	Water	Total

C()2e

N20

表

Bio- CO2 NBio-CO2 Total CO2

PM2.5 Total

Exhaust PM2.5

Fugitive PM2.5

PM10 Total

Exhaust PM10

Fugitive PM10

802

ပ္ပ

NOX

ROG

000

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Percent Reduction

3.0 Construction Detail

Construction Phase

Page 8 of 29

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

Phase Name	Phase Type	Start Date	End Date	Num Days Num Days Week	Num Days	Phase Description
Geophysical Survey	Trenching	2/11/2020	2/29/2020	5	41	
Well Pad Construction	Site Preparation	3/1/2020	3/14/2020	5	10	
Well Drilling	Building Construction	3/15/2020	4/28/2020	7	45	
Well Testing	Trenching	4/29/2020	4/30/2020	2	2,	
Well Cleanup-Abandoment	Grading	5/1/2020	5/7/2020	5	5.	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 3.67

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Well Pad Construction	Graders	1	9.00	187	0.41
Well Pad Construction	Rubber Tired Dozers		8.00	247	0.40
Well Pad Construction	Tractors/Loaders/Backhoes	2	8.00	126	0.37
Well Drilling	Air Compressors		8.00	82	0.48
Well Drilling	Bore/Drill Rigs		24.00	221	0.50
Well Drilling	Forklifts	-	8.00	68	0.20
Well Drilling	Generator Sets		12.00	84	0.74
Well Drilling	sdwnd		24.00	84	0.74
Well Testing	Cranes		8.00	231	0.29
Well Testing	Ритря	-	24.00	84	0.74
Well Testing	Tractors/Loaders/Backhoes		8.00	26	0.37
Well Cleanup-Abandoment	Rubber Tired Loaders	-	8.00	203	0.36
Well Cleanup-Abandoment	Tractors/Loaders/Backhoes	2	8.00	26	0.37
Geophysical Survey	Off-Highway Trucks	4	8.00	402	0.38

Trips and VMT

Phase Name	Offroad Equipment Worker Trip Count Number	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Vendor Trip Hauling Trip Worker Trip Vendor Trip Hauling Trip Worker Vehicle Number Length Class	Vendor Vehicle Class	Vendor Hauling Vehicle Class
Well Pad Construction	4	10.00	6.00	00.00	7.30	8.90		20.00 LD_Mix	HDT_Mix	HHDT
Well Drilling	10	67.00	26.00	00.0	7.30	8.90	20.00-L	20.00 LD_Mix	HDT_Mix	HHDT
Well Testing	6	8.00	2.00	00.0	7.30	8.90	 	20.00 LD_Mix	HDT_Mix	HHDT
Well Cleanup-	9	8.00	9.00	00:0	7.30	8.90	20.00	20.00 LD_Mix	HDT_Mix	HHDT
Geophysical Survey	4	20.00	6.00	00.00	7.30	8.90	20.00	20.00 LD_Mix	HDT_Mix	ННОТ

3.1 Mitigation Measures Construction

Water Exposed Area

Page 10 of 29

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

3.2 Geophysical Survey - 2020 Unmitigated Construction On-Site

CO2e		32.7411	32.7411
NZO	34	0.0000	0.0000
CH4	ı)ı	0.0105	0.0105
Total CO2	MT/yr	32.4785	32.4785
NBio- CO2		32.4785 32.4785 0.0105	0.0000 32.4785 32.4785
Bio- CO2		0.000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		5.9300e- 003	5.9300e- 003
Exhaust PM2.5		5.9300e- 003	5.9300e- 003
Fugitive PM2.5			
PM10 Total		6,4500e- 003	6.4500e- 003
Exhaust PM10	tons/yr	6.4500e- 003	6.4500e- 003
Fugitive PM10			
802		3.7000e- 004	3.7000e- 004
CO		0.1067	0.1067
NOX		0.1770	0.1770
ROG		0.0186 0.1770 0.1067 3.7000e-	0.0186
E all Son	Category	Off-Road	Total

Unmitigated Construction Off-Site

CO2e		0.000.0	1.2781	0.6524	1.9304
			i		
NZO		00000	0.0000	0.000	0.0000
CH4	/yr	0.0000	7.0000e- 005	5.0000e- 005	1.2000e- 004
Total CO2	MT/yr	0.000	1.2763	0.6511	1.9274
NBio- CO2		0.000.0	1.2763	0.6511	1.9274
Bio- CO2		0000	0.000	00000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.000.0	5.4300e- 003	0.0147	0.0201
Exhaust PM2.5		00000	3.0000e- 5 005	0.000.0	3.0000e- 005
Fugitive PM2.5		0.0000	5.4000e- 003	0.0147	0.0201
PM10 Total		0.000.0	0.0536	0.1462	0.1997
Exhaust PM10	tons/yr	0.000	3.0000e- 1 005	1.0000e- 005	4.0000e- 005
Fugitive PM10	ton	0.000	0.0535	0.1462	0.1997
202		0.000.0	1,0000e- 005	1,0000e- 005	2.0000e- 005
03		0.000.0	1.3800e- 003	5.7900e- 003	7.1700e- 2.0 003
×ON		0.000	900e- 003	000e-	5.5100e- 003
ROG		0:000	1.9000e- 004	8.1000e- 1 6.2 004	1.0000e- 003
	Category	Hauling		Worker	Total

Page 11 of 29

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

3.2 Geophysical Survey - 2020

Mitigated Construction On-Site

CO2e		7411	32.7411
ŏ		35	
NZO		0.000	0.000
CH4	Į,	0.0105	0.0105
Total CO2	MT/yr	32.4785	32.4785
NBio- CO2		0.0000 32.4785 32.4785 0.0105 0.0000 32.7411	0.0000 32.4785
Bio- CO2		00000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		5.9300e- 003	5.9300e- 003
Exhaust PM2.5		5.9300e- 003	5.9300e- 003
Fugitive PM2.5			
PM10 Total		6.4500e- 003	6.4500e- 003
Exhaust PM10	tons/yr	6.4500e- 6.4500e- 003 003	6.4500e- 6.4500e- 003 003
Fugitive PM10	toni		
205		3,7000e- 004	3.7000e- 004
00		0.1067	0.1067
NON		0.0186 0.1770 0.1067 3.7000e-	0.1770
ROG		0.0186	0.0186
	Category	Off-Road	Total

Mitigated Construction Off-Site

203e		0.000	1.2781	0.6524	1.9304
NZO		0.0000	0.0000	0.0000	0.0000
CH4	λι	0.000	7,0000e- 005	5,0000e- (1.2000e- 004
Total CO2	MT/yr	0.0000	1.2763	0.6511	1.9274
NBio- CO2		0.0000	1.2763	0.6511	1.9274
Bio- CO2 NBio- CO2 Total CO2		0.0000	0,000	0.000	0.0000
PM2.5 Total		0.000.0	5.4300e- 003	0.0147	0.0201
Exhaust PM2.5		0.0000	3.0000e- 005	0.000	3.0000e- 005
Fugitive PM2.5		0.000	5.4000e- 003	0.0147	0.0201
PM10 Total		0.000	0.0536	0.1462	0.1997
Exhaust PM10	s/yr	0.0000	3.0000e- 005	1.0000e- 005	4.0000e- 005
Fugitive PM10	tons/yr	0.0000	0.0535	0.1462	0.1997
202		0.0000	1,0000e- (- 1 0000e- 1 (2.0000e- 005
00		0.0000	1.3800e- 003	5.7900e 003	7.1700e- 003
NOX		0.0000	4.8900e- 003	6.2000e- 004	5.5100e- 003
ROG		0.0000	1.9000e- 004	8.1000e- 004	1.0000e- 003
	Category	Hauling	Vendor	Worker	Total

Page 12 of 29

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

3.3 Well Pad Construction - 2020 Unmitigated Construction On-Site

0		9	9	g
C02e		0.000	9.4726	9.4726
NZO		0.0000	0.000	0.000
CH4	'n	0.0000	3.0400e- 003	3.0400e- 003
Total CO2	MT/yr		9,3966	9.3966
NBio- CO2		00000 000000	9.3966	9.3966
Bio- CO2		0.000	00000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0168	4.7100e- 003	0.0216
Exhaust PM2.5		0.0000	4.7100e- 003	4.7100e- 003
Fugitive PM2.5		0.0168		0.0168
PM10 Total		0.0328	5.1200e- 003	0.0379
Exhaust PM10	tons/yr	0.0000	5.1200e- 003	5.1200e- 003
Fugitive PM10	ton	0.0328		0.0328
805			1.1000e- 004	0.0525 1.1000e-
00			0.0525	0.0525
XON			0.1093	0.1093
ROG			9.8700e- 0. 003	9.8700e- 003
	Category	**	Off-Road	Total

Unmitigated Construction Off-Site

CO2e		0.0000	0.9129	0.2330	1.1459
NZO		0.000.0	0.000.0	0.000.0	0.0000
CH4	/yr	00000	5.0000e- 005	2.0000e- 005	7.0000e- 005
Total CO2	MT/yr	0000.0	0.9116	0,2325	1.1442
NBio- CO2		0.0000	0.9116	0.2325	1.1442
Bio- CO2		0.0000	0.0000	0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0000	3,8800e- 003	5.2500e- 003	9.1300e- 003
Exhaust PM2.5		0.0000	2.0000e- .005	0.0000	2.0000e- 005
Fugitive PM2.5		0.0000	3.8600e- 003	5.2500e- 003	9.1100e- 003
PM10 Total		0.0000	0.0383	0.0522	0.0905
Exhaust PM10	tons/yr	0.000	2.0000e- 005	0.0000	2.0000e- 005
Fugitive PM10	ton	0.000	0.0382	0.0522	0.0904
S02		00000	- 1.0000e- 0. 005	0,0000	1.0000e- 005
00		00000 000000 000000 000000	9.9000e 004	2.0700e- 003	600e- 003
NOX		00000	.4900e- 003	.2000e- 004	7100e- 003
ROG		0.0000	1.3000e- 004	2.9000e- 1.2 004	4.2000e- 3. 004
	Category	Hauling	Vendor	Worker	Total

Page 13 of 29

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AIM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

3.3 Well Pad Construction - 2020

Mitigated Construction On-Site

CO2e		0.0000	9.4726	9.4726
NZO		0.000.0	0.0000	0.0000
CH4	yr	0.0000 0.00000	3.0400e- 003	3.0400e- 003
Total CO2	MT/yr	0.0000	9,3966	9.3966
Bio- CO2 NBio- CO2 Total CO2		0.000.0 1 0.000.0 0.0000.0	93966	9.3966
Bio- CO2		0.0000	0.000	0.0000
PM2.5 Total		7,5800e- 0.	4.7100e- 003	0.0123
Exhaust PM2.5		0.0000	4.7100e- 003	4.7100e- 003
Fugitive PM2.5		0.0147 7.5800e-		7.5800e- 003
PM10 Total		0.0147	5.1200e- 003	0.0199
Exhaust PM10	tons/yr	0.000	5.1200e- 003	5.1200e- 003
Fugitive PM10	tou	0.0147		.0147
80z			1.1000e- 004	1.1000e- 0.
03			0.0525	0.0525
XON			0.1093	0.1093
ROG		<u> </u>	9,8700e- 0,1093 003	9.8700e- 003
	Category	Fugitive Dust	Off-Road	Total

Mitigated Construction Off-Site

C02e		0.0000	0.9129	0.2330	1.1459
N20		0,000	0,000	0.000	0.0000
CH4	ئذ	0.000	5.0000e- 005	2.0000e- 005	7.0000e- 005
Total CO2	MT/yr	0.000.0	0.9116	0.2325	1.1442
NBio- CO2		0.000	0.9116	0.2325	1.1442
Bio- CO2		0.000.0	0.000.0	0 0000	0.000.0
PMZ.5 Total Bio- CO2 NBio- CO2 Total CO2		0.000.0	3.8800e- 003	5.2500e- 003	9.1300e- 003
Exhaust PM2.5		0.0000	2,0000e- 3 005	0.000.0	2.0000e- 005
Fugitive PM2.5		0.000.0	3.8600e- 003	5.2500e- 003	9.1100e- 003
PM10 Total		0.000.0	0.0383	0.0522	0.0905
Exhaust PM10	ilyr	0,0000	2.0000e- 005	0.000.0	2.0000e- 005
Fugitive PM10	tons/yr	0.000.0	0.0382	0.0522	.0904
SO2		0.0000	1.0000e- 005	0.000.0	1.0000e- 005
8		00000	000e-	2.0700e- 003	3.0600e- 003
NOX		00000 00000	4900e- 003	2000e- 004	4.2000e- 3.7100e- 3.0600e- 004 003 003
ROG		00000	1,3000e- 3 004	2.9000e- 2 004	4.2000e- 004
	Category	Hauling	Vendor	Worker	Total

Page 14 of 29

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

3.4 Well Drilling - 2020

Unmitigated Construction On-Site

CO2e		4.1942	4.1942
		70 12	0.0000 124.1942
NZO		0000	
CH 4	yr	0.0230	0.0230
Total CO2	MT/yr	123.6206	123.6206
NBio- CO2		0.0000 123.6206 123.6206 0.0230 0.0000 124,1942	0.0000 123.6206 123.6206 0.0230
Bio- CO2		0.000.0	0.000.0
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 CH4 PM2.5	. 81 8 T	0.0322	0.0322
Exhaust PM2.5		0.0322	0.0322
Fugitive PM2.5			
PM10 Total		0.0330	0.0330
Exhaust PM10	tons/yr	0.0330	0.0330
Fugitive PM10	ton		
802		1.4200e- 003	1.4200e- 003
ဝ၁		0.6010 1.4200e-	0.6010
×ON		0.6731	0.6731
ROG		0.0713	0.0713
	Category	Off-Road	Total

Unmitigated Construction Off-Site

	,				
COZe		0.000	17.8014	7.0247	24.8262
N20		00000	0.0000	0.0000	0.000
CH4	yr	0.000	- 9.8000e 004	5.7000e- 004	1.5500e- 003
Total CO2	MT/yr	00000	17.7769	7.0105	24.7873
NBio- CO2		0.000.0	17.7769	7.0105	24.7873
Bio- CO2		0.000.0	0.000.0	0.000.0	0.000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		00000	0.0756	0.1584	0.2340
Exhaust PM2.5		0000	3,9000e- 004	5.0000e- 1	4.4000e- 004
Fugitive PM2.5		0000.0	0.0753	0.1583	0.2336
PM10 Total	, M	0.000.0	0.7459	1.5740	2.3199
Exhaust PM10	s/yr	00000	4.1000e- 004	6.0000e- 005	4.7000e- 004
Fugitive PM10	tons/yr	0000 0	0.7455	1.5739	2.3194
202		0.000	0.0193 1.9000e- 004	8.0000e- 005	2.7000e- 004
00		0.000.0	0.0193	0623	0.0816
XON		0.0000 0.0000 0.0000 0.0000	0.0681	6.7000e- 003	0.0748
ROG		0.0000	2.6100e- 003	8.7500e- 003	0.0114
	Category	Hauling		Worker	Total

Page 15 of 29

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

3.4 Well Drilling - 2020

Mitigated Construction On-Site

C02e		124.1941	124.1941
NZO		0.0000	0.0000
CH4	'yr	0.0230	0.0230
Total CO2	MT/yr	123.6204	123.6204
NBio- CO2		0.0000 123.6204 123.6204 0.0230	0.0000 123.6204 123.6204
Bio- CO2		0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.0322	0.0322
Exhaust PM2.5		0.0322	0.0322
Fugitive PM2.5		P-2/15 UT; 1-1	
PM10 Total		0.0330	0.0330
Exhaust PM10	tons/yr	0.0330	0.0330
Fugitive PM10	ton		
205		1.4200e- 003	1.4200e- 003
00		0.6010 1.4200e-	0.6010
NOX		0.6731	0.6731
ROG		0.0713	0.0713
	Category	Off-Road	Total

Mitigated Construction Off-Site

N2O CO2e		0.0000 0.0000	0.0000 17.8014	0.0000 7.0247	0.0000 24.8262
CH4	J.	0,000	9.8000i∋- C 004	5.7000e- 1 C	1.5500e- 003
Total CO2	MT/yr	00000	17.7769	7.0105	24.7873
NBio- CO2		0.000	17.7769	7.0105	24.7873
Bio- CO2		0.000.0	00000	0.0000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.000.0	0.0756	0.1584	0.2340
Exhaust PM2.5		0.000	3.9000e- 004	5.0000e- 005	4.4000e- 004
Fugitive PM2.5		0.0000	0.0753	0.1583	0.2336
PM10 Total		0.0000	0.7459	1.5740	2.3199
Exhaust PM10	tons/yr	0.0000	4,1000e- 004	6.0000e- 005	4.7000e- 004
Fugitive PM10	tou	0.0000	7455	1.5739	2.3194
S02		0.0000	1.9000e- 0 004	8.0000e- 005	2.7000e- 004
8		0.0000	0.0193	0.0623	0.0816
ďΩ		0000	0.0681	6.70C0e- 003	0.0748
ROG		0.0000	2.6100e- 0. 003	8.7500e- 6.7000e- 003 003	0.0114
	Category		•	Worker	Total

Page 16 of 29

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

3.5 Well Testing - 2020

Unmitigated Construction On-Site

C02e		2.4842	2.4842
NZO		0.000.0	0.0000
CH4		3.5000e- 004	3.5000e- 004
Total CO2	MT/yr	2.4754	2.4754
NBio- CO2		2,4754	2.4754
Bio- CO2		00000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		9.5000e- 004	9.5000e- 004
Exhaust PM2.5		9.5000e- 004	9.5000e- 004
Fugitive PM2.5			
PM10 Total		9,8000e- 004	9.8000e- 004
Exhaust PM10	tons/yr	9.8000e- 004	9.8000e- 004
Fugitive PM10			
S02		0.0181 0.0157 3.0000e-	3.0000e- 005
co		0.0157	0.0157
NOX		0.0181	0.0181
ROG		1.9300e- 003	1.9300e- 003
X	Category	Off-Road	Total

Unmitigated Construction Off-Site

C02e		0.000	0.0609	0.0373	0.0981
NZO		0.000	0.000	00000	0.000.0
CH4	/yr	0000 0	0000 0	0.000	0.0000
Total CO2	MT/yr	0.000.0	0.0608	0.0372	0.0980
NBio- CO2		0.0000	0.0608	0.0372	0860.0
Bio- CO2		0.000.0	0.0000	0.000.0	0.000.0
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.000	2.6000e- 004	8.4000e- 004	1.1000e- 003
Exhaust PM2.5		0.0000	0.000.0	0.000.0	0.0000
Fugitive PM2.5		0.000	2.6000e- 004	8.4000e- 004	1.1000e- 003
PM10 Total		0.0000	2.5500e- 003	8.3500e- 003	0.0109
Exhaust PM10	tons/yr	0000	0.0000	0.0000	0.0000
Fugitive PM10	ton	0.0000	2.5500e- 003	8.3500e- 003	0.0109
80z		0,000	0.0000	0.000.0	0.0000
00		0.0000)e- 17.0000e- 1 005	e- 3.3000e- 0. 004	4.0000e- 004
NOX		00000 00000	3000	9000	2.7000e- 004
ROG		00000	1.0000e- 005	5.0000e- 4.0	6.0000e- 005
	Category	Hauling	Vendor	Worker	Total

Page 17 of 29

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AIM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

3.5 Well Testing - 2020

Mitigated Construction On-Site

C028		2.4842	2.4842
NZO		0000	0.0000
CH4	۸۲	3.5000e- 1 0	3.5000e- 004
Total CO2	MT/yr	2,4754	2.4754
NBio- CO2		2.4754	2.4754
Bio- CO2		0.000	0.0000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		9 5000e- 004	9.5000e- 004
		9,5000e- 1 9 004	9.5000e- 004
Fugitive PM2.5			
PM10 Total		9,8000e- 004	9.8000e- 004
Exhaust PM10	tons/yr	9.8000e- 004	9.8000e- 004
Fugitive PM10	ton		
802		3.0000e- 005	3.0000e- 005
00		0.0157	0.0157
XON		1.9300e- i 0.0181 i 0.0157 i 3.0000e- 003 005	0.0181
ROG		1.9300e- 003	1.9300e- 003
	Category	Off-Road	Total

Mitigated Construction Off-Site

C029		0,000	0.0609	0.0373	0.0981
NZO		0.000	0.000	0.000	0.0000
CH4	λyr	0.0000	0.0000	0.000	0.000
Total CO2	MT/yr	0.000.0	0.0608	0.0372	0.0980
NBio- CO2		0,000	0.0608	0.0372	0.0980
Bio- CO2		0.000.0	0.000.0	0.000.0	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0.0000	2.6000e- 004	8.4000e- 004	1.1000e- 003
Exhaust PM2.5		0.000	0.0000	0.000	0.000
Fugitive PM2.5		0.000	2.6000e- 004	8,4000e- 004	1.1000e- 003
PM10 Total		0,000	2.5500e- 003	8.3500e- 003	0.0109
Exhaust PM10	tons/yr	0.000	0.000	0.000.0	0.0000
Fugitive PM10	ton	0.000	003 003	8.3500e- 003	0.0109
S02		0.000	0.0000	0.0000	0.0000
8		0.000	e- 17.0000e- 1	33000e- 004	4.0000e- 004
NON		0.000.0	2,300	4.0003	6.0000e- 2.7003e- 4.0000e- 005 004 004
ROG		0.000	1,0000e- 005	5,0000e- 005	6.0000e- 005
	Category	Hauling	Vendor	Worker	Total

Page 18 of 29

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

3.6 Well Cleanup-Abandoment - 2020

Unmitigated Construction On-Site

9		8	- 66	<u> </u>
C02e		0.0000	2.7589	2.7589
NZO		0.0000	0.0000	0.0000
CH4	<u>ئ</u>	0.0000	8.9000e- 004	8.9000e- 004
Total CO2	MT/yr	0.0000	2.7367	2.7367
NBio- CO2 Total CO2		0.000.0	2.7367	2.7367
		00000	00000	0.0000
PM2.5 Total Bio- CO2		8.4200e- 003	9,5000e- 004	9.3700e- 003
Exhaust PM2.5		0.0000	9.5000e- 004	9.5000e- 004
Fugitive PM2.5		8.4200e- 003		8.4200e- 9.5 003
PM10 Total	4	0.0164	1.0300e- 003	0.0174
Exhaust PM10	s/yr	0.000	1.0300e- 003	1.0300e- 003
Fugitive PM10	tons/yr	0.0164		0.0164
802			3.0000e- 005	3.0000e- 005
8			0.0155	0.0155
Š			0.0216	0.0216
20G			1.9800e- (003	1.9800e- 003
	Category	+-	Off-Road	Total

Unmitigated Construction Off-Site

C02e	14	0,000	0.4565	0.0932	0.5497
N20		0.0000	0.000.0	0.000.0	0.0000
CH4	5	0.000.0	3,0000e- 005	1.0000e- 005	4.0000e- 005
Total CO2	MT/yr	0,000 0,0000 0,0000	0.4558	0.0930	0.5488
NBio- CO2		0.0000	0.4558	0.0930	0.5488
Bio- CO2		0.0000	0.000.0	0.000	0.000
Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5		0.000	1.9400e- 003	2.1000e- 003	4.0400e- 003
Exhaust PM2.5		0.000	. 1.0000e- . 005	0000 0	1.0000e- 005
Fugitive PM2.5		0.000.0	1.9300e- 003	2.1000e- 003	4.0300e- 1 003
PM10 Total		00000	0.0191	0.0209	0.0400
Exhaust PM10	tons/yr	0000 0	1.0000e- 005	00000	1.0000e- 005
Fugitive PM10	ton	0.000	0.0191	0.0209	0.0400
202		0.0000	00000	0.000	0.000.0
00		00000 00000	De- 4 9000e-	9- 18,3000e- 10 004	1.3200e- 003
NOx		0.0000 0.0000	7500	1.2000e- 1.9.0000e- 004 005	1.8400e- 003
ROG		0.0000	7.0000e- 1	1.2000e- 004	1.9000e- 004
	Category	Hauling		Worker	Total

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

Page 19 of 29

Date: 10/17/2019 11:18 AM

3.6 Well Cleanup-Abandoment - 2020

Mitigated Construction On-Site

COZe		0.0000	2.7589	2.7589
NZO		00000	0 0000	0.0000
CH4	یخ	0.0000	8.9000e- 0 004	8.9000e- 004
Total CO2	MT/yr	00000	2.7367	2.7367
NBio- CO2		0.0000 0.0000	2.7367	2.7367
Bio- CO2		0.0000	00000	0.0000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		3.7900e- 003	9.5000e- 004	4.7400e- 003
Exhaust PM2.5		0000	9.5000e- 004	9.5000e- 004
Fugitive PM2.5		3.7900e- 0 003		3.7900e- 003
PM10 Total		7.3700e- 3.7 003 (1.0300e- 003	8.4000e- 003
Exhaust PM10	s/yr	0.0000	1.0300e- 003	1.0300e- 003
Fugitive PM10	tons/yr	7.3700e- 1	ļ	7.3700e- 003
S02			3.0000e- 0.05	3.0000e- 005
8			0.0155	0.0155
Ŏ			0.0216	0.0216
ROG			1.9800e- 003	1.9800e- 003
The second	Category	Fugitive Dust	Off-Road	Total

Mitigated Construction Off-Site

203		0.0000	0.4565	0.0932	0.5497
NZO		0.000	00000	0.000	0.0000
CH4	۸ı	0.000.0	3.0000e- 1 005	1.0000e- 005	4.0000e- 005
Total CO2	MT/yr	0.000	0.4558	0.0930	0.5488
NBio- CO2		0.0000	0.4558	0.0930	0.5488
Bio- CO2 NBio- CO2 Total CO2		0.0000	0.000.0	0.000.0	0.000.0
PM2.5 Total		0.000	1.9400e- 003	2.1000e- 003	4.0400e- 003
Exhaust PM2.5		0.0000	1.0000e- 005	0.000.0	1.0000e- 005
Fugitive PM2.5		0.0000	1 9300e- 003	2.1000e- 003	4.0300e- 003
PM10 Total		0.0000	0.0191	0.0209	0.0400
Exhaust PM10	slyr	0.000.0	1.0000e- 005	0.000	1.0000e- 005
Fugitive PM10	tons/yr	0.0000	0.0191	0.0209	0.0400
202		0.0000	0.000.0	0.000	0.000
8		0.0000	. 4.9000e- 0 004	8.3000e- 0 004	1.3200e- 003
NOX		0.0000	7500e- 003	0000e-	1.8400e- 003
ROG		0.000.0	7.0000e- 1 005	1.2000e- 9 004	1.9000e- 004
	Category	Hauling	Vendor	Worker	Total

4.0 Operational Detail - Mobile

Page 20 of 29

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

4.1 Mitigation Measures Mobile

	ROG	X N N	8	S 02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total Bio- CO2 NBio- CO2 Total CO2	Bio- CO2	NBio- CO2	Total CO2	CH4	N20	C02e
Category		-Q.			tons/yr	s/yr			14-				M	MT/yr		
Mitigated	2.3000e- 1.7400e- 2.3000e- 1.0000e- 004 003 003 005	1.7400e- 003	2.3000e- 003	1,0000e- 005	0.1550	00000	0.1550	0.0155	00000	0.0155	0.0000	0,5560	0.5560	0.0000 i 0,5560 i 0,5560 i 5.0000e- i 0.0000	0.0000	0,5572
Unmitigated	2.3000e- 004	1.7400e- 003	2.3000e- 003	1.0000e- 005	0.1550	0.0000 0.1550	0.1550	0.0155	0.0155 0.0000 0.0155	0.0155	0.0000	5560	0.5560	5.0000e- 0 005	0.000.0	0.5572

4.2 Trip Summary Information

	Aver	Average Daily Trip Rate	nte	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Non-Asphalt Surfaces	0.00	3.20	00.00	832	832
Total	0.00	3.20	0.00	832	832

4.3 Trip Type Information

THE RESERVE THE PERSON NAMED IN	MES. 1000	MIIES			% du			% asodını du i	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	or C-C H-O or C-NW H-W or C-W H-S or C-C H-O or C-NW Primary	Primary	Diverted	Pass-by
Other Non-Asphalt Surfaces	6.70	5.00	8.90	00.00	100.00	00.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS UBUS	SNBN	MCY	SBUS	MH
Other Non-Asphalt Surfaces	0.509486 0.032430	0.032430	0.160670	0.124446	0.017653	0.005129	0.019157	0.119824	0.003361	160670, 0.124446, 0.017653, 0.005129, 0.019157, 0.119824, 0.003361, 0.001189, 0.005223, (0.005223	0.000739	0.000694
										- 12			

Page 21 of 29

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOK	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio-CO2 NBio-CO2 Total CO2 PM2.5	Bio-CO2	NBio- CO2	Total CO2	CH4	NZO	CO2e
Category					ton	tons/yr							MT/yr	lyr		
Electricity Mitigated						00000	0.000.0		00000	0 0000	00000	0.000	0.0000	0.0000	0.000	0.0000
Electricity Unmitigated						0.000	0.000		0.000	00000	0.000	0.0000	0.000.0	0.0000	0.000.0	0.0000
NaturalGas Mitigated		0.0000	0.000	0.0000		0.000	0.000		0.0000	0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0,000.0
ralGas itigated	0.0000	0.000.0	0.0000	0.0000		0.0000	0.000		00000	0.000.0	0.000.0	0.000	0.000.0	0.0000	0.0000	0.000.0

Page 22 of 29

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

Date: 10/17/2019 11:18 AM

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	NaturalGa ROG s Use	×ON	8	802	Fugitive PM10	Fugitive Exhaust PM10 PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Fugitive Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	C02e
Land Use	kBTU/yr					tons/yr	s/yr							M	MT/yr		
Other Non- Asphalt Surfaces	0	00000	0.000	0.0000 0.0000 0.0000	0000 0		0.000.0	0,000		00000	0.0000 0.00000 0.00000 0.00000	0.000.0	0.0000	0.0000	0.000.0	0000 0 0000 0	0.000
Total		0.0000	0.0000 0.0000	0.000	0.0000		0.000	0.0000		0.000.0	0.0000 0.0000		0.0000	0.0000	0:0000	0.0000	0.0000

Mitigated

Ш	ŀ			t	l		L							ı		
NaturalGa ROG R s Use	/	×ON	00	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	Exhaust PM2.5 Total Bio- CO2 NBio- CO2 Total CO2 PM2.5	Bio- CO2	NBio- CO2	Total CO2	CH4	NZO	CO2e
	100				tons/yr	s/yr				-1			MT	MT/yr		
0.0000	ا ۱	0000	0.0000 0.0000 0.0000	0.000.0		0.000.0	0.000.0		0.000.0	0.000.0	00000	00000 00000 00000	0000	0.000.0	0.000.0	0000
0.0000 0.0000		0000	0.0000 0.0000	0.0000		0.000.0	0.0000		0.0000	0.000.0	0.000.0	0.000.0	0.0000	0.0000	0.0000	0.0000

Page 23 of 29

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

5.3 Energy by Land Use - Electricity

Unmitigated

Mitigated

	Electricity Use	Total CO2		NZO	C02e
Land Use	kWh/yr		M	MT/yr	
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

N2O CO2e		0.0000 13.0500e-	0.0000 · 3.0500e- 003
		0.0c	0e- 0.00
2 CH4	MT/yr	1.0000	e- 1.0000e-
Z Total CC		9800	3600
NBio- CO		2.8600e 003	2.8600e 003
Bio- CO2		0.000	0.000.0
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		1,0000e- 005	1,0000e- 005
Exhaust PM2.5		1.0000e- 005	1,0000e- 005
Fugitive PM2.5		ļ	
PM10 Total		1.0000e- 005	1.0000e- 1.0000e- 005 005
Exhaust PM10	tons/yr	1.0000e- 005	1.0000e- 005
Fugitive PM10	tol	ļ	
802		0.0000	0.000.0
00		1.4800e- 003	1.4800e- 003
NOX		0.0138 1.0000e- 1.4800e- 0.0000 005 003	0.0138 1.0000e- 1.4800e- 005 003
ROG		0.0138	0.0138
	Category	Mitigated	Unmitigated

6.2 Area by SubCategory

Unmitigated

					_
C02e		0,000	0.000	3.0500e- 003	3.0500e- 003
N20		0000	0.000	0.000	0.0000
CH4	y۲	0.000	0.000	1.0000e- 005	1.0000e- 005
Total CO2	MT/yr	0000	00000	2.8600e- 1.003	8600e- 003
NBio- CO2		0000	0.000	2.8600e- 2 003	2.8600e- 2. 003
Bio- CO2		00000	0 0000	0.000	0.000
PM2.5 Total Bio- CO2 NBio- CO2 Total CO2		0000	0.000	1.0000e- 005	1.0000e- 005
Exhaust PM2.5		0000 0	0.000.0	1.0000e- 005	1.0000e- 005
Fugitive PM2.5					
PM10 Total		0000	0.000	1.0000e- 005	1.0000e- 005
Exhaust PM10	tons/yr	00000	00000	1,0000e- 005	1.0000e- 005
Fugitive PM10	tons				
S02				0.0000	0.000
03				1.4800e- 0 003	1.4800e- 003
×ON				.0000e- 005	1.0000e- 1.4800e- 005 003
ROG		3.3400e- 003	0.0103	1.4000e- 1.1 004	0.0138
	SubCategory	Architectural Coating	•	Landscaping	Total

Page 25 of 29

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

6.2 Area by SubCategory

Mitigated

COZe		0.0000	0.0000	0.0e-	33 e-
8		ö 	Ö	3.050Je- 003	3.0500e- 003
NZO		0.0000	0.000	00000	0.0000
CH4	yr.	0000	0.0000	1.0000e- 005	1.0000e- 005
Total CO2	MT/yr	00000	0.000.0	2.8600e- 1. 003	2.8600e- 1 003
NBio- CO2		0.0000	0.0000	2.8600e- 003	2.8600e- 2.8
Bio- CO2 NBio- CO2 Total CO2		0.000.0	0.000.0	0.000.0	0.0000
PM2.5 Total	3	0.000	0.000.0	1.0000e- 005	1.0000e- 005
Exhaust PM2.5		0.000	0.0000	1.0000e- 005	1.0000e- 005
Fugitive PM2.5					
PM10 Total		0.000	0.000	1.0000e- 005	1.0000e- 005
Exhaust PM10	s/yr	0.000	0.000.0	1.0000e- 005	1.0000e- 005
Fugitive PM10	tons/yr				
802				0.0000	0.0000
00				1.4800e- 0. 003	1.4800e- 0.
NCX				.00C0e-	1.0000e- 1.4
ROG		3.3400e- 003	0.0103	1.4000e- 1 004	0.0138
	SubCategory	Architectural Coating	Consumer Products	Landscaping	Total

7.0 Water Detail

7.1 Mitigation Measures Water

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

	Total CO2	CH4	NZO	CO2e
Category		M	MT/yr	
Mitigated	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000

7.2 Water by Land Use

Unmitigated

	Indoor/Out door Use	Indoor/Out Total CO2 door Use	CH4	NZO	CO2e
Land Use	Mgai		W	MT/yr	13.50
Other Non- Asphalt Surfaces	0/0	0.0000	00000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

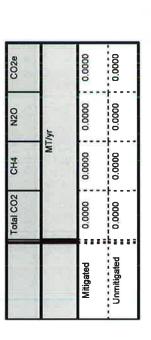
Page 27 of 29

CalEEMod Version: CalEEMod.2016.3.2

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

7.2 Water by Land Use


Mitigated

	Indoor/Out door Use	Indoor/Out Total CO2 door Use	CH4	NZO	C02e
Land Use	Mgal		M	MT/yr	
Other Non- Asphalt Surfaces	0/0	0.000.0	0.0000	0.0000	0.0000
Total		0.000.0	0.0000	0.0000	0.0000

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

Page 28 of 29

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

8.2 Waste by Land Use

Unmitigated

	Waste Disposed	Total CO2	CH4	NZO	COZe
Land Use	tons	VI.	IM	MT/yr	
Other Non- Asphalt Surfaces	0	0.000.0	0.000	0.000.0	0.0000
Total		0:0000	0.0000	0.000.0	0.0000

Mitigated

	Waste Disposed	Total CO2	CH4	N20	C02e
Land Use	tons	- L - A - VI	×	MT/yr	
Other Non- Asphalt Surfaces	o	0.000	0.0000	0.000	0.0000
Total		0.0000	0.0000	0.000	0.000

9.0 Operational Offroad

1	Load Factor Fue	Horse Power Loa	Days/Year	Hours/Day	Number	Equipment Type
---	-----------------	-----------------	-----------	-----------	--------	----------------

Page 29 of 29

Date: 10/17/2019 11:18 AM

Truckhaven Geothermal Exploration Wells - 1 Well Calculations - Imperial County, Annual

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

	lype Number Hour	s/Day Hours/Year	Horse Power	Load Factor	Fuel Type
--	------------------	------------------	-------------	-------------	-----------

Boilers

Fuel Type	
Boiler Rating	
Heat Input/Year	The second secon
Heat Input/Day	
Number	
Equipment Type	

User Defined Equipment

Number
Equipment Type

11.0 Vegetation

APPENDIX H - NOISE CALCULATION MODEL RUN PRINTOUTS

Report date: Case Description:	9/3/2019 Truckhaven		al Explora	tion \	Wells - W	ell Pad & A	Access Rd	
Description Nearest Home to Well 32-5	Land Use Residential	Baselines Daytime	s (dBA) Eveni 55	ing 45	Night	eptor #1		
Description Grader Dozer Tractor		Impact Device No No No	Usago	e(%) 40 40 40		Actual Lmax (dBA) 5	Distance (feet) 1800	(dBA) 0 0
		Calculate	d (dBA)		Results Day	Noise Lin	nits (dBA) Evening	
Equipment Grader Dozer Tractor	Total	4	49.8	46.2 46.8 46.5 53	Lmax N/A N/A	Leq N/A N/A N/A N/A	Lmax N/A N/A N/A N/A	Leq N/A N/A N/A N/A
		*Calculate	ed Lmax is	the	Loudest v	value.		
				the		/alue. e ptor #2	_	
Description Nearest Home to Well 47-5	Land Use Residential	*Calculate Baselines Daytime			Rece	eptor #2		
•		Baselines	s (dBA) Eveni	ing	Rece Night 45 Equipme	eptor #2		Estimated
•		Baselines	s (dBA) Eveni 55 Usaga	ing 45	Night 45 Equipme Spec Lmax (dBA)	ent Actual Lmax (dBA)	Receptor Distance (feet) 2320	0
Nearest Home to Well 47-5 Description Grader Dozer		Baselines Daytime Impact Device No No	s (dBA) Eveni 55 Usage	e(%) 40	Night 45 Equipme Spec Lmax (dBA)	ent Actual Lmax (dBA) 81.7	Receptor Distance (feet) 2320 2320 2320	Shielding (dBA) 0
Nearest Home to Well 47-5 Description Grader Dozer		Baselines Daytime Impact Device No No	s (dBA) Eveni 55 Usage	e(%) 40	Night 45 Equipme Spec Lmax (dBA) 85 Results	ent Actual Lmax (dBA) 81.7	Receptor Distance (feet) 2320 2320 2320 mits (dBA)	Shielding (dBA) 0
Nearest Home to Well 47-5 Description Grader Dozer		Baselines Daytime Impact Device No No	s (dBA) Eveni 55 Usage	e(%) 40 40.0 48 44	Night 45 Equipme Spec Lmax (dBA) 85	ent Actual Lmax (dBA) 81.7	Receptor Distance (feet) 2320 2320 2320	Shielding (dBA) 0

Report date: Case Description:	9/3/2019 Truckhaven		mal Exp	loration '	Wells - V	Vell Pad & A	Access Rd	
					Rec	eptor #3		
Description Nearest Home to Well 18-32	Land Use Residential	Baselin Daytim	es (dBA) e Ev 55.0) vening 45.0	Night	·		
Description		Impact Device	Us	sage(%)		Actual Lmax (dBA)	Distance (feet)	Estimated Shielding (dBA)
Grader		No		40		5	2110	
Dozer		No		40.0		81.7		
Tractor		No		40.0	8	4	2110	0
					Results			
		Calcula	ted (dBA	N)		Noise Lin	nits (dBA)	
					Day	_	Evening	
Equipment		*Lmax	Le	-	Lmax	Leq	Lmax	Leq
Grader			52.5	48.5		N/A	N/A	N/A
Dozer Tractor			49.2 51.5		N/A N/A	N/A N/A	N/A N/A	N/A N/A
Hactor	Total		51.5 53		N/A	N/A	N/A	N/A
	Iotai	*Calcul			Loudest		137/3	13//3
		Calcul	ateu Lilia	ax is the	LUUUESI	value.		
		Calcul	ated Line	ax is the	Loudesi	value.		
						eptor #4		
Description	1 4 1 1	Baselin	es (dBA))	Rec			
Description	Land Use		es (dBA) e Ev	vening	Rec	eptor #4	-	
Description Nearest Home to Well 47-32	Land Use Residential	Baselin	es (dBA))	Rec	eptor #4	-	
•		Baselin	es (dBA) e Ev	vening	Rec	eptor #4 -	-	
•		Baselin Daytime	es (dBA) e Ev	vening	Rec Night 4 Equipm Spec	eptor #4 5 ent Actual	Receptor	Estimated
Nearest Home to Well 47-32		Baselin Daytime	es (dBA) e Ev 55	vening 45	Rec Night 4 Equipm Spec Lmax	eptor #4 5 ent Actual Lmax	Receptor Distance	Shielding
Nearest Home to Well 47-32 Description		Baselin Daytime	es (dBA) e Ev 55	vening 45 sage(%)	Rec Night 4 Equipm Spec Lmax (dBA)	eptor #4 5 ent Actual Lmax (dBA)	Receptor Distance (feet)	Shielding (dBA)
Nearest Home to Well 47-32 Description Grader		Baselin Daytime	es (dBA) e Ev 55	vening 45 sage(%)	Rec Night 4 Equipm Spec Lmax	eptor #4 5 ent Actual Lmax (dBA) 5	Receptor Distance (feet) 1060	Shielding (dBA) 0
Nearest Home to Well 47-32 Description Grader Dozer		Baselin Daytime Impact Device No No	es (dBA) e Ev 55	vening 45 sage(%) 40 40	Rec Night 4 Equipm Spec Lmax (dBA) 8	eptor #4 5 ent Actual Lmax (dBA) 5	Receptor Distance (feet) 1060 1060	Shielding (dBA) 0
Nearest Home to Well 47-32 Description Grader		Baselin Daytime	es (dBA) e Ev 55	vening 45 sage(%)	Rec Night 4 Equipm Spec Lmax (dBA) 8	eptor #4 5 ent Actual Lmax (dBA) 5	Receptor Distance (feet) 1060	Shielding (dBA) 0
Nearest Home to Well 47-32 Description Grader Dozer		Baselin Daytime Impact Device No No	es (dBA) e Ev 55 Us	vening 45 sage(%) 40 40	Rec Night 4 Equipm Spec Lmax (dBA) 8	eptor #4 5 ent Actual Lmax (dBA) 5 81.7	Receptor Distance (feet) 1060 1060	Shielding (dBA) 0
Nearest Home to Well 47-32 Description Grader Dozer		Baselin Daytime Impact Device No No	es (dBA) e Ev 55	vening 45 sage(%) 40 40	Night 4 Equipm Spec Lmax (dBA) 8 Results	eptor #4 5 ent Actual Lmax (dBA) 5 81.7	Receptor Distance (feet) 1060 1060 nits (dBA)	Shielding (dBA) 0
Nearest Home to Well 47-32 Description Grader Dozer Tractor		Baselin Daytime Impact Device No No No	es (dBA) e Ev 55 Us	vening 45 sage(%) 40 40	Reconsideral Night 4 Equipm Spec Lmax (dBA) 8 Results Day	eptor #4 5 ent Actual Lmax (dBA) 5 81.7 4	Receptor Distance (feet) 1060 1060 1060 nits (dBA) Evening	Shielding (dBA) 0 0
Nearest Home to Well 47-32 Description Grader Dozer Tractor Equipment		Baselin Daytime Impact Device No No	es (dBA) e Ev 55 Us ted (dBA	vening 45 sage(%) 40 40 40	Night 4 Equipm Spec Lmax (dBA) 8 Results Day Lmax	eptor #4 5 ent Actual Lmax (dBA) 5 81.7 4 Noise Lin	Receptor Distance (feet) 1060 1060 1060 nits (dBA) Evening Lmax	Shielding (dBA) 0 0 0
Description Grader Dozer Tractor Equipment Grader		Baselin Daytime Impact Device No No No	es (dBA) e Ev 55 Us ted (dBA Le 58.5	vening 45 sage(%) 40 40 40	Reconsideral Night 4 Equipm Spec Lmax (dBA) 8 Results Day Lmax N/A	eptor #4 5 ent Actual Lmax (dBA) 5 81.7 4 Noise Lin Leq N/A	Receptor Distance (feet) 1060 1060 1060 nits (dBA) Evening Lmax N/A	Shielding (dBA) 0 0 0
Description Grader Dozer Tractor Equipment Grader Dozer		Baselin Daytime Impact Device No No No	es (dBA) e Ev 55 Us ted (dBA Le 58.5 55.1	sage(%) 40 40 40 54.5 51.2	Reconsideral Night 4 Equipm Spec Lmax (dBA) 8 Results Day Lmax N/A N/A	eptor #4 5 ent Actual Lmax (dBA) 5 81.7 4 Noise Lin Leq N/A N/A	Receptor Distance (feet) 1060 1060 1060 nits (dBA) Evening Lmax N/A N/A	Shielding (dBA) 0 0 0 0 Leq N/A N/A
Description Grader Dozer Tractor Equipment Grader	Residential	Baselin Daytime Impact Device No No No	es (dBA) 55 Us ted (dBA Le 58.5 55.1 57.5	vening 45 sage(%) 40 40 40 54.5 51.2 53.5	Reconsideral Night 4 Equipm Spec Lmax (dBA) 8 Results Day Lmax N/A N/A N/A N/A	eptor #4 5 ent Actual Lmax (dBA) 5 81.7 4 Noise Lin Leq N/A N/A N/A	Receptor Distance (feet) 1060 1060 1060 nits (dBA) Evening Lmax N/A N/A	Shielding (dBA) 0 0 0 U 0 Leq N/A N/A N/A
Description Grader Dozer Tractor Equipment Grader Dozer		Baselin Daytime Impact Device No No Calcula	es (dBA) e Ev 55 Us ted (dBA Le 58.5 55.1	sage(%) 40 40 40 54.5 51.2 53.5	Reconsideral Night 4 Equipm Spec Lmax (dBA) 8 Results Day Lmax N/A N/A N/A N/A N/A	eptor #4 5 ent Actual Lmax (dBA) 5 81.7 4 Noise Lin Leq N/A N/A N/A N/A	Receptor Distance (feet) 1060 1060 1060 nits (dBA) Evening Lmax N/A N/A	Shielding (dBA) 0 0 0 0 Leq N/A N/A

Report date: Case Description:	9/3/2019 Truckhaven		nal Explora	ation \	Wells - W	ell Pad & A	Access Rd		
Description Nearest Home to Well 14-4	Land Use Residential	Baseline Daytime	, ,	ning 45	Night	eptor #5	-		
Description Grader Dozer Tractor		Impact Device No No No	Usaç	ge(%) 40 40 40		Actual Lmax (dBA) 5	Receptor Distance (feet) 1480 1480	Shielding (dBA)	
Equipment Grader Dozer Tractor	Total	*Lmax	Leq 55.6 52.2 54.6 56	48.3 50.6 55	N/A N/A	Leq N/A N/A N/A N/A	nits (dBA) Evening Lmax N/A N/A N/A N/A	Leq N/A N/A N/A N/A	
		Calcula	ted Lmax i	is the	Loudest	value.			
Description Nearest Home to Well 17-4	Land Use Residential	Baseline Daytime	es (dBA)		Rece	eptor #6			
		Baseline	es (dBA) Ever 55	ning 45	Night 45 Equipme Spec Lmax (dBA)	eptor #6 ent Actual Lmax (dBA) 5	Receptor Distance (feet) 3060	Shielding (dBA)	
Nearest Home to Well 17-4 Description Grader Dozer		Baseline Daytime Impact Device No No No Calculat	es (dBA) Ever 55	ge(%) 40 40 45.3 42.0 44.3 49	Rece Night 45 Equipme Spec Lmax (dBA) 85 84 Results Day Lmax N/A N/A N/A	eptor #6 Actual Lmax (dBA) 81.7 Noise Lin Leq N/A N/A N/A	Receptor Distance (feet) 3060 3060	Shielding (dBA)	0

Report date:

9/3/2019

Case Description:

Truckhaven Geothermal Exploration Wells - Well Drilling

---- Receptor #1 ----

Baselines (dBA)

Description

Land Use Daytime Evening

Night

Nearest Home to Well 32-5

Residential

55

45

Equipment					
		Spec	Actual	Receptor	Estimated
Impact		Lmax	Lmax	Distance	Shielding
Device	Usage(%)	(dBA)	(dBA)	(feet)	(dBA)
No	20)	84.4	1800	0
No	50)	80.9	1800	0
No	50)	80.6	1800	0
No	40)	83.4	1800	0
No	40)	77.7	1800	0
	Device No No No No	Device Usage(%) No 20 No 50 No 50 No 40	Spec Impact Lmax Device Usage(%) (dBA) No 20 No 50 No 50 No 40	Impact Lmax Lmax Device Usage(%) (dBA) (dBA) No 20 84.4 No 50 80.9 No 50 80.6 No 40 83.4	Impact Lmax Lmax Distance Device Usage(%) (dBA) (dBA) (feet) No 20 84.4 1800 No 50 80.9 1800 No 50 80.6 1800 No 40 83.4 1800

			Results	Results			
		Calculated (dE	Noise Limits (dBA)				
			Day				
Equipment		*Lmax Led	ı Lmax	Leq	Lmax	Leq	
Auger Drill Rig		53.2	46.2 N/A	N/A	N/A	N/A	
Pumps		49.8	46.8 N/A	N/A	N/A	N/A	
Generator		49.5	46.5 N/A	N/A	N/A	N/A	
Gradall		52.3	48.3 N/A	N/A	N/A	N/A	
Compressor (air)		46.5	42.6 N/A	N/A	N/A	N/A	
	Total	53	53 N/A	N/A	N/A	N/A	

^{*}Calculated Lmax is the Loudest value.

Report date:

9/3/2019

Case Description:

Truckhaven Geothermal Exploration Wells - Well Drilling

---- Receptor #2 ----

Baselines (dBA)

Description

Land Use

Daytime Evening Night

45

Nearest Home to Well 47-5

Residential

55

	Equipment					
		Spec	Actual	Receptor	Estimated	
	Impact	Lmax	Lmax	Distance	Shielding	
Description	Device	Usage(%) (dBA)	(dBA)	(feet)	(dBA)	
Auger Drill Rig	No	20.0	84.4	2320	0	
Pumps	No	50	80.9	2320	0	
Generator	No	50	80.6	2320	0	
Gradall	No	40	83.4	2320	0	
Compressor (air)	No	40	77.7	2320	0	

		Results				
Calculate	Calculated (dBA)			Noise Limits (dBA)		
		Day		Evening		
*Lmax	Leq	Lmax	Leq	Lmax	Leq	
51.0	44.0	N/A	N/A	N/A	N/A	
47.6	44.6	N/A	N/A	N/A	N/A	
47.3	44.3	N/A	N/A	N/A	N/A	
50.1	46.1	N/A	N/A	N/A	N/A	
44.3	40.4	N/A	N/A	N/A	N/A	
al 51	51	N/A	N/A	N/A	N/A	
	*Lmax 51.0 47.6 47.3 50.1 44.3	*Lmax Leq 51.0 44.0 47.6 44.6 47.3 44.3 50.1 46.1 44.3 40.4	Calculated (dBA) Day *Lmax Leq Lmax 51.0 44.0 N/A 47.6 44.6 N/A 47.3 44.3 N/A 50.1 46.1 N/A 44.3 40.4 N/A	Calculated (dBA) Noise Limit Day *Lmax Leq Lmax Leq 51.0 44.0 N/A N/A 47.6 44.6 N/A N/A 47.3 44.3 N/A N/A 50.1 46.1 N/A N/A 44.3 40.4 N/A N/A	Calculated (dBA) Day Evening *Lmax Leq Lmax Leq Lmax 51.0 44.0 N/A N/A N/A 47.6 44.6 N/A N/A N/A N/A 47.3 44.3 N/A N/A N/A N/A 50.1 46.1 N/A N/A N/A 44.3 40.4 N/A N/A N/A	

^{*}Calculated Lmax is the Loudest value.

Report date:

9/3/2019

Case Description:

Truckhaven Geothermal Exploration Wells - Well Drilling

---- Receptor #3 ----

Baselines (dBA)

Description Nearest Home to Well 18-32 Residential

Land Use

Daytime Evening 55.0

45.0

Night

			Equipme	nt		
			Spec	Actual	Receptor	Estimated
	Impact		Lmax	Lmax	Distance	Shielding
Description	Device	Usage(%)	(dBA)	(dBA)	(feet)	(dBA)
Auger Drill Rig	No	20)	84.4	2110	0
Pumps	No	50)	80.9	2110	0
Generator	No	50)	80.6	2110	0
Gradall	No	40)	83.4	2110	0
Compressor (air)	No	40)	77.7	2110	0

					Results			
		Calculated (dBA)				Noise Limits (dBA)		
		Day			Day		Evening	
Equipment		*Lmax	Leq		Lmax	Leq	Lmax	Leq
Auger Drill Rig		51.9)	44.9	N/A	N/A	N/A	N/A
Pumps		48.4	ļ	45.4	N/A	N/A	N/A	N/A
Generator		48.1		45.1	N/A	N/A	N/A	N/A
Gradall		50.9)	46.9	N/A	N/A	N/A	N/A
Compressor (air)		45.2	2	41.2	N/A	N/A	N/A	N/A
	Total	52	2	52	N/A	N/A	N/A	N/A

^{*}Calculated Lmax is the Loudest value.

Report date:

9/3/2019

Case Description:

Truckhaven Geothermal Exploration Wells - Well Drilling

---- Receptor #4 ----

Baselines (dBA)

Description

Land Use

Daytime Evening

Night

Nearest Home to Well 47-32 Residential

45.0 55

	Equipment					
			Spec	Actual	Receptor	Estimated
	Impact		Lmax	Lmax	Distance	Shielding
Description	Device	Usage(%)	(dBA)	(dBA)	(feet)	(dBA)
Auger Drill Rig	No	20		84.4	1060	0
Pumps	No	50.0		80.9	1060	0
Generator	No	50		80.6	1060	0
Gradall	No	40		83.4	1060	0
Compressor (air)	No	40		77.7	1060	0

R	е	s	u	lt	S

		Calculated (dBA)				Noise Limits (dBA)		
					Day		Evening	l
Equipment		*Lmax	Leq		Lmax	Leq	Lmax	Leq
Auger Drill Rig		57.8		50.8	N/A	N/A	N/A	N/A
Pumps		54.4		51.4	N/A	N/A	N/A	N/A
Generator		54.1		51.1	N/A	N/A	N/A	N/A
Gradall		56.9	1	52.9	N/A	N/A	N/A	N/A
Compressor (air)		51.1		47.2	N/A	N/A	N/A	N/A
	Total	58	}	58	N/A	N/A	N/A	N/A

^{*}Calculated Lmax is the Loudest value.

Report date:

9/3/2019

Case Description:

Truckhaven Geothermal Exploration Wells - Well Drilling

---- Receptor #5 ----

Baselines (dBA)

Description

Land Use Daytime Evening

Night

Nearest Home to Well 14-4

Residential

55

			Equipmen	nt		
			Spec	Actual	Receptor	Estimated
	Impact		Lmax	Lmax	Distance	Shielding
Description	Device	Usage(%)	(dBA)	(dBA)	(feet)	(dBA)
Auger Drill Rig	No	20		84	.4 1480	0
Pumps	No	50		80	.9 1480	0
Generator	No	50	l	80	.6 1480	0
Gradall	No	40		83	.4 1480	0
Compressor (air)	No	40	1	77	.7 1480	0

				Results				
		Calculated (dBA)			Noise Limits (dBA)			
		Day				Evening	Evening	
Equipment		*Lmax	Leq	Lmax	Leq	Lmax	Leq	
Auger Drill Rig		54.9	47.9	N/A	N/A	N/A	N/A	
Pumps		51.5	48.5	N/A	N/A	N/A	N/A	
Generator		51.2	48.2	N/A	N/A	N/A	N/A	
Gradall		54.0	50.0	N/A	N/A	N/A	N/A	
Compressor (air)		48.2	44.3	N/A	N/A	N/A	N/A	
	Total	55	55	N/A	N/A	N/A	N/A	

^{*}Calculated Lmax is the Loudest value.

Report date:

9/3/2019

Case Description:

Truckhaven Geothermal Exploration Wells - Well Drilling

---- Receptor #6 ----

Baselines (dBA)

Description

Land Use

Daytime Evening

Night

Nearest Home to Well 17-4

Residential

55

45

		Equipme	nt		
		Spec	Actual	Receptor	Estimated
Impact		Lmax	Lmax	Distance	Shielding
Device	Usage(%)	(dBA)	(dBA)	(feet)	(dBA)
No	20		84.4	3060	0
No	50		80.9	3060	0
No	50		80.6	3060	0
No	40		83.4	3060	0
No	40		77.7	3060	0
	Device No No No No	Device Usage(%) No 20 No 50 No 50 No 40	Impact Lmax Device Usage(%) (dBA) No 20 No 50 No 50 No 40	Impact Lmax Lmax Device Usage(%) (dBA) (dBA) No 20 84.4 No 50 80.9 No 50 80.6 No 40 83.4	Impact Lmax Lmax Lmax Distance Device Usage(%) (dBA) (dBA) (feet) No 20 84.4 3060 No 50 80.9 3060 No 50 80.6 3060 No 40 83.4 3060

	Results							
		Calculated (dBA) Day				Noise Limits (dBA)		
					Evening			
Equipment		*Lmax	Leq		Lmax	Leq	Lmax	Leq
Auger Drill Rig		48.6	6	41.6	N/A	N/A	N/A	N/A
Pumps		45.2	2	42.2	N/A	N/A	N/A	N/A
Generator		44.9	9	41.9	N/A	N/A	N/A	N/A
Gradall		47.7	7	43.7	N/A	N/A	N/A	N/A
Compressor (air)		41.9	9	38.0	N/A	N/A	N/A	N/A
	Total	49	9	49	N/A	N/A	N/A	N/A

^{*}Calculated Lmax is the Loudest value.

Report date:

9/3/2019

Case Description:

Nearest Home to Well 32-5

Truckhaven Geothermal Exploration Wells - Well Drilling Mitigated

---- Receptor #1 ----

Baselines (dBA)

Description

Land Use

Daytime Evening Night

Residential

Daytime Evening 55 45

45

Equipment Spec Actual Receptor Estimated Impact Lmax Lmax Distance Shielding (dBA) Description Device Usage(%) (dBA) (dBA) (feet) Auger Drill Rig No 1800 20 84.4 15 **Pumps** 50 80.9 1800 15 No Generator No 50 80.6 1800 15 Gradall No 40 83.4 1800 15 Compressor (air) 40 77.7 1800 15 No

Resu	lte
1 \C3u	ILЭ

		Calculated (dB/	4)	Noise Limits (dBA)		
			Day		Evening	
Equipment		*Lmax Leq	Lmax	Leq	Lmax	Leq
Auger Drill Rig		38.2	31.2 N/A	N/A	N/A	N/A
Pumps		34.8	31.8 N/A	N/A	N/A	N/A
Generator		34.5	31.5 N/A	N/A	N/A	N/A
Gradall		37.3	33.3 N/A	N/A	N/A	N/A
Compressor (air)		31.5	27.6 N/A	N/A	N/A	N/A
	Total	38	38 N/A	N/A	N/A	N/A

^{*}Calculated Lmax is the Loudest value.

Report date.

9/3/2019

Case Description:

Truckhaven Geothermal Exploration Wells - Well Drilling Mitigated

---- Receptor #2 ----

Baselines (dBA)

Description

Land Use

Daytime Evening Night

Nearest Home to Well 47-5

Residential

55 45

45

Equipment Spec Actual Receptor Estimated **Impact** Lmax Distance Shielding Lmax Description Device Usage(%) (dBA) (dBA) (feet) (dBA) Auger Drill Rig No 20.0 84.4 2320 15 **Pumps** No 50 80.9 2320 15 Generator 50 No 80.6 2320 15 Gradall No 40 83.4 2320 15 Compressor (air) 40 No 77.7 2320 15

Resu	lts

		Calculated	d (dB/	A)	Noise Limits (dBA)			
					Day		Evening	
Equipment		*Lmax	Leq		Lmax	Leq	Lmax	Leq
Auger Drill Rig		36.0		29.0	N/A	N/A	N/A	N/A
Pumps		32.6	i	29.6	N/A	N/A	N/A	N/A
Generator		32.3		29.3	N/A	N/A	N/A	N/A
Gradall		35.1		31.1	N/A	N/A	N/A	N/A
Compressor (air)		29.3		25.4	N/A	N/A	N/A	N/A
	Total	36	i	36	N/A	N/A	N/A	N/A

^{*}Calculated Lmax is the Loudest value.

Report date:

9/3/2019

Case Description:

Truckhaven Geothermal Exploration Wells - Well Drilling Mitigated

---- Receptor #3 ----

Baselines (dBA)

Description

Land Use

Daytime Evening Night

Nearest Home to Well 18-32 Residential

55.0

45.0

		Equipment			
		Spec	Actual	Receptor	Estimated
	Impact	Lmax	Lmax	Distance	Shielding
Description	Device	Usage(%) (dBA)	(dBA)	(feet)	(dBA)
Auger Drill Rig	No	20	84.4	2110	15
Pumps	No	50	80.9	2110	15
Generator	No	50	80.6	2110	15
Gradall	No	40	83.4	2110	15
Compressor (air)	No	40	77.7	2110	15

	Results								
			Calculated (dBA)				Noise Limits (dBA)		
						Day		Evening	
Equipment			*Lmax	Leq		Lmax	Leq	Lmax	Leq
Auger Drill Rig			36.9		29.9	N/A	N/A	N/A	N/A
Pumps			33.4		30.4	N/A	N/A	N/A	N/A
Generator			33.1		30.1	N/A	N/A	N/A	N/A
Gradali			35.9		31.9	N/A	N/A	N/A	N/A
Compressor (air)			30.2		26.2	N/A	N/A	N/A	N/A
		Total	37		37	N/A	N/A	N/A	N/A

^{*}Calculated Lmax is the Loudest value.

Report date:

9/3/2019

Case Description:

Truckhaven Geothermal Exploration Wells - Well Drilling Mitigated

---- Receptor #4 ----

Baselines (dBA)

Description

Nearest Home to Well 47-32 Residential

Land Use Daytime Evening Night

55 45.0

		Equipment			
		Spec	Actual	Receptor	Estimated
	Impact	Lmax	Lmax	Distance	Shielding
Description	Device	Usage(%) (dBA)	(dBA)	(feet)	(dBA)
Auger Drill Rig	No	20	84.4	1060	15
Pumps	No	50.0	80.9	1060	15
Generator	No	50	80.6	1060	15
Gradall	No	40	83.4	1060	15
Compressor (air)	No	40	77.7	1060	15

				Results			
		Calculated (dBA)			Noise Limits (dBA)		
				Day		Evening	
Equipment		*Lmax	Leq	Lmax	Leq	Lmax	Leq
Auger Drill Rig		42.8	35.8	N/A	N/A	N/A	N/A
Pumps		39.4	36.4	N/A	N/A	N/A	N/A
Generator		39.1	36.1	N/A	N/A	N/A	N/A
Gradall		41.9	37.9	N/A	N/A	N/A	N/A
Compressor (air)		36.1	32.2	N/A	N/A	N/A	N/A
	Total	43	43	N/A	N/A	N/A	N/A

Report date:

9/3/2019

Case Description:

Truckhaven Geothermal Exploration Wells - Well Drilling Mitigated

---- Receptor #5 ----

Baselines (dBA)

Description

Land Use

Daytime Evening Night

Nearest Home to Well 14-4

Residential

55 45

		Equipment			
		Spec	Actual	Receptor	Estimated
	Impact	Lmax	Lmax	Distance	Shielding
Description	Device	Usage(%) (dBA)	(dBA)	(feet)	(dBA)
Auger Drill Rig	No	20	84.4	1480	15
Pumps	No	50	80.9	1480	15
Generator	No	50	80.6	1480	15
Gradall	No	40	83.4	1480	15
Compressor (air)	No	40	77.7	1480	15

				Results			
	Calculated (dBA)				Noise L		
				Day		Evening	l
Equipment		*Lmax	Leq	Lmax	Leq	Lmax	Leq
Auger Drill Rig		39.9	32.	9 N/A	N/A	N/A	N/A
Pumps		36.5	33	5 N/A	N/A	N/A	N/A
Generator		36.2	33.	2 N/A	N/A	N/A	N/A
Gradall		39.0	35.	0 N/A	N/A	N/A	N/A
Compressor (air)		33.2	29	3 N/A	N/A	N/A	N/A
	Total	40	4	0 N/A	N/A	N/A	N/A

^{*}Calculated Lmax is the Loudest value.

Report date:

9/3/2019

Case Description:

Truckhaven Geothermal Exploration Wells - Well Drilling Mitigated

---- Receptor #6 ----

Baselines (dBA)

Description

Land Use

Daytime Evening

Night

45

Nearest Home to Well 17-4

Residential

55

45

Equipment Spec Actual Receptor Estimated Lmax Lmax Distance Shielding (dBA) (feet) (dBA) 84.4 3060 20

Impact Description **Device** Usage(%) (dBA) Auger Drill Rig No 15 **Pumps** No 50 80.9 3060 15 Generator No 50 80.6 3060 15 Gradall No 40 83.4 3060 15 Compressor (air) No 40 77.7 3060 15

Results

Calculated (dBA) Noise Limits (dBA) Day Evening Equipment *Lmax Leq Lmax Leq Lmax Leq Auger Drill Rig 26.6 N/A N/A 33.6 N/A N/A Pumps 30.2 27.2 N/A N/A N/A N/A Generator 29.9 N/A 26.9 N/A N/A N/A Gradall 32.7 28.7 N/A N/A N/A N/A Compressor (air) 26.9 23.0 N/A N/A N/A N/A Total 34 34 N/A N/A N/A N/A

^{*}Calculated Lmax is the Loudest value.

Report date: Case Description:	9/3/2019 Truckhaven		l Expl	oratio	n Wells	- Well	l Testing		
•							_		
Description Nearest Home to Well 32-5	Land Use Residential	Baselines Daytime 55	Ever		Night	:ер то 45	r #1		
					Equipm Spec		ctual	Recentor	Estimated
Description Crane Pumps Tractor		Impact Device No No No	Usag	je(%) 16 50 40	Lmax (dBA)	Lr	max IBA) 80.6 80.9	Distance (feet) 1800	Shielding (dBA) 0 0
		Calculated	d (dBA	١)	Results		oise Lim	its (dBA)	
Equipment Crane Pumps		*Lmax 49.4 49.8		41.5 46.8	N/A	N.	eq /A /A	Evening Lmax N/A N/A	Leq N/A N/A
Tractor	Total	52.9 53 *Calculate			N/A	N		N/A N/A	N/A N/A
Description Nearest Home to Well 47-5	Land Use Residential	Baselines Daytime 55.0	Even		Red Night	epto 45	r #2		
Description Crane Pumps Tractor		Impact Device No No No	Usag	e(%) 16 50.0 40	Equipm Spec Lmax (dBA)	A: Lr	ctual nax IBA) 80.6 80.9	Distance (feet) 2320	Estimated Shielding (dBA) 0 0
		Calculated	d (dBA	v)	Results Day		oise Lim	its (dBA) Evening	
Equipment Crane Pumps Tractor		*Lmax 51.7 48.3 50.7		47.7 44.4 46.7	Lmax N/A N/A	N.	eq /A /A /A	Lmax N/A N/A N/A	Leq N/A N/A N/A
	Total	52			N/A		/A	N/A	N/A

*Calculated Lmax is the Loudest value.

Report date:	9/3/2019	9								
Case Description:	Truckhaven	Geotherma	I Explo	ratio	n Wells	- W	lell Testing			
							4 410			
		Baselines	(ADA)		Ke	сер	tor #3			
Description	Land Use	Daytime	. ,	na	Night					
Nearest Home to Well 18-32		Dayume 55		119 45	Nigrit	45				
redicat frome to ven 10-02	residential	00	,	-0		70				
					Equipr	men	t			
					Spec		Actual	Receptor	Estimate	ed
		Impact			Lmax		Lmax	Distance		
Description		Device	Usage	e(%)	(dBA)		(dBA)	(feet)	(dBA)	
Crane		No		16.0			80.6	2110		0
Pumps		No	:	50.0			80.9			0
Tractor		No	•	40.0		84		2110		0
					Result					
		Calculate	d (dBA)	1	1169uit	.5	Noise Lim	its (dBA)		
		Guidaidio	a (ab) ()		Day		110.00 E	Evening		
Equipment		*Lmax	Leq		Lmax		Leq	Lmax	Leq	
Crane		52.5	-	48.5	N/A		N/A	N/A	N/A	
Pumps		49.2	<u> </u>	45.2	N/A		N/A	N/A	N/A	
Tractor		51.5	5 .	47.5	N/A		N/A	N/A	N/A	
	Total	53			N/A		N/A	N/A	N/A	
		*Calculate	ed Lmax	x is t	he Lou	dest	value.			
					Re	cen	tor #4			
		Baselines	(dBA)			ООР	toi n-			
Description	Land Use	Daytime	Evenii	ng	Night					
Nearest Home to Well 47-32	Desidential	-			•					
	Residential	55	5	45		45				
	Residential	55	5	45						
	Residential	55	5	45	Equipr		t	December	Cation at a	
	Residential		5	45	Spec		t Actual	Receptor		
Description	Residential	Impact			Spec Lmax		t Actual Lmax	Distance	Shielding	
Description Crane	Residential	Impact Device		e(%)	Spec		t Actual Lmax (dBA)	Distance (feet)	Shielding (dBA)	g
Crane	Residential	Impact Device No		e(%) 16	Spec Lmax		t Actual Lmax (dBA) 80.6	Distance (feet) 1060	Shielding (dBA)	g 0
•	Residential	Impact Device		e(%)	Spec Lmax		t Actual Lmax (dBA) 80.6 80.9	Distance (feet) 1060	Shielding (dBA)	g
Crane Pumps	Residential	Impact Device No No		e(%) 16 50	Spec Lmax (dBA)	men 84	t Actual Lmax (dBA) 80.6 80.9	Distance (feet) 1060	Shielding (dBA)	g 0 0
Crane Pumps	Residential	Impact Device No No No	Usage	e(%) 16 50 40	Spec Lmax	men 84	t Actual Lmax (dBA) 80.6 80.9	Distance (feet) 1060 1060	Shielding (dBA)	g 0 0
Crane Pumps	Residential	Impact Device No No	Usage	e(%) 16 50 40	Spec Lmax (dBA)	men 84	t Actual Lmax (dBA) 80.6 80.9	Distance (feet) 1060 1060 1060 its (dBA)	Shielding (dBA)	g 0 0
Crane Pumps Tractor	Residential	Impact Device No No No	Usage d (dBA)	e(%) 16 50 40	Spec Lmax (dBA) Result	men 84	t Actual Lmax (dBA) 80.6 80.9	Distance (feet) 1060 1060 1060 its (dBA) Evening	Shielding (dBA)	g 0 0
Crane Pumps Tractor Equipment	Residential	Impact Device No No No Calculate	Usage d (dBA) Leq	e(%) 16 50 40	Spec Lmax (dBA) Result Day Lmax	men 84	t Actual Lmax (dBA) 80.6 80.9 Noise Lim	Distance (feet) 1060 1060 1060 its (dBA) Evening Lmax	Shielding (dBA)	g 0 0
Crane Pumps Tractor Equipment Crane	Residential	Impact Device No No No Calculate *Lmax 54.0	Usage d (dBA) Leq	e(%) 16 50 40	Spec Lmax (dBA) Result Day Lmax N/A	men 84	t Actual Lmax (dBA) 80.6 80.9 Noise Lim Leq N/A	Distance (feet) 1060 1060 1060 its (dBA) Evening Lmax N/A	Shielding (dBA) Leq N/A	g 0 0
Crane Pumps Tractor Equipment Crane Pumps	Residential	Impact Device No No No Calculate *Lmax 54.0	Usage d (dBA) Leq	e(%) 16 50 40 46.1 51.4	Spec Lmax (dBA) Result Day Lmax N/A N/A	men 84	t Actual Lmax (dBA) 80.6 80.9 Noise Lim Leq N/A N/A	Distance (feet) 1060 1060 1060 its (dBA) Evening Lmax N/A N/A	Shielding (dBA) Leq N/A N/A	g 0 0
Crane Pumps Tractor Equipment Crane	Total	Impact Device No No No Calculate *Lmax 54.0	Usage d (dBA) Leq	46.1 45.1 45.1 45.1	Spec Lmax (dBA) Result Day Lmax N/A N/A	men 84	t Actual Lmax (dBA) 80.6 80.9 Noise Lim Leq N/A	Distance (feet) 1060 1060 1060 its (dBA) Evening Lmax N/A	Shielding (dBA) Leq N/A	g 0 0
Crane Pumps Tractor Equipment Crane Pumps		Impact Device No No No Calculate *Lmax 54.0 54.4 57.5	Usage d (dBA) Leq	46.1 50 45.1 453.5 56	Spec Lmax (dBA) Result Day Lmax N/A N/A N/A	men 84	t Actual Lmax (dBA) 80.6 80.9 Noise Lim Leq N/A N/A N/A	Distance (feet) 1060 1060 1060 its (dBA) Evening Lmax N/A N/A N/A	Shielding (dBA) Leq N/A N/A N/A	g 0 0

Report date: Case Description;	9/3/2019 Truckhaven		ıl Explo	ratio	n Wells	- W	ell Testing			
					Re	cept	tor #5			
Description Nearest Home to Well 14-4	Land Use Residential	Baselines Daytime 55.0	Eveni	ng 45.0	Night	45				
Description Crane Pumps Tractor		Impact Device No No No	_	e(%) 16.0 50 40			Actual Lmax (dBA) 80.6 80.9		Shielding (dBA)	
					Results					
		Calculate)	Day		Noise Lim	Evening		
Equipment		*Lmax 55.6	Leq	51.6	Lmax		Leq N/A	Lmax N/A	Leq N/A	
Crane Pumps		52.2		31.6 48.3			N/A	N/A	N/A	
Tractor		54.6		50.6			N/A	N/A	N/A	
	Total	56			N/A		N/A	N/A	N/A	
		*Calculate	ed Lmax	x is t	he Loud	dest	value.			
					Po	cont	tor #6			
		Baselines	(dBA)		Re	cept	tor #6			
Description	Land Use	Baselines Daytime	(dBA) Evenii	ng		cept	tor #6			
Description Nearest Home to Well 17-4	Land Use Residential		Evenii	ng 45	Night	cep t 45	tor #6			
•		Daytime	Evenii	_	Night	45				
•		Daytime	Evenii	_	Night	45 nent		Receptor	Estimate	ed
Nearest Home to Well 17-4		Daytime 55 Impact	Evenii	45	Night Equipm Spec Lmax	45 nent	Actual Lmax	Distance	Shielding	
Nearest Home to Well 17-4 Description		Daytime 55 Impact Device	Evenii	_45 ∈(%)	Night Equipm	45 nent	Actual Lmax (dBA)	Distance (feet)	Shielding (dBA)	g
Nearest Home to Well 17-4 Description Crane		Daytime 55 Impact Device No	Evenii	45 e(%) 16	Night Equipm Spec Lmax (dBA)	45 nent	Actual Lmax (dBA) 80.6	Distance (feet) 3060	Shielding (dBA)	g 0
Nearest Home to Well 17-4 Description Crane Pumps		Impact Device No	Evenii	45 (%) 16 50	Night Equipm Spec Lmax (dBA)	45 nent	Actual Lmax (dBA)	Distance (feet) 3060 3060	Shielding (dBA)	g 0 0
Nearest Home to Well 17-4 Description Crane		Daytime 55 Impact Device No	Evenii	45 e(%) 16	Night Equipm Spec Lmax (dBA)	45 ment	Actual Lmax (dBA) 80.6	Distance (feet) 3060	Shielding (dBA)	g 0
Nearest Home to Well 17-4 Description Crane Pumps		Impact Device No No No	Eveniii	45 (%) 16 50 40	Night Equipm Spec Lmax (dBA)	45 ment 84 s	Actual Lmax (dBA) 80.6 80.9	Distance (feet) 3060 3060 3060	Shielding (dBA)	g 0 0
Nearest Home to Well 17-4 Description Crane Pumps		Impact Device No	Eveniii	45 (%) 16 50 40	Night Equipm Spec Lmax (dBA)	45 ment 84 s	Actual Lmax (dBA) 80.6	Distance (feet) 3060 3060 3060 its (dBA)	Shielding (dBA)	g 0 0
Description Crane Pumps Tractor		Impact Device No No No	Eveniii Usage	45 (%) 16 50 40	Night Equipm Spec Lmax (dBA) Results	45 ment 84 s	Actual Lmax (dBA) 80.6 80.9	Distance (feet) 3060 3060 3060 its (dBA) Evening	Shielding (dBA)	g 0 0
Nearest Home to Well 17-4 Description Crane Pumps		Impact Device No No No	Usage d (dBA)	45 (%) 16 50 40	Night Equipm Spec Lmax (dBA) Results Day Lmax	45 ment 84 s	Actual Lmax (dBA) 80.6 80.9	Distance (feet) 3060 3060 3060 its (dBA)	Shielding (dBA)	g 0 0
Description Crane Pumps Tractor		Impact Device No No No Calculated	Usage d (dBA)	45 (%) 16 50 40 45.3	Night Equipm Spec Lmax (dBA) Results Day Lmax	45 ment 84	Actual Lmax (dBA) 80.6 80.9 Noise Lim	Distance (feet) 3060 3060 3060 its (dBA) Evening Lmax	Shielding (dBA)	g 0 0
Description Crane Pumps Tractor Equipment Crane	Residential	Impact Device No No No Calculated *Lmax 49.3 45.9 48.3	Usage d (dBA)	45 (%) 16 50 40 45.3 42.0 44.3	Results Day Lmax N/A N/A	45 ment 84 s	Actual Lmax (dBA) 80.6 80.9 Noise Lim Leq N/A N/A	Distance (feet) 3060 3060 3060 its (dBA) Evening Lmax N/A N/A N/A	Shielding (dBA) Leq N/A N/A N/A	g 0 0
Description Crane Pumps Tractor Equipment Crane Pumps		Impact Device No No No Calculated *Lmax 49.3 45.9	Usage d (dBA)	45 (%) 16 50 40 45.3 42.0 44.3 49	Results Day Lmax N/A N/A N/A	45 ment 84 s	Actual Lmax (dBA) 80.6 80.9 Noise Lim Leq N/A N/A N/A N/A	Distance (feet) 3060 3060 3060 its (dBA) Evening Lmax N/A N/A	Shielding (dBA) Leq N/A N/A	g 0 0

Report date: Case Description:	9/3/2019 Truckhaven		al Exploration	on Wells - '	Well Cleanup		
Description Nearest Home to Well 32-5	Land Use Residential	Baselines Daytime 55	Evening	Night	ptor #1		
Description Front End Loader Tractor Tractor		Impact Device No No No	Usage(%) 40 40 40	8	nt Actual Lmax (dBA) 79.1 34	Distance (feet)	(dBA) 0 0 0 0
		Calculated	d (dBA)	Results Day	Noise Limi	ts (dBA) Evening	
Equipment Front End Loader Tractor Tractor	Total	*Lmax 48.0 52.9 52.9	48.9 48.9 53	Lmax N/A N/A N/A N/A	Leq N/A N/A N/A	Lmax N/A N/A N/A N/A	Leq N/A N/A N/A N/A
		*Calculate	ed Lmax is the	ne Loudes	it value.		
					t value. ptor #2		
Description Nearest Home to Well 47-5	Land Use Residential	*Calculate Baselines Daytime 55.0	(dBA) Evening	Rece			
· · · · · · · · · · · · · · · · · · ·		Baselines Daytime	(dBA) Evening	Rece Night Equipment Spec Lmax (dBA)	ptor #2 45	Distance (feet)	0
Nearest Home to Well 47-5 Description Front End Loader Tractor		Baselines Daytime 55.0 Impact Device No No	(dBA) Evening) 45.0 Usage(%) 40.0 40	Recell Night Equipment Spected Lmax (dBA)	ptor #2 15 nt	Distance (feet) 2320 2320 2320 ts (dBA)	Shielding (dBA) 0 0
Nearest Home to Well 47-5 Description Front End Loader Tractor		Baselines Daytime 55.0 Impact Device No No No Calculated *Lmax 51.7 48.3 50.7	(dBA) Evening 45.0 Usage(%) 40.0 40 d (dBA) Leq 7 47.7 8 44.4 7 46.7	Recell Night Equipment Spec Lmax (dBA) Results Day Lmax N/A N/A N/A N/A N/A N/A	ptor #2 15 nt Actual Lmax (dBA) 79.1 34 Noise Limi Leq N/A N/A N/A N/A	Distance (feet) 2320 2320 2320	Shielding (dBA) 0 0

Report date: Case Description:	9/3/2019 Truckhaven		al Expl	oratio	n Wells	- W	ell Cleanu	0			
		Baselines	(dBA)		Rec	ept	or #3				
Description Nearest Home to Well 18-32	Land Use Residential	Daytime 55.0	Even		Night	45					
Description Front End Loader Tractor Tractor		Impact Device No No No	Usag	e(%) 40.0 40.0 40.0		ent 84 84		Dista (feet)	ince	Estimat Shieldir (dBA)	
		Calculated	l (dBA)	Results		Noise Lin	nits (dB	A)		
Equipment Front End Loader Tractor Tractor	Total	*Lmax 52.5 49.2 51.5		48.5 45.2 47.5 52	N/A		Leq N/A N/A N/A N/A	Even Lmax N/A N/A N/A N/A	_	Leq N/A N/A N/A N/A	
		*Calculate	d Lma	x is th							
Description	Land Use	Baselines Daytime	(dBA) Even	ina		ept	or #4				
Description Nearest Home to Well 47-32	Residential	55		45	Night	45					
Description Front End Loader Tractor		Impact Device No No	Usag	je(%) 40.0 40.0		ent 84	Actual Lmax (dBA) 79	Dista (feet	ince		
Tractor		No		40.0		84			1060		0
		Calculated	d (dBA)	Results		Noise Lir				
Equipment Front End Loader Tractor Tractor	Total	*Lmax 54.0 54.4 57.5 58 *Calculate	; ;	56	N/A N/A N/A	est v	Leq N/A N/A N/A N/A /alue.	Ever Lma: N/A N/A N/A N/A	-	Leq N/A N/A N/A N/A	

Report date: Case Description:	9/3/2019 Truckhaven) ı Geothermal Expl	oratio	on Wells	- Well Cleanup)	
Description Nearest Home to Well 14-4	Land Use Residential	Baselines (dBA) Daytime Even 55		Night	eptor #5 45		
Description Front End Loader Tractor Tractor		Impact Device Usag No No No	e(%) 40 40 40		ent Actual Lmax (dBA) 79.	Distance (feet)	0
Equipment Front End Loader Tractor Tractor	Total	*Lmax Leq 55.6 52.2 54.6 56 *Calculated Lma	51.6 48.3 50.6 55	N/A N/A N/A	Noise Lim Leq N/A N/A N/A N/A	its (dBA) Evening Lmax N/A N/A N/A N/A	Leq N/A N/A N/A N/A
Description Nearest Home to Well 17-4	Land Use Residential	Baselines (dBA) Daytime Even 55	ing 45	Night	eptor #6 45		
Description Front End Loader Tractor Tractor		Impact Device Usag No No No	e(%) 40 40 40		ent Actual Lmax (dBA) 79.2	Distance (feet)	(dBA) 0 0
Equipment Front End Loader Tractor Tractor	Total	*Lmax Leq 49.3 45.9 48.3 49 *Calculated Lma	45.3 42.0 44.3 49	N/A N/A N/A	Noise Limi Leq N/A N/A N/A N/A	its (dBA) Evening Lmax N/A N/A N/A N/A	Leq N/A N/A N/A N/A